
MATERA - An Integrated Framework for Model-Based Testing

Fredrik Abbors, Andreas Bäcklund, and Dragoş Truşcan
Department of Information Technologies, Åbo Akademi University

Joukahaisenkatu 3-5 A, 20520, Turku, Finland
Email: {Fredrik.Abbors, Andreas.C.Backlund, Dragos.Truscan}@abo.fi

Abstract—This paper presents MATERA, a framework that
integrates modeling in the Unified Modeling Language (UML),
with requirement traceability across a model-based testing
(MBT) process. The Graphical User Interface (GUI) of MAT-
ERA is implemented as a plug-in in the NoMagic’s MagicDraw
modeling tool, combining existing capabilities of MagicDraw
with custom ones. MATERA supports graphical specification
of the requirements using SysML and tracing of them to the
UML models specifying the SUT. Model validation is performed
in MagicDraw using both predefined and custom validation
rules. The resulting models are automatically transformed into
input for the Conformiq Qtronic tool, used for automated
test generation. Upon executing the test scripts generated by
Qtronic in the NetHawk’s East execution environment, the
results of statistic analysis of the test run are presented in the
GUI. The back-traceability of the covered requirements from
test to models is also provided in the GUI to facilitate the
identification of the source of possible errors in the models.
The approach we present shows that existing model-based
languages and tools are an enabler for model-based testing and
for providing integrated tool support across the MBT process.

Keywords-Model-Based Testing; Model Validation; Require-
ments Traceability;

I. INTRODUCTION

The software industry is facing several challenges in deliv-
ering increased business value to their customers. Customers
demand more flexible, reliable, low cost, and highly efficient
software solutions. Additionally, the customers usually re-
quire the software systems to be deployed within different
types of distributed environments. Research has shown that
as much as 60 per cent of the total development time can
be spent in testing [1]. This implies that testing is a highly
expensive and time consuming process.

Model-based testing is a technique that tries to address
these issues by introducing automatic generation of tests
from models representing the behavior of the System Under
Test (SUT). Using models for test generation increases the
pressure put on the modeling process and on the quality of
the models used for test generation, as any inconsistency in
the models will reflect later on in the quality of the generated
test cases.

In order to address these issues we suggested a modeling
approach [2] which puts emphasis on three aspects. First,
the models of the SUT are built in a systematic manner
starting from requirements, after which they are fed as input
to the test generation tools. Secondly, several model types

are used to model different perspectives of the system like
behavior, data, architecture, test configuration. Thirdly, the
requirements of the SUT are traced through all the stages
of the testing process and back-traced from the executed
test cases back to models. The approach and the afferent
tool support is also referred to as MATERA (Modeling for
Automated TEst deRivation at bo Akademi).

In this paper, we describe how the tool support for the
MATERA approach is provided by reusing and adapting
existing commercial tools. More specifically, we try to show
that existing model-based techniques and tool can become an
enabler for supporting model-based testing and for providing
integration across the MBT tool chain. MATERA has been
targeted to the telecommunications domain and thus the
examples used in this paper are excerpts from and industrial
case study. Further information on case study can be found
in [3].

II. MATERA

The MATERA tool-set is used to provide support for the
approach by integrating modeling in the Unified Modeling
Language (UML) [4] and requirement traceability across a
custom MBT process (see Figure 1). As mentioned in the
introduction, a set of models are created from the system
requirements. These models are validated by checking that
they are consistent and that all the information required
by the modeling process is included. Consequently, the
models are transformed into input for the test derivation
tool. The resulting test cases are executed (after being
implemented) using a test execution framework. The results
of the test execution are analyzed and a report is generated.
Requirements are linked to artifacts at different levels of the
testing process and finally attached to generated test cases.
This allows one to traceback to models which test cases have
covered different modeling artifacts or from which part of
the models a failed test case has originated.

In the following, we briefly present different features of
the MATERA tool set accompanied by excerpts from a
telecom case study.

A. Graphical User Interface

The GUI of the MATERA tool-set has been implemented
as a plug-in in the MagicDraw UML modeling tool [5]. The
plug-in is developed in Python using the Open Application



MATERA

MATERA process/toolchain

Requirements

Modeling

Validation

Transformation

Test generation

Test Report
Analysis

Test Execution

BackTracing

Figure 1. MATERA process

Programming Interface (Open API) of MagicDraw. The
purpose of MATERA tool-set is to extend the capabilities of
MagicDraw for specifying system models and using them
as input for automatic test generation. Once the models
are completely specified, they can be transformed to input
for test generation tools. Besides model transformation,
MATERA also supports model validation, test reporting, and
(back-)tracing of requirements. Hence, MATERA promotes
the integration of UML modeling with test generation tools.
Figure 2 shows a caption of the MATERA GUI in Magic-
Draw.

