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Abstract. Web applications have become crucial components of current
service-oriented business applications. Therefore, it is very important for
the company’s reputation that the performance of a web application has
been tested thoroughly before deployment. We present a tool-supported
performance exploration approach to investigate how potential user be-
havioral patterns affect the performance of the system under test. This
work builds on our previous work in which we generate load from work-
load models describing the expected behavior of the users. We mutate
a given workload model (specified using Probabilistic Timed Automata)
in order to generate different mutants. Each mutant is used for load gen-
eration using the MBPeT tool and the resource utilization of the system
under test is monitored. At the end of an experiment, we analyze the
mutants in two ways: cluster the mutants based on the resource utiliza-
tion of the system under test and identify those mutants that satisfy the
criteria of given objective functions.

Keywords: performance evaluation, performance prediction, model-based
mutation, probabilistic timed automata, load generation

1 Introduction

Current web applications range from dating sites to gambling sites, e-commerce,
on-line banking, airline bookings, and corporate websites. Web applications are
becoming increasingly complex and there are many factors to be considered when
the performance of web systems is concerned, for example network bandwidth,
distributed computing nodes, software platform used for system implementation,
etc [19]. It is very important for companies to provide high-quality service to
their customers in order to keep their competitive edge in the market [13, 18].
Therefore, performance testing has become an important activity to identify the
performance bottlenecks before application deployment [23].

Performance testing is a process of measuring the responsiveness and scala-
bility of a system when it is under a certain synthetic workload [23]. The synthetic
workload is generated by simulating the workload in a real environment. Usu-
ally, different key performance indicators (KPIs) are monitored during a load



generation session in order to evaluate the performance of the system under test
(SUT). Generally, load is generated by executing pre-recorded scripts of user
actions which simulate the expected user behavior. The approach is passive in
nature and does not represent the dynamic behavioral pattern of real users [9].

In our previous work, we used Probabilistic Timed Automata (PTA) for speci-
fying workload models [1,2]. PTA models allow the tester to express the dynamic
behavior of real users probabilistically and at the same time increase the level
of abstraction of user model. A PTA can be created using two methods. Firstly,
the tester can build a workload model manually based on his/her experience
or knowledge of the SUT. Secondly, the workload model can be produced by
mining web access log files [3]. The models created using the latter approach are
approximations of the behavioral patterns of previous real users.

At present, the complex structure of many web applications allows users
to reach same resources following different navigation paths. Furthermore, the
access pattern of a large scale web application is unpredictable; it could change
drastically over a relatively short period, due to some global events [10]. These
types of abrupt user behavioral patterns and unanticipated usage of the web
application could degrade the performance or even crash the system.

The two methods comprehensively discussed above for creating workload
models do not explore the potential behavioral pattern space of the user, because
the inferred models are either subjective or approximated based on the previous
web application usage.

Mutation testing is an approach, originally proposed by DeMillo et al. [7]
and Hamlet [11], where a tester creates test cases which cause faulty variants of
a program-under-test (PUT) to fail. During mutation analysis, the tester injects
faults into the PUT by using specific mutation operators and generates faulty
programs or mutants. A mutation operator is a syntactical change to a statement
in a program. A mutant that is created by inserting one single fault, is called a
first order mutant and a mutant with two or more injected faults is known as a
high order mutant [12].

Specification mutation has been proposed by Budd and Gopal as an extension
of mutation testing to specification [6]. The main idea is to create variations
of an original specification which can be used to generate tests which violate
the original functional specification of the SUT. If the system is specified using
state machines, then specification mutation means mutating the state machine,
for example, changing the sequence of transitions. However, in code mutation,
changes are made to the actual implementation of the system. In our approach,
we apply specification mutation for load generation. More specifically, we mutate
a workload model in order to generate mutants which are then used to generate
load against the SUT.

This paper investigates an approach for automatically mutating a given work-
load model and generating models with variant configuration, known as mutants,
to explore the space of possible behavioral patterns of real users. We simulate
these mutants for load generation against the SUT using the MBPeT [1, 2] tool



and observe the performance of the SUT to identify which mutant or groups of
mutants saturate different resources of the SUT.

