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ABSTRACT
We describe a tool-supported performance exploration ap-
proach in which we use genetic algorithms to find a poten-
tial user behavioural pattern that maximizes the resource
utilization of the system under test. This work is built upon
our previous work in which we generate load from workload
models that describe the expected behaviour of the users. In
this paper, we evolve a given probabilistic workload model
(specified as a Markov Chain Model) by optimizing the prob-
ability distribution of the edges in the model and generating
different solutions. During the evolution, the solutions are
ranked according to their fitness values. The solutions with
the highest fitness are chosen as parent solutions for gener-
ating offsprings. At the end of an experiment, we select the
best solution among all the generations. We validate our
approach by generating load from both the original and the
best solution model, and by comparing the resource utiliza-
tion they create on the system under test.

CCS Concepts
•Mathematics of computing → Evolutionary algo-
rithms; •Information systems → Web applications;
•Software and its engineering → Software testing
and debugging; •General and reference → Perfor-
mance; •Computing methodologies→Modeling method-
ologies;

Keywords
Performance exploration; performance testing; Markov Chain
model; genetic algorithms

1. INTRODUCTION
Owing to the rapid development of the Internet, exponential
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growth has been seen in Web application systems. There are
many factors which contribute to the popularity of web ap-
plications, for example, convenience, availability, universal-
ity and 700% increase in the number of Internet users since
2000 [9]. Web applications are being utilized in various do-
mains such as e-commerce, social and governmental. Every
day in US, 69% of the online user population uses web appli-
cations to buy different types of products [6]. Consequently,
companies strive to offer high-quality services to retain In-
ternet user base. For example, Amazon, a leading online
retailer, has 270 million active customers worldwide [16].

A study reports that there are higher chances of system
crashing due to performance issues (e.g., unanticipated work-
load) than system failures [17]. Additionally, it has been
observed that 40% of the customers will abandon a web ap-
plication if the response time is greater than 3 seconds [10].
Therefore, performance testing plays an important role dur-
ing the development of web applications.

Performance testing is used to benchmark the system with
respect to responsiveness and scalability and to detect po-
tential performance bottlenecks under a particular synthetic
workload [14]. The workload is usually generated by running
pre-recorded user actions in a sequential order stored in a
script. The main disadvantage of using static scripts to gen-
erate workload is that real users behave more dynamically
than performing the actions serially [5]. In order to over-
come this problem, in our previous work, we have proposed
a model-based performance testing tool, called MBPeT [1],
where we use probabilistic timed automata to specify user
behaviour which later on is used for workload generation us-
ing a distributed cloud-architecture against the system un-
der test (SUT).

In addition to probabilistic timed automata, MBPeT allows
one to model the user behaviour as Markov Chain (MC)
models [8]. A MC model consists of a finite set of states and
edges with probabilities. The labels on the edges represent
two values. Firstly, the probability value defines the likeli-
hood of that particular edge being taken based on a proba-
bility mass function. Secondly, the think time expresses the
time period that a user thinks or waits between two consec-
utive actions. Each state is labelled with an action which
is executed whenever a state is visited. An action can be a
single request or a set of requests that are sent to the sys-
tem. For example, the MC model in Figure 1 represents a
workload model of an auctioning web application, contain-

795



Figure 1: Markov Chain model of a user

ing different actions a user can execute against the system.
For instance, after performing a search(), the user will exe-
cute with a probability of 0.87 (after thinking for 3 seconds)
a get auctions() action. In that model, the start() and exit()
are dummy actions which only indicate the initial and the
final state of the model, respectively. A user will always be-
gin the execution the model at the start() state and finish
at the exit() regardless of eventual loops in the model.

A workload model can be created in two ways: a tester
can create the model manually based on his/her experience
with the SUT [1] or one can extract automatically common
behavioural patterns from web access log files using pat-
tern mining [2]. In our previous work [1], we used workload
models for performance testing, in this paper, we extend our
approach to utilize the workload models for performance ex-
ploration.

A workload model built using any of the above mentioned
approaches, will only represent the user behavioural patterns
which are most commonly executed by the users against
the SUT. As a result, there are always some rare user be-
havioural patterns left untested. These infrequent user be-
havioural patterns could degrade the performance of the
SUT or even crash the system if they occur. In order to
identify these eventual corner cases, in this paper we pro-
pose a method to determine the rare cases using genetic al-
gorithms to optimize the probability distributions of a given
workload model.

