
Tracing Requirements In A Model-Based Testing Approach

Fredrik Abbors, Dragoş Truşcan, and Johan Lilius,
Department of Information Technologies, Åbo Akademi University

Joukahaisenkatu 3-5 A, 20520, Turku, Finland
Email: {Fredrik.Abbors, Dragos.Truscan, Johan.Lilius}@abo.fi

Abstract

In this paper we discuss an approach for require-
ments traceability in a model-based testing process.
We show how the informal requirements of the system
under test evolve and are traced at different steps of
the process. More specifically, we discuss how require-
ments are traced to system specifications and from
system specification to tests during the test generation
process, and then how the test results are analyzed
and traced back the specification of the system. The
approach allows us to have both a fast feed-back
loop for debugging either the specification or the
implementation of the system and a way to estimate the
coverage degree of the generated tests with respect to
requirements. We discuss tool support for the approach
and exemplify with excerpts from a case study in the
telecommunications domain.

1. Introduction

The key to successful product engineering in the
software industry today is in many cases a good
quality-assurance and deployment of software systems.
Customers demand highly efficient, low-cost, and reli-
able software products. Companies are forced to build
high-end products with a low budget in a short time.
The increasing demand for software products forces
the companies to develop new products at a very fast
pace. We see a constant decrease in the time-to-market
and customers demanding more flexible systems which
result in the growing system complexity. Missing the
deadline for the time-to-market can have a huge neg-
ative impact on the company’s profit. Unfortunately,
this fast pace leaves the companies with less time for
testing their products.

The purpose of testing is to find faults that have
been introduced during the development of the system,
starting with the initial specification phases and ending
with its implementation. Testing is also a means to

ensure the quality of a product and to verify that
the product meets its requirements. Having a sys-
tematic and automated way to test software systems
would reduce the overall expenses of testing due to a
shorter time-to-market. Likewise, this would leave the
companies with more time for actually designing and
implementing the software, and would result in better
and more reliable software.

Model-based testing (MBT) is a software testing
technique that has gained much interest in recent years
by providing the degree of automation needed for
shortening the time required for testing. The main idea
behind MBT, is that a behavioral model of the system,
namely a test model, is used for automatically deriving
test cases following different coverage criteria.

The test model is typically developed from the
informal requirements of the system and therefore it is
important to trace how the generated test cases cover
different requirements. Traceability of requirements
can help one to achieve the right level of coverage
and show what requirement has been covered by what
test. Traceability can also be used to trace requirements
to specifications (code or models) and can detect what
part of a code or a model implements a requirement.
By tracing requirements to tests, it becomes possible
to trace back requirements to models, when a test fails
and to identify from which part of a the test model the
failure originated.

In this paper we present an approach for tracing
product requirements across a model-based testing
process, from informal documents via test models to
test cases, and back to requirements and test models.
The approach allows us to have both a fast feed-
back loop for debugging either the specification or the
implementation of the system and a way to estimate the
coverage degree of the generated tests with respect to
requirements. We discuss tool support for the approach
and exemplify with excerpts from a case study in the
telecommunications domain.



Related Work. Requirements traceability is a
very popular topic in the software engineering and
testing communities, and has gained momentum in
the context of model-based testing in the context of
automated test generation. However, as requirements
change during the development life cycles of software
systems, updating and managing traces has become a
tedious task. Researchers have addressed this problem
by developing methods for automatic generations of
traceability relations [1] [2] [3] [4] by using infor-
mation retrieval techniques to link artifacts together
based on common key-words that occur in both the
requirement description and in a set of searchable
documents. Other approaches focus on annotating the
model with requirements which are propagated through
the test generation process in order to obtain a re-
quirement traceability matrix [5]. The matrix is then
used to manually analyze and track requirements to
models. From the reviewed works, the one in [6] is
closer to our approach. In there, the authors use textual
delimiters to add requirements in the OCL constructs
associated to a restricted set of UML models. The
LEIROS test design tool is then used to generate test
cases, and a traceability matrix is obtained after the
test are executed. However, there is no tool support
for tracing-back requirements from tests to models.