Figure 2. Caption of the MATERA GUI in MagicDraw.

B. Requirements Modeling

Requirements play an important role in any software
project and it is also the starting point of the testing pro-

cess [6]. MATERA starts with the analysis and structuring of
the informal requirements into a Requirements Model. The
Requirements Diagrams of the Systems Modeling Language
(SysML) [7] are used for this purpose. We use MagicDraw’s
model editor to create, edit, and structure requirement ele-
ments. Requirements are organized hierarchically in a tree-
like structure, starting from top-level abstract requirements
down to concrete testable requirements. Figure 3 shows
how requirements are structured in MagicDraw editor. Each
requirement is described using a Name and an Id, a Text
field explains the requirement, and a Source field points to
the document or standard from which the requirement was
extracted. Further, requirements can be related to each other
using the relationships defined by SysML. For instance,
requirements can be derived into other requirements using
the deriveReqt relationship or related horizontally using the
trace relationship.

Figure 3. Structuring requirements in MagicDraw.

Traceability of requirements is a pivotal aspect of MBT
that allows one to ensure that all requirements have been
tested [8]. As the models are derived from requirements, it is
important to track how different requirements are reflected
in the models, on different perspectives, and on different
abstraction levels. In MATERA, the requirements can be
linked to different parts of the UML-based system specifica-
tion, for instance to models or to model elements, to ensure
requirements traceability throughout the process. When the
specification is used for test generation, the requirements
are associated with the generated test cases and propagated
throughout test execution.

With MATERA it is possible to check that all specified
requirements have been properly linked to models or model
elements. For this purpose we use MagicDraw’s validation



engine and custom Object Constraint Language (OCL) [9]
rules to check e.g. that the leaf requirements are not left
unlinked or that every requirement has a unique Id.

C. Modeling the SUT

In MATERA, we take advantage of the expressiveness and
graphical capabilities of UML for creating the specification
of the SUT. In our case the test model is derived from
high-level development models, such that partial reuse of
the development specification is enabled. In addition, the
SUT is specified from several perspectives to enable a
successful test derivation process. These perspectives of the
SUT are modeled using the UML diagram editors provided
by MagicDraw; a class diagram is used to specify an
architectural model describing the static structure of system.
The architectural model shows what domain components
exist and how they are interrelated through interfaces. A
behavioral model describes the dynamic behavior of the
SUT using state machines. Data models are represented as
class diagrams and are used to describe the data exchanged
between different domain entities. Last but not least, test
configuration models, represented as object diagrams, are
used to describe specific test configurations and to set up
initial values for the test components.

In MATERA, different parts of the specifications are
linked together in order to specify dependencies. We use
MagicDraw’s property editor to link model elements and
data together, for example, every messages specified on an
interface in the domain model is linked to the corresponded
class in the data model describing the structure of the
message. Also the properties of the elements can be edited
using the Specification editor, see Figure 4.

D. Model Validation

Humans tend to make mistakes and forget things. There-
fore, to gain efficiency of using a MBT process and reducing
the costs by discovering faults at an early stage, it is
necessary to validate the models before using them to e.g.
automatically generate code or test cases [8]. Hence, a set of
modeling guidelines and validation rules have been defined
for ensuring the quality of the models. Modeling guidelines
are used to specify how different models are created from
requirements or from other models, what information they
should contain, how this information is related to the infor-
mation present in the other models, etc.

Validation rules have been defined and implemented for
both Requirements Models and for System Models for
checking different quality metrics of the resulting models
before proceeding to the test derivation phase. These rules
ensure that the models are syntactically correct, they are
consistent with each other, and that they contain the infor-
mation needed in the later phases of the testing process. In
MATERA, validation is prerequisite before transforming the
models.

Figure 4. Screenshot showing the specification editor of a transition.

OCL is used to describe rules that apply to models. The
rules describe conditions that must hold for the system being
modeled. MagicDraw comes shipped with a set of prede-
fined OCL rules for validating UML and SysML models.
In addition to those, custom rules have been defined and
implemented specifically for MATERA. The custom rules
we created are all related to the modeling process, the
application domain, and the specific MBT tool we target. For
instance, we have created validation rules for checking the
leaf requirements in the Requirements Diagram are linked
to model elements and that messages defined on interfaces
in the domain model are linked to data models.

An OCL rule is similar to a model element which has
a number of editable properties e.g. name, specification,
constrained element, severity level, etc. In order to provide
reuse, rules are stored in different validation suites (pack-
ages) depending on the intended purpose of the rule, see
Figure 6.