The rest of the paper is structured as follows: Section 2,
provides an overview of the related work. In Section 3, we
elaborate our evolutionary approach. Section 4 presents tool
support for our approach, whereas, in Section 5, we demon-
strate the applicability of our approach to an experiment.
Finally, Section 6 discusses conclusions and future work.

2. RELATED WORK
Several approaches in which genetic algorithms are used for
link prediction, data mining, etc. have been proposed. How-
ever, to the best of our knowledge, there is no approach that
uses genetic algorithms for performance exploration.

Asllani and Lari [3] used genetic algorithms to provide a
model-driven decision support system for multiple-criteria
website optimization. The approach generates a solution for
the best-possible arrangements of a given set of web-objects
according to three multiple criteria: download time, visu-
alization, and product association level. These criteria are
related to both aesthetic design principles and the quality
and relevance of the content offered. The approach differs
from ours because it focuses on the usability rather than the
performance of the system.

In [13], Sarukkai proposes a probabilistic link prediction and
path analysis method where Markov Chains are used to dy-
namically model the URL access patterns that are observed
in navigation logs based on the previous state. The Markov
chain model can be modified on-the-fly with additional user
navigation information. The models are used to predict the
probability of traversing a link in the future provided a his-
tory of the visited links. This research is different from ours
in the sense that we optimize the probability distribution of
Markov Chains using genetic algorithms and use them for
performance exploration.

3. APPROACH
We propose an approach to optimize the probability distri-
bution of all the edges in a given workload model in order
to find the worst workload model which can maximize the
resource utilization of the SUT. The think time of an edge
represents the duration a user waits between two consecu-
tive actions. On average, the think time between two actions
remains constant if the user-interface of a web application
has not been redesigned or changed. Therefore, we keep the
think time of all the edges constant during the optimization
process. We use genetic algorithms (GA) [15] to explore the
space of possible behavioral patterns of real users.

The GA is an optimization technique that follows the evolu-
tion paradigm. A population of solutions is maintained and
an evolution process enables parent solutions to be selected
from the population based on their fitness. The algorithm
applies different genetic operators to the selected parents in
order to create offsprings. The fitness of each solution can
be related to the objective function value, in our case the
expected level of resource utilization caused to SUT. Simi-
lar to biological evolution processes, the offspring solutions
with good fitness levels, are more probable to survive and
reproduce as compared to low fitness level solutions. Af-
ter running the GA for a certain number of generations, we
select the best solution among all the generations.

The following steps are performed in our GA approach (as
shown in Figure 2):

3.1 Set GA parameters
Before starting a GA, we need to define the total number
of generations which will give the stopping criteria and the
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Figure 2: Applying GAs to performance space ex-
ploration

population size for each generation. Further, the crossover
operator probability, mutation rate and mutation operator
probability are set to control the usage of crossover and mu-
tation operators during offsprings generation.

3.2 Initial benchmarking
We benchmark all the actions defined in a given base model
individually for different resources (e.g., CPU, memory) uti-
lization of the SUT.

We ran several benchmarking sessions with different num-
ber of concurrent users and record the resource utilization
of each action at the implementation level. Later on, we av-
erage the resource utilization of each action independently.
This information is used to calculate the fitness of a solution
(or model) during the evolution stage in our GA. For exam-
ple, Figure 3 shows the comparison of normalized average
values of resource utilization of all the actions in the model
(shown in Figure 1) with 1, 50, and 100 concurrent users.
We can choose the benchmark values of any session. In this
paper, we have used the normalized values of the resource
utilization of all the actions with one concurrent user, as
listed in Table 1.

3.3 Chromosome coding
The search space of all possible solutions is mapped onto a
set of chromosomes. Individual positions within a chromo-
some are known as genes. In our case, we are optimizing the
probability distribution of the edges in a given MC model,

Table 1: CPU and Memory utilization with one con-
current user for Figure 1

Action CPU Memory

start() 0.0 0.0
get bids(id) 0.083 0.198
search(string) 0.088 0.200
browse() 0.178 0.201
get auction(id) 0.072 0.199
bid(id,price,username,password) 0.578 0.202
exit() 0.0 0.0

(a) Average CPU utilization

(b) Average Memory utilization

Figure 3: Comparison of resource utilization bench-
marks with different number of users

therefore a chromosome is represented as a tuple of prob-
ability distributions of all the outgoing edges of each state
in the model. Thus, a gene corresponds to the probabil-
ity distribution function of a single state. For example, the
model depicted in Figure 1 will be encoded into the following
chromosome:

〈〈0.60, 0.40〉, 〈0.87, 0.10, 0.03〉, 〈0.87, 0.10, 0.03〉,
〈0.20, 0.75, 0.05〉, 〈0.30, 0.50, 0.20〉, 〈0.30, 0.25, 0.45〉〉

where gene 〈0.60, 0.40〉 describes the probability distribution
of the start() state.

