
OWL Web Ontology Language as a Scripting
Language for Smart Space Applications

Espen Suenson, Johan Lilius, and Iván Porres

Department of Information Technologies
Åbo Akademi University

Turku, Finland
givenname.surname@abo.fi

Abstract. We describe a scripting language for smart space applications
based on the OWL Web Ontology Language. The design goals of the
scripting language are: I. A syntax that easily expresses common script
applications for smart spaces. II. Based on OWL to enable synergy with
semantic web technologies. III. Ease of implementation by using existing
OWL reasoners.
We motivate the design of the scripting language and give some examples
of how to use it. Furthermore, we will give a formal definition of the
syntax and semantics of the scripting language based on the OWL 2
definition.

Keywords: OWL; smart space; ontology; scripting; semantic web

1 Introduction

The Semantic Web is based on the architecture of the World Wide Web. However,
there is also a wish to permit greater interoperability between portable devices,
and in particular to permit portable devices to discover and exchange information
about their immediate physical environments, that is, their context. A Smart
Space is an idea of connecting such devices in a local way similar to the Semantic
Web. [9] In this paper we define a smart space as a local network about the size
of a room consisting of smart phones, tablet PCs and the like, that is, devices
that are fairly computationally powerful.

Smart-M3 is a communication infrastructure for smart devices conceived by
Nokia. In Smart-M3, computational devices (smart phones and others) commu-
nicate within a limited physical space through a central database, the System
Information Broker (SIB). The communication is in the form of RDF. [3] A pro-
gram that communicates with the SIB is called a Knowledge Processor (KP). An
application may consist of several KPs acting together, KPs residing on other
devices and programs not communicating directly with the SIB. The KPs do not
communicate with each other since this is done via the SIB.

In this paper we describe a scripting language for simple smart space ap-
plications. The language targets the Smart-M3 platform. The first design goal

of our scripting language is that it should make it easier to make smart space
applications. To satisfy this design goal our scripting language must make it easy
to express simple tasks, see the examples of section 3.

The second design goal is that the scripting language is based on OWL. [7]
Hence we will refer to the scripting language as OWL Script. By building on
well deliberated standards we hope to save some of the work of inventing new
standards and to enable greater interoperability between standards.

The third design goal is that OWL Script should be able to be implemented
without expending the effort to create a compiler or interpreter from ground. The
use of OWL means that it is possible to use existing OWL reasoning engines as
the computational core of OWL Script.

The main research question that we are trying to answer is how to make
a practically oriented scripting layer that combines the ideas of smart spaces
and the Semantic Web technologies. ’Practical’ is meant to be understood both
from from the point view of the scripting programmer as well as of the scripting
language implementer.

2 Related work

Luukkala and Niemelä have proposed to use an Answer Set Programming im-
plementation as the basis for rule based computation on top of the Smart-M3
platform. [4] Their approach provides for rule based constraint programming
in a way that is computationally more powerful than using OWL. However, in
their approach variables can only hold single individuals. We believe that our
approach where variables refer to sets provides for more intuitive scripts with
regard to smart spaces.

Oliver and Honkola suggests using the WQL query language of Smart-M3 to
implement scripts similar to those considered in this paper. [5] However, they do
not describe the scripting language in detail.

As the individual scripts in our approach have a form similar to ’IF a THEN b’,
OWL Script, if viewed as a collection of rules, bears some resemblance to a pro-
duction rule system (with implementations such as Drools). However, the focus
of our work is not on the rules as a system, but rather on the individual ’rule’
level and its expression in OWL. Each script or ’rule’ will execute independently.

The Rule Interchange Format [8], RuleML [2] and REWERSE I1 Rule Markup
Language are rule formats that can be executed. However, the purpose of these
formats is mainly to serve as interchange formats between different rule nota-
tions, hence they do not address specifically a syntax suitable for smart space
scripting or implementation via OWL reasoners.

A number of OWL reasoning engines exist which could conceivably be used
as back ends in implementing the proposed scripting languages. To name some:
Pellet, Hermit, the Jena framework, Bossam and Racer.

3 Programming with OWL Script

Shown in table 1 is an example KP in OWL Script. It checks whether a named
user is listed as busy in the SIB, and whether there’s a call to his phone. If so,
the phone’s voicemail is activated by inserting a command in the SIB that will
presumably be read by the phone at a later time and acted upon.