The rest of the paper is structured as follows: Section 2, we give an overview
of the related work. In Section 3, we present our performance exploration process
and tool chain, whereas, in Section 4, we demonstrate the applicability of our
approach to a case-study. Finally, Section 5 presents conclusions and discusses
future work.

2 Related Work

Several authors have proposed the use of specification mutation for test genera-
tion in the context of functional and security testing, while others have tried to
explore the performance of a system via simulations. Different from them, we are
applying specification mutation for performance exploration against an already
implemented system. To the best of our knowledge, there is no other approach
that uses the mutants for performance exploration.

Martin et al. [17] proposes a framework that facilitates automated mutation
testing of access control policies. They have defined a set of new mutation oper-
ators for XACML policies. The mutation operators are used to generate faulty
policies (called mutant policies). A change-impact analysis tool is employed to
detect equivalent mutants among generated mutants. The proposed approach
generates test data randomly in form of requests, these requests are later used
to kill the mutant policies. A mutant policy is considered killed if the response
of the request based on the original policy is different from the response of the
request based on the mutant policy.

Lee et al. [15] proposed a technique for using mutation analysis to test the
semantic correctness of XML-based component interactions. They specified the
web software interactions using an Interaction Specification Model (ISM) that
consists of document type definitions, messaging specifications, and a set of
constraints. Interaction Mutation Operators (IMO) are used to mutate the given
valid set of interactions, in order to generate mutant interactions. These are
mutant interactions are sent to the web component under test, if the response of
a mutant interaction is different from the valid interaction, the mutant is killed.
The approach is used to verify the correctness of web component interactions.

In [22], the authors propose a model-based approach for testing security
features of software systems. In their approach, they define fuzzing operators
for scenario models specified as sequence diagrams. The fuzzing operators are
template-based and are applied to UML sequence chart messages, for example,
to remove, insert, swap, or change message types. The approach differs from ours
in the sense that they apply their operators on UML models for the purpose of
testing security, while we apply our operators to PTA models for testing the
performance.

In [5], Brillout et al. proposed a methodology for automated test case gener-
ation for Simulink models. They mutate Simulink models by injecting syntactic
changes into the model. The authors proposed an algorithm to generate test



Fig. 1. Approach for Performance Exploration

cases by systematically analyzing a model and a set of mutants. They have used
bounded model checking to explore the behavior of models and compute test
suites for given fault models.

A model-based testing approach has been proposed by Barna et al. to test the
performance of a transactional system [4]. The authors use an iterative approach
to determine the workload stress vectors of a system. A framework adapts itself
according to the workload stress vectors and then drive the system along these
stress vectors until a performance stress goal is achieved. They use a system
model, represented as a two-layered queuing network, and they use analytical
techniques to find a workload mix that will saturate a specific system resource.
Their approach differs from ours in the sense that they simulated model of the
system instead of testing against a real implementation of a system.

3 Approach and Tool Chain

In this paper, we propose a Performance Exploration (PerfX ) approach (illus-
trated in Figure 1) which mutates a given workload model in order to generate
a certain number of mutated workload models or mutants. We simulate the gen-
erated mutants for load generation and record the resource utilization of the
SUT. Our approach makes use of the MBPeT tool [1] to simulate each mutant
in a separate load generation session. MBPeT is a performance testing tool that
generates load by simulating several replicas (or virtual users) of a given work-
load model concurrently. MBPeT generates the load in a distributed fashion and
applies it in real-time to the SUT, while measuring several KPIs including SUT
resource utilization.

The expected behavior of the users is modeled using Probabilistic Timed Au-
tomata (PTA) [14]. A PTA contains a finite set of clocks, locations, and edges
with probabilities. The edges are chosen non-deterministically based on proba-
bility distribution, which also makes the selection of target location probabilistic.
A clock is a variable that expresses time in the model. The time can advance
in any location as long as the location invariant condition holds, and an edge
can be taken if its guard is satisfied by the current values of the clocks. In order
to reduce size of a PTA, edges are labeled with three values: probability value,
think time, and action (see Figure 2(a)). A think time describes the amount of



time that a user thinks or waits between two consecutive actions. An action is a
request or a set of requests that the user sends to the SUT. Executing an action
means making a probabilistic choice, waiting for the specified think time, and
executing the actual action.