3.4 Initial population
A set of chromosomes is generated randomly under one con-
strain that the sum of the probabilities in a gene must be
equal to 1. This establishes the initial population (i.e., the
first generation).

3.5 Fitness evaluation
A fitness value is computed for each solution in the popu-
lation. This value articulates the expected level of resource
utilization of the SUT for the solution (i.e., MC model) each
chromosome represents. Since we are searching for solutions
with higher level of resource utilization, the genetic evolu-
tion will prefer chromosomes with a higher fitness value.
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The fitness of a solution is computed in two steps. First, we
build a transition matrix from the probability values repre-
sented in a given chromosome. The transition matrix allows
us to calculate the stationary distribution (SD) of the solu-
tion. The stationary distribution of a Markov Chain with
transition matrix P is some probability vector w, such that,

lim
n→∞

vPn = w

where v is any probability vector and n represents the power
of P matrix. This implies that, over the long run, no matter
what the starting state was, the proportion of time that
Markov Chain spends in state i is approximately wi for all
i. In summary, we can deduce which states in the model will
be visited more frequently than the others based on their
probability distributions. Next, we combine the SD with
the benchmark results of resource utilization to calculate
the fitness of a model. Let S be a set of all the states in the
model M and vector g the CPU utilization of the action of
each state s in the set of states S, then we can define the
fitness of model M as follows:

fM =
∑
s∈S

gshs

where h depicts the stationary distribution vector of model M.

For instance, consider the model in Figure 1. The station-
ary distribution vector x of the model and CPU utilization
vector y from Table 1 can be defined as follows:

x = 〈0.135, 0.195, 0.054, 0.178, 0.202, 0.097, 0.135〉
y = 〈0.0, 0.083, 0.088, 0.178, 0.072, 0.578, 0.0〉

The fitness of model would be the by-product of the two vec-
tors:

f = 0.135× 0.0 + 0.195× 0.083 + 0.054× 0.088

+ 0.178× 0.178 + 0.097× 0.578 + 0.135× 0.0 = 0.11

3.6 Selection
A binary tournament selection method is used where two
solutions are randomly chosen and between those a member
with the larger fitness is chosen as parent. This procedure is
repeated as long as parents have to be chosen. Two chosen
parents generate two offsprings.

3.7 Offspring generation
We employ the two-point crossover operator to generate off-
springs. The chromosomes of two parents are cut at two
random points and the genes between the first and second
cut points are interchanged to generate two offsprings. The
application of the crossover operator is controlled by the
crossover operator probability, which defines the probability
of applying the operator to parents. Further, a mutation
operator is applied to the two newly generated offsprings
independently, in order to introduce gene diversity in the
population. The usage of the mutation operator is regu-
lated by two probability parameters: the mutation operator
rate indicates the probability of using the mutation opera-
tor on a current individual; the mutation rate represents the
probability of changing the probability distribution of a state
in a selected chromosome. The newly generated offsprings
replace the parents in the population.

Figure 4: Two-point crossover

For example, Figure 4 demonstrates two-point crossover op-
erator applicability where P1 and P2 represent two chromo-
somes of parents and after applying the operator we get two
chromosomes of children (i.e., C1 and C2 ). Then we apply
mutation to the newborn children and acquire final set of
children (i.e., C1’ and C2’ ) which will replace the parents
(P1 and P2) in the population.

3.8 Stop criteria
If the fixed number of generations is reached, the algorithm
ends and we choose the best individual among all the gen-
erations.

4. TOOL SUPPORT
The proposed approach has been implemented as a tool
in the Python [11] programming language. We have used
DEAP [7], an evolutionary computation python framework,
to set up our genetic algorithm.