Table 1. OWL Script programming example

with user = /User and /Id == ”peter.smith@abo.fi”
phone = /Phone /Owner user
busyUser = user and /Busy
ringingPhone = phone and /IncomingCall

when busyUser, ringingPhone

then insert /ActivateVoicemail(ringingPhone)

The program has three clauses. The ’with’ clause defines an ontology in the
KP that we can think of as a declaring local variables. Any variable that has
the ’/’ access modifier prefixed will be fetched from the SIB. Variables without
access modifiers are local to the KP. All variables are sets, so even though we
assume that there’s only one user with a given ’Id’, the variables ’phone’ and
’ringingPhone’ could easily be conceived to have multiple members.

The ’when’ clause decides if the KP will take any action. In this case, if
both ’busyUser’ and ’ringingPhone’ are nonempty sets, the ’then’ clause will be
carried out. The ’then’ clause specifies the action that will be taken if the KP
fires. In our example a unary predicate will be inserted into the SIB over the set
’ringingPhone’.

Table 2. OWL Script programming example

when /SIB Location and /EmployeeRestaurant,
dev/Time > ”11:00:00”ˆ̂ xsd:time,
dev/Time < ”13:30:00”ˆ̂ xsd:time

then insert /AtLunch(user)

In table 2 we see an example that lists the user as busy in the SIB if he is
present in a restaurant and it is around lunch time. The example demonstrates
communication with the hosting device through the use of the ’dev/’ access
modifier. We also see that some things are outside the scope of OWL Script and
must be provided by the device, such as the current time.

4 Syntax

The syntax of OWL Script is defined by extending the syntax of OWL 2 Func-
tional Syntax and adding the syntactical categories for those things that are
exclusive to OWL Script.

Table 3. Extension of the OWL 2 syntax

AccessModifier := ’/’ | ’dev/’

NonlocalIdentifier := AccessModifier IRI

Quantifier := nonNegativeInteger |
’min’ nonNegativeInteger |
’max’ nonNegativeInteger |
’only’

Class += NonlocalIdentifier

ObjectProperty += NonlocalIdentifier

DataProperty += NonlocalIdentifier

DataRange += (’==’ | ’>’ | ’<’) Literal

ClassExpression += ’(’ ClassExpression ’)’ |
ClassExpression ’and’ ClassExpression |
ClassExpression ’or’ ClassExpression |
ClassExpression ’,’ ClassExpression |
[Quantifier] PropertyExpression

PropertyExpression := ClassExpression ObjectPropertyExpression ClassExpression |
’?’ ObjectPropertyExpression ClassExpression |
ClassExpression ObjectPropertyExpression ’?’ |
DataPropertyExpression DataRange

ClassAxiom += ClassExpression ’=’ ClassExpression

The extension of the OWL syntax is based on the OWL 2 Functional Syntax
definition. [7] The extensions are shown in table 3 in extended BNF notation. The
’+=’ symbol that is used in some places instead of the normal ’:=’ means that
the syntactic categories of OWL 2 are augmented with the productions shown,
that is, those productions can be used in addition to those already defined in
the standard. Syntactic categories that are not defined here are defined in the
OWL 2 standard.

The access modifiers ’/’ and ’dev/’ are the only extensions of the basic OWL
2 syntax that cannot be expressed in ordinary OWL 2. The rest of the extensions

in table 3 can be regarded as syntactic sugar for OWL 2 expressions. Of course,
the constructs of table 4 cannot be expressed in OWL.

Table 4. OWL Script syntax

RDFExpression := NonlocalIdentifier ’(’ ClassExpression ’)’ |
NonlocalIdentifier ’(’ ClassExpression ’,’ ClassExpression ’)’ |
NonlocalIdentifier ’(’ ClassExpression ’,’ Literal ’)’

Action := ’new’ IRI |
’insert’ RDFExpression |
’remove’ RDFExpression

KnowledgeProcessor := [’with’ { Axiom }] ’when’ ClassExpression ’then’ { Action }

Disregarding the access modifiers, the body of the ’with’ and ’when’ clauses
is standard OWL with added syntactic shortcuts. The ’then’ clause builds a set
of RDF triples and directs insertion or removal of triples. The full syntax for
KPs is shown in extended BNF notation in table 4.