In addition to a workload model, MBPeT requires a test adapter and a test
configuration file as input to run a test session. The tool utilizes a test adapter
to translate abstract actions found in a workload model into concrete actions
understandable by the SUT. For example, in case of a web application, a payment
action would have to be translated into a HTTP POST request to a given URL.
Secondly, a test configuration is a file which specifies the necessary information
about the SUT and is used by the MBPeT tool to run a test session. The
file contains a collection of different parameters which are system specific. For
example, if a SUT is a web server then the IP address of the web server, test
session duration, maximum number for concurrent users, ramp function, etc.
The ramp function defines the number of concurrent virtual users at any given
moment during a test session.

The PerfX approach can be divided into three main stages: model mutation,
running test session, and result analysis.

3.1 Model Mutation

At the first stage, several mutants are created from an original workload model.
The original workload model is created either manually from performance re-
quirements or automatically from historic usage. For our purpose we define two
operators:
• Change Probability Distribution(CPD): This operator replaces the probabilistic
distribution of outgoing edges of a location with random values while keeping
the sum of the probabilities of all the outgoing edges from a location equal to 1
• Modify Think Time(MTT): This operator randomizes the think time values of
outgoing edges of a location within a given range.

A tool module, the Model Mutator generates the population of mutants. We
adjust the number of mutants in the population by setting two parameters: max-
imum mutation order (MMO) and number of mutation rounds (NMR). During
each round of mutation, the module generates mutants between the first order
and the given MMO. For example, if the MMO is three, the module will generate
the first, second and third order mutants respectively. Four parameters are pro-
vided as input to the module, which uses the following algorithm: NMR, MMO,
W (workload model), and OP (mutation operator).

Input: NMR, MMO, W , OP
1: P ← {} // Population set
2: for round = 1 to NMR do
3: for all o such that 1 ≤ o ≤MMO do
4: M ← GenMutants(o,W,OP ) // Generate a set of oth order mutants

of W model using OP operator
5: P ← P ∪M // Add generated mutants to P



6: end for
7: end for

Although, the algorithm uses a same mutation operator for each mutation
round, the mutants generated are different every time because the operator re-
places the existing values with random ones.

We can calculate the total number of mutants in a population using the
following equations:

M(o) =

o∑
i=1

le!

i!(le − i)!
(1)

P (o, r) = M(o)× r (2)

where M(o) defines the number of mutants generated in a single round of muta-
tion, based on the le number of locations with outgoing edges in a given model
and the o order of mutation (where o ∈ {x|x ≥ 1 ∧ x ≤ le}) in Equation 1. The
P (o, r) in Equation 2 denotes the number of mutants in a population and r ∈ N
represents the number of mutation rounds.

For example, we want to generate a population of mutants by mutating the
model in Figure 2(a). We set the order of mutation o to 2 and the number of
mutation rounds r to 4. Then, in each round of mutation the module will create
three first order mutants (i.e., mutant with a single mutated location) and three
second order mutants (i.e., mutant with two mutated locations). In short, the
module will generate six mutants in each round of mutation (i.e., M(2) = 6)
and after four rounds, there will be a population of twenty-four mutants (i.e.,
P (2, 4) = 24). Figure 2(b) shows one of the first order mutants generated, where
the CPD operator is applied to location 1, which results in a different probability
distribution.

Since our approach is based on random mutation, it is impossible to esti-
mate the optimal number of mutants required to investigate the user behavioral
pattern space sufficiently. However, a population with a relatively large num-
ber of mutants is more beneficial because it covers the user behavioral pattern
space more adequately and provides more conclusive results. However, the tester
should also take into account the efforts of generation and simulating all those
mutants when deciding the size of a population.