The tool parses the structure of the given workload model
into an internal representation. The resource utilization for
each action in the model is computed manually and pro-
vided as an input to the tool. In addition to resource uti-
lization, we also need to convey the following parameters to
the tool: crossover operator probability, mutation operator
rate, mutation rate, population size, and maximum number
of generations. Furthermore, the tool analyzes the structure
of the given base model and extracts certain pieces of in-
formation about the model, for example, number of states
in the model, number of outgoing edges from each state,
etc. This information is used to construct the skeleton of
chromosome. Based on these parameters, the tool initiates
the population and begins the evolution process. The tool
records the statistics (e.g., minimum, average and maximum
fitness) for each generation. After evaluating the last gen-
eration, the tool presents a workload model with the best
fitness value among all the generations.
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Figure 5: CPU Worst workload model

5. EXPERIMENTS
We ran two experiments to find two worst workload models
for an auction web service; one model is optimized to stress
the CPU and other is optimized to saturate the memory of
the SUT. The web auction service has a RESTful [12] in-
terface based on the HTTP protocol. The web application
is implemented using Python [11] and the Django [4] frame-
work. It allows registered users to search, browse, and bid
on auctions that other users have created. We have manu-
ally created the base/initial workload model (see Figure 1)
by analyzing the web application traffic.

We have benchmarked the actions in the model for the CPU
and memory utilization, as listed in Table 1. The bid ac-
tion has higher CPU and memory utilization than the other
actions because it is the only action which involves data-
write operation.

5.1 Test architecture
We ran our GA for 50 generations with the population size of
300. We have tried different combinations of the number of
generations and population sizes. However, we noticed that
there was no significant improvement in the average fitness
of the population by increasing the number of generations
or the population size more than 50 and 300 respectively.
The crossover operator probability, mutation rate and mu-
tation operator probability were set to 0.3, 0.01 and 0.5 re-
spectively. We have used the same configuration for both
experiments. The experiments ran for less than one minute
on an Intel-i7 machine with 32 GB of memory.

5.2 Results
Figure 5 exhibits the worst workload model regarding CPU
utilization. The model has achieved the maximum fitness
value of 0.30 among 50 generations which is 2.5 times higher

Figure 6: Memory Worst workload model

than the fitness value of the base model (i.e., 0.12). The
probability distribution of the model shows that during load
generation 95% of the virtual users will choose browse over
search because the browse has higher CPU utilization. Fur-
ther, the probability values of those transitions which lead
from the start state to bid state have been increased signif-
icantly as compared to the base model. The reason is that
the bid action has higher CPU utilization than the other
actions (listed in Table 1). As a result, a virtual user will
be able to reach to the bid state as quickly as possible and
perform it more frequently compared to the base model.

Figure 6 illustrates the worst workload model with respect
to memory utilization. The model has scored maximum fit-
ness value of 0.19 among 50 generations, higher than the
base model (i.e., 0.14). The probability distribution of the
Memory worst workload model demonstrates that the prob-
ability of the browse action has been increased reasonably
as compared to the base workload model. There are two
possible reasons: browse is one of the actions which have
relatively higher memory consumption than the other ac-
tions, secondly the browse state can be reached from almost
every state in the model. Therefore, GA preferred those
workload models which visit browse state more often.

5.3 Validation
In order to validate our approach, we used the MBPeT tool
to generate load from the base and both worst workload
models independently and monitor the resource utilization
of the SUT. Figure 7 shows the comparison of resource uti-
lization of the SUT caused by the base workload model, the
CPU worst workload model and the Memory worst workload
model. The average CPU utilization with the CPU worst
workload model is 58% which is 2 times higher than the
CPU utilization with the base workload model (i.e., 31%).
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Figure 7: Resource utilization caused by the models

Similarly, the average memory utilization with the Memory
worst workload model is close to 20% that reflects in an in-
crease of 100% as compared to the memory utilization using
the base workload model.

6. CONCLUSIONS
In this paper we have presented an evolutionary performance
exploration approach that optimizes the probability distri-
bution of a workload model in order to generate workload
models which maximize the utilization of a given resource.

The experiments presented in the paper validates that the
proposed approach can be used to discover potential vul-
nerabilities of the SUT by automatically exploring the user
behavioral pattern space. We were able to increase the re-
source utilization of SUT two times by only optimizing the
probability distributions of the model. The worst workload
models allow developers to optimize the SUT against the
worst access patterns represented by the model.

Currently, we are only optimizing the workload model for
one resource at a time. For future development, we are plan-
ning to use multi-objective genetic algorithm (e.g., NSGA-
II) and Swarm intelligence algorithms to optimize the work-
load model for more than one resource, and include network
and disk utilization as well for evolution. Furthermore, we
are interested to investigate how we can apply our approach
on cloud-based scalable architectures.
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