It should be noted that the presented syntax is ambiguous, but that the
ambiguity can be resolved by the proper use of parentheses.

5 Semantics

The semantics of an OWL ontology O is given in terms of an interpretation
I = (∆I,∆D, ·C, ·OP, ·DP, ·I, ·DT, ·LT, ·FA) where ∆I is an object domain of indi-
viduals and ∆D is a data domain of data values, ·C is the class interpretation
function, ·OP is the object property interpretation function, ·DP is the data prop-
erty interpretation function, ·I is the individual interpretation function, ·DT is the
datatype interpretation function, ·LT is the literal interpretation function and ·FA
is the data facet interpretation function. [6]

To describe the contents of the SIB and hosting device triple stores we de-
fine additionally the interpretation functions ·CSIB

, ·OPSIB
, ·DPSIB

, ·Cdev
, ·OPdev and

·DPdev.
To describe the semantics of variables with access modifiers we require the

following to hold given /name in O:

if /name ∈ VC then

x ∈ (name)C
SIB ⇒ x ∈ (/name)C

if /name ∈ VOP then

(x, y) ∈ (name)OPSIB⇒ (x, y) ∈ (/name)OP

if /name ∈ VDP then

(x, y) ∈ (name)DPSIB⇒ (x, y) ∈ (/name)DP

where VC, VOP and VDP are the vocabularies of classes, object properties and
data properties in O.

We define exactly similar requirements to hold for the device interpretation
functions ·Cdev

, ·OPdev and ·DPdev. Note that the vocabulary membership condi-
tions can be resolved syntactically.

Table 5. Extension of the datatype interpretation function

Data Range Interpretation ·DT

== lt {(lt)LT}

> lt (DT)DT ∩ (xsd : minExclusive, lt)FA

< lt (DT)DT ∩ (xsd : maxExclusive, lt)FA

where DT is the datatype of the literal lt if differ-
ent from rdf:PlainLiteral; otherwise it is xsd:integer.

We need to define the semantics for the rest of the syntactic additions we
have made to OWL. We do this by extending the domain of the interpretation
functions ·DT and ·C from the OWL 2 Direct Semantics definition. [6] The exten-
sion of ·DT is given in table 5. The extension of ·C is given in table 6. We have
added only one axiom form to the syntax, the condition that it imposes is given
in table 7.

We emphasize that the extensions are merely syntactical, they do not extend
the computational power of OWL. In other words, it is possible, though not
always efficient, to implement the extensions in ordinary OWL. In particular,
the syntactic form ’CE1 , CE2’ can be implemented as (∃>.(CE1)C)u (∃>.(CE2)C)
(borrowing notation from [1]) and the form ’CE OPE ?’ can be implemented with
the use of the OWL inversion operator ObjectInverseOf.

To define the semantics of the parts of OWL Script that doesn’t directly
extend OWL, we first define an interpretation function for RDF expressions,
·RDF. The definition of ·RDF is given in table 8.

The semantics of the ’Action’ syntactic category is as follows: An action of
the form ’new IRI’ defines a new blank RDF node x such that (IRI)C = {x}. An
action of the form ’insert RDFE’ indicates that the RDF triple set (RDFE)RDF

is to be written to the SIB or the hosting device triple store, depending on
the access modifier. Similarly, ’remove RDFE’ indicates triple sets that are to be
deleted.

The triple sets to be inserted or removed may be described by several actions.
The complete sets are written atomically to the SIB and the hosting device, but
the writing operations to the SIB and the device are not atomic with respect to
each other. Conflicts between ’insert’ and ’remove’ actions are resolved in favor
of insertion.

Table 6. Extension of the class expression interpretation function

Class Expression Interpretation ·C

(CE) (CE)C

CE1 and CE2 (CE1)
C ∩ (CE2)

C

CE1 or CE2 (CE1)
C ∪ (CE2)

C

CE1 , CE2

8><>: δ if ∃x, y : x ∈ (CE1)
C and y ∈ (CE2)

C

∅ otherwise

where δ ⊆ ∆I and δ 6= ∅

CE1 OPE CE2 {x | ∃y : (x, y) ∈ (OPE)OP and x ∈ (CE1)
C, y ∈ (CE2)

