Approaching Performance Testing From a Model-Based Testing Perspective

Fredrik Abbors, Dragos Truscan
Department of Information Technologies, Abo Akademi University
Joukahaisenkatu 3-5 A, 20520, Turku, Finland
Email: {Fredrik.Abbors, Dragos.Truscan} @abo.fi

Abstract—The paper introduces the concept of model-based
performance testing, which we plan to pursue in our research.
The underlying idea is to describe various performance aspects
as well as functional aspects of a software system using
modeling languages like UML, and from the resulting models
to automatically design tests that can be used for performance
testing. In our research, we also plan to focus on how the
modeling and traceability of performance requirements can be
achieved across the testing process.

Keywords-Model-Based Testing, Performance Testing, Re-
quirements Traceability

I. INTRODUCTION

The complexity of software systems and applications
are increasing. Additionally, software systems are usually
deployed within different types of distributed environments.
Performance characteristics such as throughput, response
time, and scalability are becoming increasingly more im-
portant for such applications and systems. For this reason, it
is critical to verify that the system satisfies its performance
requirements. Studies [1] show that a significant percentage
of the deployed applications have in practice performance
issues. These constitute one of the major fault categories in
the telecommunications domain [2].

Performance testing is one of the activities of the Software
Performance Engineering process as defined by Smith and
Williams [3]. Performance testing is usually carried out
manually in the later stages of development and constitutes
a tedious and time consuming task. Having a structured
and automated approach where performance test are de-
rived from abstract model representations of the system
would allow to leverage the effort of manually designing
performance tests. In order to have a successful automated
performance testing process, tests need not only to be
generated automatically, but also executed and the results of
the test execution analyzed and interpreted. In our opinion,
the approach would benefit even more if standard modeling
notations like the Unified Modeling Language (UML) [4]
are used.

The paper will proceed with a short introduction to model-
based testing in Section II, followed, in Section III, by a
overview of related work in the field. Then, Section IV
will discuss performance testing and its challenges, whereas
in Section V we describe our approach in combining the
model-based testing and performance testing.

II. MODEL-BASED TESTING

Model-Based Testing (MBT) [5] is a testing paradigm,
in which test cases are derived from an abstract model that
describes the functional behavior of the System Under Test
(SUT). In many occasions, the behavioral model is comple-
mented with other specifications like data, architecture. etc.
The reason for having an abstract model is that one usually
does not want to test the whole system, but rather focus
on a particular part, leaving out the information that is not
relevant at a given abstraction level. Thus, the way MBT
uses abstraction makes it suitable for different phases of the
testing process starting from unit testing to system testing.

In traditional testing, test cases are written manually by
analyzing the requirements. In MBT, a test model describing
the expected behavior of the SUT is initially developed.
Once the model is complete, test cases are automatically
designed by traversing the model based on selected coverage
criteria. The resulting test cases are abstract and have to be
brought to the level of abstraction understood by the SUT.

The time to develop a test model should be shorter than
developing all the test cases by hand. In practice, the time to
develop a test model depends of course on the skills of the
tester and the complexity of the system. An inexperienced
tester may develop the test model in the same time as it
would take for an experienced tester to write all the test cases
manually. MBT is not only an activity for automatic test
generation; it also includes automatic execution and analysis
of the tests. These tasks make MBT even more challenging
than just automatic test generation. Research in the area of
MBT has been carried out and is still going on, investigating
how to apply techniques and tools to automate the testing
process.

There are many advantages using MBT. One of the
strongest advantages is that large numbers of test cases can
be generated in a relatively short amount of time. Another
advantage of MBT is the maintenance of the test cases.
As the project evolves the requirements may change, the
test cases also need to change. If one uses manual testing
methods, then all the created test cases must be examined to
verify that they are still valid i.e., they are not affected by
the changed requirements. In MBT one could simply apply
the changes in the system model and regenerate all the test
cases.

III. RELATED WORK

Most of the performance modeling techniques, that we
have reviewed, are used for development, simulation, main-
taining, and analysis of performance characteristics in soft-
ware systems, but only a handful are actually used for gen-
eration of performance tests. There are existing performance
testing techniques [6][7][8] that are actually used to derive
performance tests from models, but very few use UML as
domain language.

Most of the techniques use a domain specific language to
capture the performance characteristics of the system under
test (SUT) from where they automatically or manually derive
performance tests. We plan to elaborate on the existing
techniques and apply them to our approach.

One of the advantages of using UML as modeling
language for performance test generation is the graphical
expressiveness of the language. This, together with ab-
straction, implies that the resulting models are easy to
maintain and understand. Another advantage of using UML
for performance testing is that UML is becoming a standard
notation for software and hardware systems modeling in
many industries [9][10][11]. Besides, UML allows testers to
embed both static and dynamic aspects of the system into the
models, using different diagram types. These characteristics
make UML suitable for systematic performance evaluation
as well. Research has been done on creating and main-
taining UML performance models for various distributed
systems [12][13][14][15][16]. In addition, UML can be
customized to serve specific purposes. Standardized UML
profiles i.e., UML Profile for Schedulability, Performance,
and Time (SPT) [17], UML Profile for Modeling and
Analysis of Real-Time and Embedded Systems (MARTE)
[18], or UML Testing Profile (UTP) [19] have already been
developed and they allow testers to model performance
related characteristics of the system.