3.2 Running test sessions

In the following stage, each mutant in the population is used separately for load
generation session. A Test Controller module is responsible for orchestrating
test sessions for each of the generated mutants and collecting the test results.
The module selects a generated mutant and invokes the MBPeT tool with the
following input parameters: mutant, test adapter and test configuration. For
each session we use identical configuration of the MBPeT tool, same ramp and
test adapter.

The duration of the test session is decided by the test engineer and it depends
on the average duration of user sessions (sequence of actions generated from the
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Fig. 2. CPD operator applied to a workload model

workload model). As a rule-of-thumb, the test session duration should not be
less than the maximum user sessions duration (i.e., the sum of think times and
estimated response times for the longest sequence in the workload model).

At the end of a test session, the MBPeT tool calculates the average, maxi-
mum and minimum values of the resource (i.e., CPU, memory, disk and network
bandwidth) usage at the SUT during the test session and forwards them to the
Test Controller. Once all the test sessions have been executed, the Test Con-
troller sends the results (an example is given in Table 1) of all the test sessions
to the Analyzer module for analysis.

Table 1. Example of test session results

Mutants
Resources (Avg, Min, Max)

CPU1 Memory1 Disk Read2 Disk Write2 Net Send2 Net Recv.2

Mutant-1 23, 2, 56 15, 5, 43 22, 4, 89 39, 4, 92 66, 3, 63 33, 1, 97

Mutant-2 32, 5, 76 11, 9, 52 37, 9, 76 19, 2, 38 34, 7, 95 45, 0, 56

1 Measured in percentages.
2 Measured in kilobytes (KB).

3.3 Result Analysis

The last stage takes care of analyzing the results of all test sessions. An Ana-
lyzer module from the tool selects the mutants which satisfy the given objective
functions. An objective function is used to express a certain target criterion for a
mutant or a set of mutants, for example, find those mutants which have caused
at least 70% of CPU usage on the SUT. Custom objective functions are also
supported, allowing one to query the population of mutants in an effective and



(a) Original workload model

(b) MutantC workload model

Fig. 3. Comparison of Original and MutantC workload model

flexible way. Further, the tool has two built-in objective functions: a) mutants
which have caused highest CPU usage and b) mutants which have caused highest
memory usage.

Secondly, this module groups the mutants based on the SUT resources uti-
lization using the K-means [16] algorithm. Clustering of mutants allows the tester
to observe different groups of mutants where all the mutants in a group have a
different probability distribution nonetheless cause approximate similar amount
of stress to the SUT with respect to resource utilization.

4 Experiment

In this section, we demonstrate our approach by using it to explore performance
space of an auction web service, called YAAS, which was developed as a stand-
alone application. YAAS has a RESTful [21] interface based on the HTTP proto-
col and allows registered users to search, browse, and bid on auctions that other
users have created. The YAAS application is implemented using Python [20]
and the Django [8] framework. We have manually created the original workload
model (see Figure 3(a)) by analyzing the web application traffic.



4.1 Test Architecture

The tool and SUT run on different computing nodes. The SUT runs an instance
of the YAAS application on top of an Apache web server. All nodes (tool and
the server) feature an 8-core CPU, 16 GB of memory, 7200 rpm hard drive, and
Fedora 16 operating system. The nodes were connected via a 1Gb Ethernet.

4.2 Generating Mutants

In this experiment, we have used one mutation operator, CPD which randomly
alters the probability distribution of outgoing edges of a location while keeping
the sum of probabilities of all the outgoing edges equals to 1. The MMO was
set to 5 (i.e., total number of locations with outgoing edges in the workload
model shown in Figure 3(a)), which means that we generated 31 mutants in
each round of mutation. We ran 3 mutation rounds and generated a population
of 93 mutants in around 5 seconds.

4.3 Running test sessions

The test session duration was set to 10 minutes because we had observed the
average duration of real user sessions was 2 minutes. The concurrent number of
users for each test session was 200. The entire experiment ran for 15 hours and
30 minutes.