MagicDraw has a built-in validation engine for checking
the rules against models. The validation in MagicDraw can
be invoked at any time. When the validation is started the
user will be prompted for the validation suite that he/she
wants to apply, the scope (which models), and the severity
level. Upon running the selected validation suite in the
validation engine, MagicDraw creates a summary of the
validation process as depicted in Figure 5, listing which
elements are violating a rule and why. From this window the
user can e.g. choose to open all diagrams with the elements
violating a rule and see the faulty elements in the diagrams
as they are highlighted. Once an error has been corrected
the user can run the same validation suite again to see if the



Figure 5. Validation summary.

modifications made any difference.

E. Transformation

In MATERA, the system models of SUT are transformed
into input for the automated test derivation process. The
transformation has two steps. First, the needed information
from the models is collected by a parser module and stored
into an internal representation. Then this information is read,
by various build modules, and written (rendered) in the
format supported by the test generation tool. The idea is
to have a generic transformation approach and to be able to
expand the approach to target different test generation tools.
However, in our research we currently target only one partic-
ular test generation tool, namely Conformiq’s Qtronic [10].
The transformation [11] [12] translates UML models to the
Qtronic Modeling Language (QML), the language used by
Qtronic for specifying the SUT.

The transformation also propagates requirement from
UML models to QML. In QML, requirements are treated as
textual tags attached to different parts of the specification,
which are treating as testing goals during the test gener-
ations process. Once the test cases are generated they are
implemented in the language used by the test execution tool
(NetHawk’s EAST [13] in our case) using the a scripting
backend. During this process the requirements are propa-
gated further and attached to executable tests allowing the
test execution tool to trace and log the execution of tests
cases and their associated requirements.

F. Test Reporting

MATERA offers support for test reporting. The test report
will summarize the result of the testing process in terms
of generated test cases, verdicts, coverage levels, etc. The
information in the test report is collected form test logs and



Figure 6. Validation suites in MATERA.

from the test scripts by comparing the test purposes encoded
in the scripts against the results of the test execution.

When invoking the test report function from the MATERA
menu (see Figure 2), a parser module collects and stores data
from the test logs and scripts, similarly to the transformation.
The collected data is then analyzed and presented to the user
in HTML format, using the systems default HTML reader.
The user only has to specify is the paths to the executed test
scripts and their corresponding test logs. Figure 7 shows a
snapshot of a test report.

G. Back-Tracing of Requirements

In MATERA, information from test logs is collected
on how different requirements have been covered during
both test generation and test execution phase, respectively.
Based on this information the requirements are tracked
back to the specifications from which the corresponding test
cases have been generated, in order to detect the source
of possible faults in the specifications. Upon selecting the
Trace Back Requirements in the MATERA’s GUI a Python
script that analyzes the test logs and generates OCL queries
that we use in MagicDraw to locate erroneous parts in the
UML system models. The OCL queries are used to trace
requirements from tests to the requirements models and to
the requirements placed on transitions in state machines.
The Python scripts generates OCL queries based on the
information in the test logs and writes them to MagicDraw
in a validation suite called ”Trace Rules”. We use again
MagicDraw’s OCL interpreter to find the requirements in
the UML models based on the produced OCL queries.

This way one can see which requirements failed during
testing and to what model elements they are linked. It
also enables one to identify which parts of the system
model have been covered by the test set. The back-tracing

function in MATERA will highlight model elements in the
system models, to which a failed requirement was linked. In
Figure 8, the list of requirements covered by failed test cases
in presented at the bottom of the screen. By selecting an
entry in the list the corresponding requirement is highlighted
in the diagram editor. Ultimately, since requirements are
linked to model elements, it facilitates the identification of
those parts of the models that are not in sync with the SUT,
see Figure 9.

III. RELATED WORK

Similar research has been conducted within other indus-
tries. When modeling for automatic test generation, it is has
proven beneficial to check the models against pre defined
modeling rules and design guidelines before generating tests.
In [14], the authors use the Object Constraint Language
(OCL) to specify design guidelines and modeling rules for
Simulink models. This approach is similar to ours, in the
sense that rules written in the OCL language are used to
check model consistency against a metamodel. However,
their approach differs slightly from ours since the authors
check the rules against a custom made Matlab/Simulink
metamodel while we check OCL rules against the UML
metamodel.

Other research similar to ours is described in [15]. In
this research the authors use Matlab/Simulink behavioral
models, instead of UML behavioral models, from where they
automatically generate test sequences. Their approach differs
somewhat from ours since it does not address automatic
evaluation of test results.

From other reviewed works, the approach presented in
[16] is closest to our approach. In there, the authors use a re-
stricted set of UML diagrams together with OCL to describe
both the static structure and dynamic behavior of the SUT.
Requirements traceability is addressed by manually tagging
the UML specification with ad-hoc comment symbols to
associate a requirement with an OCL statement. Using the
LEIRIOS (now Smartesting) Test Designer tool the authors
automatically generate test cases out of the UML system
specification and a traceability matrix is obtained after test
execution. However, the Test Designer tool does not offer
support for tracing requirements from test cases to the UML
specification.