2. Model-Based Testing Process

Our model-based testing process (Figure 1) starts
with the analysis and structuring of the informal re-
quirements into a Requirements Model. The Require-
ments Diagrams of the Systems Modeling Language
(SysML) [7] are used for this purpose. In the next
phase, the system under test (SUT) is specified using
the Unified Modeling Language (UML) [8]. In our
modeling process, we consider that several perspec-
tives of the SUT are required in order to enable a
successful test derivation process later. In addition, one
should note that in our approach a model of the system
is used for deriving test cases and not a test model, the
difference between the two being that the former is
both used for development and testing, whereas the
latter is only used for testing. Several perspectives
of the SUT are modeled; a class diagram is used
to specify a domain model showing what domain
components exist and how they are interrelated through
interfaces. A behavioral model describes the behavior
of the SUT using state machines. Data models are
used to describe the message types exchanged between
different domain entities. Last but not least, domain
configuration models are used to represent specific test
configurations using object diagrams.

Informal 
Requirements

Informal 
Requirements

Requirements Model 
(SysML)

Requirements Model 
(SysML)

Requirements Analysis and Structuring

Requirements tracing

Generate
Test Report

Traceback

SUTSUT

Connects

Test Report
(HTML)

Test Report
(HTML)

Coverage
Criteria
Coverage
Criteria

Validation

System Models 
(UML)

System Models 
(UML)

Propagate Requirements

Automatic 
Test Design and 

Execution

Report 
Analyzer

Validation
Traceback

Figure 1: Overview of the model-based testing process

A set of modeling guidelines and validation rules are
defined for ensuring the quality of the resulting models.
Modeling guidelines are used to specify how different
models are created from requirements or from other
models, what information they should contain, how this
information is related to the information present in the
other models, etc.

Validation rules have been defined and imple-
mented [9] for both Requirements Models and for
System Models for checking different quality metrics
of the resulting models before proceeding to the test
derivation phase. These rules ensure that the models
are syntactically correct, they are consistent with each
other, and that they contain the information needed in
the later phases of the testing process. Tool support is
provided for automatically verifying these rules using
the Object Constraint Language (OCL). The OCL rules
check the static semantics of the models and can be
used to describe constraints that are specific to the
domain, modeling language, modeling process, etc.
However, if OCL can be used for checking the dynamic
semantics of the models has to be further investigated.
The NoMagic’s MagicDraw tool [10] has been used for
editing the SysML and UML models and for running
the validation rules.

The models used to specify the SUT are subse-
quently transformed into input for an automated test
derivation tool, namely Conformiq’s Qtronic [11]. We
use the online testing mode of this tool, in which tests
are generated and applied on-the-fly against the SUT.
The desired coverage criteria used for test generation
are manually selected from the graphical user interface
(GUI) of Qtronic. At the end of each test run, a
automatically generated Test Report will summarize



the result of the testing process in terms of gener-
ated test cases, verdicts, coverage levels, requirements
traceability matrix, etc.

3. Requirements Traceability

Our approach to requirements traceability is built on
top of the previously explained testing process with
two goals in mind. Firstly, we want to be able to
trace how different parts of the system models relate
to the requirements and then to see how different
requirements are covered by the generated test cases.
Another reason for tracing requirements is that if a
requirement changes, it is essential to know how this
change is reflected in the models [12] [13]. Secondly,
once the test report becomes available, we would like
to be able to identify which requirements have been
successfully tested and which have resulted in failures.
In addition, for the failed test cases we should be able
to trace back from test cases those parts of the SUT
specification that generated the failure.

In the following, we briefly describe our require-
ments traceability approach while providing small ex-
amples from a telecommunications case study. In our
case, the SUT is a Mobile Switching Server (MSS).
The MSS is a network element located in a mobile
telecommunication system. The MSS is connected
to its surrounding elements through several different
interfaces. The MSS is responsible for keeping track of
the location of mobile subscribes (MS) in the network
and for connecting calls between MS’s over 2G and 3G
networks. The MSS is also responsible for tracking the
movement of MS’s during an ongoing call.