IV. PERFORMANCE TESTING AND CHALLENGES

Performance testing is a way to evaluate the design
of the system with respect to performance requirements.
Performance testing is also the means to determine how fast
some critical aspects of a system perform under a particular
load. With a sound and stable performance testing plan
one can measure different characteristics of a system, for
instance, the response times or detect possible workload
thresholds for the system. Performance testing can also
demonstrate the reliability and scalability of the system, and
even measure the systems resource usage. All these factors
play an important role in the today’s software systems.

Performance testing is usually performed right before the
actual users start using the system. One of the biggest
challenges with performance testing today is replicating
a similar environment (for testing purposes) as the envi-
ronment, in which the system is going to be deployed.
Maintaining such an environment may in some cases be

impractical, too expensive, or not even possible. The solution
to this is to scale down the testing objectives based on the
capacity of the available testing environment.

Other challenges that performance testers are facing is
the generation of appropriate test data, the identification
and specification of proper performance requirements, and
the establishment of performance testing goals. Generating
meaningful and large quantities of test data for performance
testing is not a trivial task, for example, generating test
data from a system with billions of users with multiple
user profiles, user names, passwords, etc. Before starting
performance testing, one needs to have a stable enough
software to test so that the results are conclusive and not
influenced by, for example, a software crash.

Work conducted in [20][21] listed several challenges for
performing performance testing:

o Capturing performance requirements at the beginning
of the development process;

« Development of coverage measures for performance
tests;

o Model-assisted test design and evaluation.

Performance testing is usually carried out manually by
identifying appropriate functional tests that are executed
against the system in various quantities in order to determine
the responsiveness of the system. Identification of test results
and the detection of possible bottlenecks in the system is
also in many cases preformed manually and is therefore
considered a tedious task. Hence, there is clearly a need of
having automated ways to generate, execute, and validate
performance tests for various distributed system. Model-
based testing could be a way to address these problems.

V. MODEL-BASED PERFORMANCE TESTING

As performance testing is often carried out during the
later stages of development, we will try to address this
problem by looking at how performance features of the SUT
can be modeled at an earlier stage using a model-based
approach. With this research we strive to bridge the gap
between model-based functional testing and performance
testing using UML as the modeling language.

Our work investigates the applicability of model-based
testing principles to performance testing. We plan to have a
top-down approach; the process will go from requirements
via test models to concrete test cases (see Figure 1). We
will start by analyzing performance requirements and struc-
ture them in a requirements model. For the requirements
modeling phase, we plan to look into how performance
requirements explicitly can be formulated and grouped in
terms of e.g., response times, memory usage, or bandwidth
usage.

Further, we will investigate how performance require-
ments can be collected and quantified into acceptance cri-
teria. This would facilitate the process of analyzing and

Modeling of
performance
requirement

@ Tracing

ystem
Performance Generation
characteristics

Trace-back

Trace-back

Test results
evaluation

Transformation

Test Data
Test generation <>
<:> [Test Environment]

Test Model

)
il

=

Test Execution

]

Figure 1. Model-based performance testing approach

understanding the results once they are available. When con-
ducting performance testing, it is difficult to give a verdict
if the test results are satisfactory. Hence, we plan to have a
systematic approach of how performance requirements are
measured and quantified in order to facilitate the process
of analyzing performance test results. We plan to build
requirement models, which will be used to capture, structure,
and interrelate performance requirements. Exiting modeling
languages as like the System Modeling Language (SysML)
[22] or custom domain specific modeling languages (DSML)
will be used for specifying the requirements.

The specifications of the system under test will be
constructed from the requirements. The specifications, the
performance models, will describe the SUT in terms of
both functionality and performance characteristics. We will
investigate how performance aspects of the system can be
modeled using standardized UML profiles, like SysML,
UTP, or MARTE. In addition, we plan to employ and adapt
existing research done in the area of Software Performance
Engineering for the application domain we are targeting.

Before using the performance models for test generation,
the quality of the models has to be enforced. We plan to do
this by defining an approach, in which the models are created
based on specific modeling guidelines and checked both for
inconsistencies with respect to performance requirements
and for common modeling mistakes. Hence, we plan to
have a structured way of validating the performance models
and we will investigate the possibility of using languages
like the Object Constraint Language (OCL) [23] for model
validation.