C}

n CE1 OPE CE2 {x | #{y | (x, y) ∈ (OPE)OP and x ∈ (CE1)
C, y ∈ (CE2)

C} = n}

min n CE1 OPE CE2 {x | #{y | (x, y) ∈ (OPE)OP and x ∈ (CE1)
C, y ∈ (CE2)

C} ≥ n}

max n CE1 OPE CE2 {x | #{y | (x, y) ∈ (OPE)OP and x ∈ (CE1)
C, y ∈ (CE2)

C} ≤ n}

only CE1 OPE CE2 {x | ∀y : (x, y) ∈ (OPE)OP, x ∈ (CE1)
C implies y ∈ (CE2)

C}

? OPE CE {x | ∃y : (x, y) ∈ (OPE)OP and y ∈ (CE)C}

CE OPE ? {y | ∃x : (x, y) ∈ (OPE)OP and x ∈ (CE)C}

DPE DR {x | ∃y : (x, y) ∈ (DPE)DP and y ∈ (DR)DT}

The quantified forms of the syntactic forms ’? OPE CE’, ’CE OPE ?’ and ’DPE DR’ have
been omitted since they are similar to the forms shown. CE is a class expression, OPE
is an object property expression, DPE is a data property expression and DR is a data
range.

We can now define the semantics of a KP ’with O when CE then A’. Let I
be an interpretation that satisfies O under the additional SIB and device store
requirements. If (CE)C 6= ∅ then the actions A are carried out and updates the
SIB and device triple stores according to the definition above of action semantics.

6 Conclusion

The scripting language we present demonstrates that it is feasible to use OWL
as a programming language in a limited domain setting. We believe that OWL
Script is easy to use for examples similar to the ones we have given. As we work
on incorporating further domains and examples, the language can be extended
to accomodate these.

Table 7. Extension of the class expression axiom satisfaction conditions

Axiom Condition

CE1 = CE2 (CE1)
C = (CE2)

C

Table 8. RDF expression interpretation function

RDF Expression Interpretation ·RDF

NLI (CE) {((x)Ī, rdf : type, IRI) | x ∈ (CE)C}

NLI (CE1 , CE2)
{((x)Ī, IRI, (y)Ī) |

x ∈ (CE1)
C and y ∈ (CE2)

C}

NLI (CE , lt) {((x)Ī, IRI, lt) | x ∈ (CE)C}

where IRI is the IRI of the non-local identifier NLI and
·Ī is the inverse of ·I.

The most important task of our future research is to make an implementation
of OWL Script and see how well it performs in practice, in particular to gauge
how suitable the syntax is to script programmers.

References

1. Baader, F., Nutt, W.: Basic description logics (2003)
2. Grosof, B.N., Gandhe, M.D., G, M.D., Finin, T.W.: Sweetjess: Inferencing in sit-

uated courteous ruleml via translation to and from jess rules. In: In: Proceedings
of the ISWC 02 International Workshop on Rule Markup Languages for Business
Rules on the Semantic Web, June 2002, Sardinia, Italy (2003)

3. Honkola, J., Laine, H., Brown, R., Tyrkko, O.: Smart-m3 information sharing plat-
form. IEEE Symposium on Computers and Communications pp. 1041–1046 (2010)

4. Luukkala, V., Niemelä, I.: Enhancing a smart space with answer set programming.
In: Proceedings of the 2010 international conference on Semantic web rules. pp.
89–103. RuleML’10, Springer-Verlag, Berlin, Heidelberg (2010)

5. Oliver, I., Honkola, J.: Personal semantic web through a space based computing en-
vironment. In: Proceedings of the 2nd International Conference on Semantic Com-
puting (2008)

6. W3C recommendation: Owl 2 web ontology language direct semantics (2009),
http://www.w3.org/TR/2009/REC-owl2-direct-semantics-20091027/

7. W3C recommendation: Owl 2 web ontology language structural specification and
functional-style syntax (2009), http://www.w3.org/TR/2009/REC-owl2-syntax-
20091027/

8. W3C Working Group Note: Rif overview (2009),
http://www.w3.org/TR/2010/NOTE-rif-overview-20100622/

9. Wang, X., Dong, J.S., Chin, C., Hettiarachchi, S., Zhang, D.: Semantic space: An
infrastructure for smart spaces. IEEE Pervasive Computing 3, 32–39 (2004)