3.1. Tracing requirements to tests

3.1.1. Requirements decomposition. The require-
ments models are obtained by analyzing informal
requirements related to standards, protocols, system
specifications, etc. Requirements are structured in a
tree-like manner and defined on several levels of ab-
straction following a functional decomposition. They
can also be related (i.e. traced) to other requirements on
the same abstraction level. Requirements may also be
decomposed into different categories, depending on the
nature of the requirement, like functional, architectural,
data, etc.

Each requirement element contains a name field
which specifies the name of the requirement, an id
field, and a text field. The id field simply specifies the
id of the requirement, whereas the text field describes
the requirement. A requirement also contains a source
field. The source field specifies the origins of the

Figure 2: Example of a SysML requirements diagram

Figure 3: Linking requirements to a transition in a state
machine

requirement. The source can be a link to or a name
of a textual document from where the requirement has
been extracted. Figure 2 shows the functional require-
ments for the location update procedure of the MSS
represented using a SysML requirements diagram.

3.1.2. Requirements traced to models. The UML
models of the SUT are built starting from the require-
ments models. During this process, the requirements
are traced to different parts of the models to point
how each requirement is addressed by the models. The
relationships between requirements and models are
specified on several levels. Non-leaf requirements are
refined (linked) to models, e.g. state machine models.
An exceptional situation is in the case of the top-
level functional requirements, which are linked to use
cases in the use case model of the SUT. The leaf
requirements in the requirements tree are then linked
to other UML elements to which they apply, e.g.
transitions in a state machine or classes in a class
diagram. Figure 3 shows how a requirement can be
linked to a model element, e.g. a transition in a state
machine using the MagicDraw editor.

This is done to ensure the traceability of require-
ments within the system models and to test cases.



These links are useful for evaluating (using the pre-
viously discussed validation rules) whether all the
requirements have been reflected in the models or
by showing what elements from different diagrams
specify a given requirement. When all requirements
have been linked to model elements and the models
have been validated, the UML models are transformed
into input for the Qtronic tool via an automated trans-
formation.

The transformation [14] [15] basically translates
UML models to the Qtronic Modeling Language
(QML), the language used by Qtronic for specifying
the SUT. QML is a textual specification language
with a Java-like syntax in which one can specify the
input/output ports of the system and what data types
(complex data type are supported) can be send and
received on different ports. The behavior of the SUT
can be described either in QML or using a simplified
version of UML statecharts. In the latter case, QML
can be used as an action language for the statechart.

Qtronic provides support for requirement coverage
during test generation. Requirements are associated to
state models, more precisely to the actions on tran-
sitions via the requirement statement. Basically,
the requirements in Qtronic are tags that are used to
trace if a specific transition in the state model has been
covered by the generated test cases.

During the transformation from UML to QML,
links between requirements and model elements are
preserved. In the current status of our work, only
requirements attached to state machine transitions are
propagated to Qtronic. Requirement hierarchy is spec-
ified in QML with the ”/” character. Figure 4 shows
an example of a state machine that has been trans-
formed from UML to QML. In this figure, one can
see that requirement 6.1.1 and requirement
6.1.2 in the MagicDraw model are propagated to the
same transitions in QML. As the rest of the system
description in QML is not relevant for this paper we
do not include it here. However a detailed example can
be found in [15].