Once the performance models are built, we intend to
used them for the generation of the test artifacts used
for performance testing. Besides generating functional tests
based on selected traditional coverage criteria, we will look
at how the test data (and its volume) used by the test scripts

can be quantified, inferred, and generated from higher levels
of the process. We will put special focus in data unicity,
data distribution, and in generating invalid data. We will
also investigate how the consistency of existing databases
can be checked using the abstract models of the SUT, or
how the test and load distributions per execution node can
be derived.

We also plan to provide traceability of performance
requirements across the entire process. More precisely, we
plan to define an approach, in which the performance re-
quirements are traced from models to generated test artifacts,
taken into account during test execution, and included in
the test reports. As one of the challenges of performance
testing stands in analyzing the test reports, we will look
into finding correlations between the resulting test reports
and the specified performance requirements. We consider
that such an approach will facilitate the interpretation of the
test results and tracing of identified performance problems
back to the performance models.

VI. CONCLUSION AND FUTURE WORK

Although challenging, we believe that applying the princi-
ples of model-based testing to performance testing will bring
benefits in terms of improved coverage, tool support, and
automation. With this paper, we hope to trigger comments
and interest in this topic.

REFERENCES

[1] Compuware, “Applied performance management survey,’
Oct. 2006.

[2] E. Weyuker and F. Vokolos, “Experience with performance
testing of software systems: issues, an approach, and case
study,” Software Engineering, IEEE Transactions on, vol. 26,
no. 12, pp. 1147 —-1156, dec 2000.

[3] C. U. Smith and L. G. Williams, Performance Solutions, ser.
Object Technology. Addison-Wesley, 2002.

[4] Object Management Group, “Unified Modeling Language,”
http://www.omg.org/spec/UML/2.0/, last accessed May 22,
2010.

[5] M. Utting and B. Legeard, Practical model-based testing:
a tools approach. Morgan Kaufmann Publishers Inc. San
Francisco, CA, USA, 2006.

[6] T. Keskinpala, “Model based performance testing of dis-
tributed large scale systems,” Ph.D. dissertation, Vanderbilt
University, 2009.

[7] M. Shams, D. Krishnamurthy, and B. Far, “A model-based
approach for testing the performance of web applications,” in
Proceedings of the 3rd international workshop on Software
quality assurance. ACM, 2006, p. 61.

[8] B. Pozin, R. Giniyatullin, I. Galakhov, and D. Vostrikov,
“Model-based Technology of Automated Performance Test-
ing,” SYRCoSE 2009, p. 93, 2009.

(91

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

M. Fowler and K. Scott, UML distilled: applying the standard
object modeling language. Addison-Wesley Reading, MA,
1997.

P. Harmon and M. Watson, Understanding UML: the devel-
oper’s guide: with a Web-based application in Java. Morgan
Kaufmann, 1998.

M. Fowler, UML distilled: a brief guide to the standard object
modeling language. Addison-Wesley Longman Publishing
Co., Inc. Boston, MA, USA, 2003.

P. Kihkipuro, “UML-based performance modeling framework
for component-based distributed systems,” Performance En-
gineering, pp. 167-184, 2001.

D. Petriu, C. Shousha, and A. Jalnapurkar, “Architecture-
based performance analysis applied to a telecommunication
system,” IEEE Transactions on Software Engineering, vol. 26,
no. 11, pp. 1049-1065, 2000.

J. Merseguer and J. Campos, “Software performance mod-
eling using uml and petri nets,” Performance Tools and
Applications to Networked Systems, pp. 265-289.

R. Mirandola and V. Cortellessa, “Uml based performance
modeling of distributed systems,” UML 2000 The Unified
Modeling Language, pp. 178-193.

S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni,
“Model-based performance prediction in software develop-
ment: A survey,” IEEE Transactions on Software Engineering,
pp. 295-310, 2004.

Object Management Group, “UML Profile for
Schedulability, Performance, and Time (STP),”
http://www.omg.org/technology/documents/formal/schedulab
ility.htm, last accessed May 22, 2010.

——, “UML Profile for Modeling and Analysis
of Real-time and Embedded Systems (MARTE),”
http://www.omg.org/spec/MARTE/1.0/, last accessed May
22, 2010.

Object Management Group, “UML 2.0 Testing Profile,” docu-
ment formal/05-07-07, available at http://www.omg.org/, last
accessed May 22, 2010.

M. Woodside, G. Franks, and D. C. Petriu, “The future
of software performance engineering,” in FOSE '07: 2007
Future of Software Engineering. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 171-187.

A. Bertolino, “Software testing research: Achievements, chal-
lenges, dreams,” in FOSE ’07: 2007 Future of Software En-
gineering. Washington, DC, USA: IEEE Computer Society,
2007, pp. 85-103.

Object Management Group, “Systems Modeling Language
Specification,” http://www.omg.org/spec/SysML/1.1/, last ac-
cessed May 22, 2010.

——, “Object Constraint Language, may 2006,”
http://www.omg.org/spec/OCL/2.0/PDF/, last accessed
May 22, 2010.