4.4 Results

We have specified 4 objective functions, one for the each resource category (i.e.,
CPU, memory, disk, network). Based on those objective functions, we have ob-
tained 4 mutants: MutantC, MutantM, MutantD and MutantN that have sat-
urated the CPU, memory, disk and network resources respectively, more than
the rest of the mutants and the original model. The results are listed in Table 2
along with their resource utilization.

Table 2. Maximum resource utilization achieved by mutants

Resources Original MutantC MutantM MutantD MutantN Maximum

CPU (%) 76.22 92.42 71.44 91.63 89.47 92.42

Memory (GB/s) 3.28 1.50 3.37 0.97 0.93 3.37

Disk Write (KB/s) 117.04 76.16 104.38 247.69 76.56 247.69

Net Send (MB/s) 1.29 2.27 1.62 2.18 3.09 3.09

Net Recv. (KB/s) 71.62 90.02 80.12 114.11 116.16 116.16



(a) CPU utilization with the Original model

(b) CPU utilization with the MutantC model

Fig. 4. CPU utilization using the Original model vs MutantC model

Figure 4 shows the CPU utilization of the SUT when comparing the Origi-
nal model to the MutantC model. From the figure one can see that the average
CPU utilization is much high with the MutantC model compared to the Orig-
inal model. We point out that this difference in CPU utilization was achieved
with only a second order mutant, MutantC. The probability distribution of the
outgoing edges in the MutantC model has been changes at two locations: 1 and
2, as shown in Figure 3(b).

The spider-chart in Figure 5(a) shows resource utilization of the original
model, MutantC and MutantM over 5 axes. It highlights that the MutantM
and the original model have approximately similar resource utilization values
whereas MutantC has a distinct resource utilization trend. Despite the fact that
the MutantC has saturated the CPU resource, it has also sent and receive more



(a) Spider chart of resource utilization for
3 mutants

(b) Two mutant clusters (blue and red)
based on CPU and memory utilization

Fig. 5. Result analysis

data over the network than the original model. Further analysis of the MutantC,
exhibits a one significant change between the original model and the MutantC
is that the browse action at the location 2 has high probability in the MutantC
than the original model. This could mean that the consecutive browse actions
can saturate the CPU of the SUT.

The black-colored polygon, named Maximum in Figure 5(a), illustrates the
maximum resource utilization that has been achieved by all the mutants in each
resource category. The spider-chart allows the tester to visually correlate and
contrast the different worst-case scenario mutants over their diverse aspects.

Moreover, we have divided the mutants between two clusters using K-means
algorithm, as shown in Figure 5(b). The blue dots in the figure represents the
cluster of mutants with more than 85% of CPU usage and the red dots displays
the mutants between 67% to 85% of CPU usage. The green squares express
the centroids (i.e., means) of the clusters. By clustering mutants together, it is
possible to focus the analysis to a particular set of workload models that have a
negative impact on the performance. In Figure 5(b), mutants are clustered based
on two attributes: CPU and memory utilization. However, increasing the number
of cluster and/or attributes lead to a more detailed analysis of the mutants and
their impact on the performance.

5 Conclusion

In this paper we have presented an automated performance exploration approach
that mutates a workload model in order to generate different mutants. These
mutants reflect potential behavioral pattern space. We simulate the mutants



for load generation and analyze the mutants with respect to the SUT resource
utilization.

The experiment presented in the paper substantiates that the approach can
be used to identify hidden or unknown weaknesses of the SUT by rigorously and
automatically exploring the user behavioral pattern space. The tester can write
custom objective functions to filter the behavioral patterns of interest. Those
access patterns can later be employed to optimize the SUT.

For the future development, we are planning to investigate more guided meth-
ods for mutant generation which would allow us to focus the exploration on de-
sired resource (or combination of resource utilization). Also we plan to study the
effect of applying several mutation operators simultaneously to the same model
and the benefits towards worst-case scenario detection.

Further, we are working on equivalent-mutant detection technique to discard
equivalent mutants (i.e., marginally different from the original workload model)
and regenerate new mutants in order to scatter the mutants more uniformly over
the behavioral pattern space.
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