3.1.3. Tracing requirements to tests. In Qtronic, test
cases are generated according to different coverage
criteria, like requirements coverage, transition cover-
age, state coverage. The coverage criteria are selected
manually using the Qtronic user interface. By com-
bining one or more of the mentioned criteria, Qtronic
tries to generate tests based on those criteria. If the
requirements coverage criterium is enabled, one can
choose to test different requirements individually, by
checking or unchecking the corresponding requirement
in a list. Qtronic will then generate test cases that cover

Figure 4: Example of a UML state machine in Mag-
icDraw (left) and its equivalent in QML (right)

the selected requirements.
In the online testing mode, Qtronic handles the test

execution process. One-by-one it generates an input
message, sends it via the adapter to the SUT, and
generates a new input message based on the responses
from the SUT. A logging back-end can be used during
test execution. The logging back-end provides connec-
tivity to the Qtronic reporting infrastructure and it is
used by Qtronic to generate a test report. Three logging
back-ends are provided by default. With these logging
back-ends, Qtronic can generate test reports in HTML,
SQLite, and XML format. When all tests have been
applied against the SUT, Qtronic generates a test report
in the chosen format. Listing 1 shows an example of
a generated test case specified in XML. As one can
notice, the requirements have been propagated during
test generation and included in the test specification
(see line 6).

Listing 1: Requirement propagated to Qtronic test
specification

1 <c h e c k p o i n t>
2 <symbol v a l u e =” t r a n s i t i o n : Loca t ionUpda te−

A u t h e n t i c a t i o n−>Loca t ionUpda te−C i p h e r i n g−
i n i t i a l −0−1” />

3 <t imes t amp nanoseconds =” 447362000 ” s e c o n d s =” 0 ” />
4 </ c h e c k p o i n t>
5 <c h e c k p o i n t>
6 <symbol v a l u e =” 6 A u t h e n t i c a t i o n / 1 The MSS must

be a b l e t o a u t h e n t i c a t e MSs / 1
A u t h e n t i c a t i o n o f MSs must be s u p p o r t e d i n
GERAN (2G) n e t w o r k s ” />

7 <t imes t amp nanoseconds =” 447399000 ” s e c o n d s =” 0 ” />
8 </ c h e c k p o i n t>
9 <c h e c k p o i n t>

Figure 5 shows a example of a test report1 generated

1. The test report also includes a requirements traceability matrix
which we do not include due to space reasons.



Figure 5: Test report produced by Qtronic

by Qtronic with a HTML logging back-end. It is
also possible to inspect each test case individually
by clicking on the [MSC] link next to the test case
number in the test report. This will bring up a message
sequence chart (MSC) showing the order of messages
sent and received by Qtronic.

3.2. Back-tracing of requirements

The approach opposite to the one presented above, is
to trace-back requirements from test cases to models.
For this purpose, we analyze the test report, collect the
information of the failed test cases, and trace the re-
quirements attached to those test cases, back to system
models. This way we can see which requirements were
not validated during testing and to what parts of the
specification they are linked.

We have developed a Python script that automati-
cally analyzes the Qtronic test report and generates a
set of OCL queries (see Figure 6), that we use in Mag-
icDraw to locate erroneous parts in the UML system
models. In this way, we can see which requirements
failed during testing and to what model elements they
are linked. Figure 7 shows how requirements, which

Figure 6: OCL constraints produced by the Req2Ocl
script

Figure 7: Tracing of requirements to a SysML Require-
ment Diagram

failed during testing, are found in the requirements
model with the help of the OCL queries. In Figure 8
one can see how the same requirements are found in
the state machine diagram, on the same transitions
to which they were initially traced. Ultimately, since
requirements are traced to model elements, it facili-
tates the identification of which functionalities of SUT
are not in sync with the model, and hence with the
requirements.

4. Conclusion

This paper has presented an approach for traceability
of requirements in a model-based testing approach. We
have shown how requirements can be traced to mod-
els, to test specifications, and back to models again.
Traceability of requirements facilitates the process of
locating parts in the system models that are causing
failed test cases. Further, traceability of requirements
can help in depicting missing tests, i.e. when critical
requirements are not traced to any tests.

Currently, our presented approach only supports



Figure 8: Tracing of requirements to transitions in a
state machine

online testing. In the future, we will extend it to
offline testing, as well. Another future goal is to
find a solution for tracing non-functional requirements
to system models and, respectively, to tests. This is
something that has not yet been fully investigated.