IV. CONCLUSION

This paper has presented a framework for integrating
UML and requirements traceability in a MBT process.
The MATERA framework is implemented as a plug-in for
MagicDraw, which adds extended functionality to use UML
models for automatic test generation. UML modeling is
combined in MATERA with consistency checking of the
specification using pre- and custom defined consistency
rules, with the purpose of increasing the quality of the



Figure 7. Caption of a test report generated from MATERA.

specifications used for automated test generation. Require-
ments are traced across the entire testing process; from
models to test cases, and from test cases back to models.
Requirements traceability is facilitated in MATERA by the
back-traceability function.

The MATERA framework provides value by allowing
testers to generate input for automatic test generation tools
from a graphical representation of the SUT. The graphical
representation is created using UML, which is one of the
commonly used standard in the software industry. Addi-
tionally, back-tracing of requirements allows for having a
visual overview of requirements that have not been properly
tested. MATERA also provides the tester with a test report
presented in HTML format which contains statistics of the
test execution.

In our current research, we have focused mainly on
generating input for Conformiq’s Qtronic test generation
tool. However, in the future we plan to target other test
generation tools as well. Another future goal is to include
statistical information into the UML models, based on past
test executions, to be able to prioritize test cases or to focus
the testing on specific parts of the system specification. We
will also investigate how the information contained in the
UML models can be used for generating adapter frameworks
for different MBT tools.

ACKNOWLEDGMENT

Financial support from Tekes under the ITEA2 D-Mint
project is gratefully acknowledged.



Figure 8. Back-tracing of a requirement to a transition.

Figure 9. Back-tracing of requirements to the Requirement Diagram
.



REFERENCES

[1] “Historical Perspective in Optimising Software Testing
Efforts - http://www.indianmba.com/Faculty Column/FC139/
fc139.html.” [Online]. Available: http://www.indianmba.com/
Faculty Column/FC139/fc139.html

[2] J. Abbors, “Increasing Quality of UML Models Used for
Automatic Test Generation,” Master’s thesis, Åbo Akademi
University, 2009.

[3] F. Abbors, “An Approach for Tracing Functional Re-
quirements in Model-Based Testing,” Master’s thesis, Åbo
Akademi University, 2009.

[4] “Unified Modeling Language - http://www.omg.org/spec/
UML/2.0/.” [Online]. Available: http://www.omg.org/spec/
UML/2.0/

[5] “NoMagic MagicDraw,” http://www.magicdraw.com/.

[6] G. Fournier, Essential Testing: A Use Case Driven Approach.
BookSurge Publishing, 2007, pp. 67–75.

[7] Object Management Group, “OMG SysML Specification,”
Tech. Rep. [Online]. Available: http://www.omg.org/spec/
SysML/1.1/

[8] M. Utting, The Role of Model-Based Testing. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 510–517.

[9] Object Constraint Language v2.0, OMG, May 2006, http://
www.omg.org/spec/OCL/2.0/PDF.

[10] “Conformiq Qtronic,” http://www.conformiq.com/.

[11] T. Pääjärvi, “Generation Input for the Test Generator Tool
from UML Design Models,” Master’s thesis, Åbo Akademi
University, 2009.

[12] F. Abbors, T. Pääjärvi, R. Teittinen, D. Truşcan, and J. Lilius,
“A Semantic Transformation from UML Models to Input for
the Qtronic Test Design Tool,” Turku Centre for Computer
Science (TUCS), Tech. Rep. 942, 2009.

[13] NetHawk, “NetHawk EAST,” 2009. [Online].
Available: www.nethawk.fi/products/nethawk simulators/
nethawk ims tester/

[14] T. Farkas, C. Hein, and T. Ritter, “Automatic Evaluation
of Modeling Rules and Design Guidelines,” in proc. of the
Workshop ”From code centric to Model centric Soft. Eng.”,
http://www.esi.es/modelware/c2m/papers.php, 2006.

[15] M. Conrad, H. Dörr, I. Stürmer, and A. Schürr, “Graph
Transformations for Model-based Testing,” GI-Lecture Notes
in Informatics, P-12, pp. 39–50, 2002.

[16] E. Bernard and B. Legeard, “Requirements Traceability in
the Model-Based Testing Process,” in Software Engineering,
ser. Lecture Notes in Informatics, vol. 106. Bttinger, Stefan
and Theuvsen, Ludwig and Rank, Susanne and Morgenstern,
Marlies, 2007, pp. 45–54.