Our approach benefits from a well integrated tool
chain, in which specialized tools are used for each
phase of the model-based testing process. When not
already provided by the tools involved, we have pro-
vided automation of the transitions between the phases
of the process, allowing to have a fast feed-back loop
for testing and debugging the specifications or the
implementation of the SUT. In addition, having a fully
automated approach, the effort in updating the models
and performing the testing again was diminished.

The approach also proved beneficial through the fact
that many errors have been detected in the early stages
of the process, when the system models have been
created. The errors were caused mainly by omissions
in the models and by misinterpreting the requirements.
Thus, when failed test cases were reported after test
runs we could focus our attention directly on debug-
ging the implementation of the SUT.

References

[1] G. Spanoudakis, A. Zisman, E. Perez-Minana, and
P. Krause, “Rule-Based Generation of Requirements
Traceability Relations,” The Journal of Systems & Soft-
ware, vol. 72, no. 2, pp. 105–127, 2004.

[2] C. Duan and J. Cleland-Huang, “Visualization and
Analysis in Automated Trace Retrieval,” in Require-

ments Engineering Visualization, 2006. REV’06. First
International Workshop on, 2006, pp. 5–5.

[3] J. Cleland-Huang, R. Settimi, C. Duan, and X. Zou,
“Utilizing Supporting Evidence to Improve Dynamic
Requirements Traceability,” in 13th IEEE International
Conference on Requirements Engineering, 2005. Pro-
ceedings, pp. 135–144.

[4] J. Hayes, A. Dekhtyar, and J. Osborne, “Improving Re-
quirements Tracing via Information Retrieval,” in 11th
IEEE International Requirements Engineering Confer-
ence, 2003. Proceedings, 2003, pp. 138–147.

[5] F. Bouquet, E. Jaffuel, B. Legeard, F. Peureux, and
M. Utting, “Requirements Traceability in Automated
Test Generation: Application to Smart Card Software
Validation,” in Proceedings of the 1st international
workshop on Advances in model-based testing. ACM
New York, NY, USA, 2005, pp. 1–7.

[6] E. Bernard and B. Legeard, “Requirements Traceabil-
ity in the Model-Based Testing Process,” in Software
Engineering, ser. Lecture Notes in Informatics, vol.
106. Bttinger, Stefan and Theuvsen, Ludwig and Rank,
Susanne and Morgenstern, Marlies, 2007, pp. 45–54.

[7] Object Management Group, “OMG SysML
Specification,” Tech. Rep. [Online]. Available:
http://www.omg.org/spec/SysML/1.1/

[8] “Unified Modeling Language -
http://www.omg.org/spec/UML/2.0/.” [Online].
Available: http://www.omg.org/spec/UML/2.0/

[9] J. Abbors, “Increasing Quality of UML Models Used
for Automatic Test Generation,” Master’s thesis, bo
Akademi University, 2009.

[10] “NoMagic MagicDraw,” http://www.magicdraw.com/.

[11] “Conformiq Qtronic,” http://www.conformiq.com/.

[12] T. Tsumaki and Y. Morisawa, “A Framework of Re-
quirements Tracing using UML,” in Software Engi-
neering Conference, 2000. APSEC 2000. Proceedings.
Seventh Asia-Pacific, 2000, pp. 206–213.

[13] R. Settimi, J. Cleland-Huang, O. Khadra, J. Mody,
W. Lukasik, and C. DePalma, “Supporting software
evolution through dynamically retrieving traces to UML
artifacts.”

[14] T. Pääjärvi, “Generation Input for the Test Generator
Tool from UML Design Models,” Master’s thesis, Åbo
Akademi University, 2009.

[15] F. Abbors, T. Pääjärvi, R. Teittinen, D. Truşcan, and
J. Lilius, “A Semantic Transformation from UML Mod-
els to Input for the Qtronic Test Design Tool,” Turku
Centre for Computer Science (TUCS), Tech. Rep. 942,
2009.


