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Abstract—Feature selection is commonly used in bioinfor-
matics applications, such as gene selection from DNA mi-
croarray data. Recently, wrapper methods have been proposed
as an improvement over traditionally used filter based fea-
ture selection methods. In wrapper methods, the goodness
of a feature set is often measured using the cross-validation
performance of a machine learning method trained with the
features. This can lead to overfitting, meaning that the cross-
validation performance on the final selected feature set may be
high even in cases when the selected features in fact are not
informative. Evaluating the statistical significance of gained
results is therefore of major concern.

Non-parametric permutation tests have been previously used
as a univariate filter for selecting individual features. In
contrast, we propose using such tests to measure the statistical
significance of the whole selection process, which is carried out
by a wrapper method. We achieve computational efficiency by
using a regularized least-squares based wrapper method, which
combines a state-of-the-art classifier with matrix calculus based
computational shortcuts for greedy forward feature selection.
Permutation tests prove to be a practical tool for estimating
the significance of gained results, as shown in simulations and
experiments on two DNA microarray data sets.

I. INTRODUCTION

Feature selection has in the recent years gained promi-
nence in bioinformatics. A wide range of applications have
been proposed in areas such as sequence analysis, mi-
croarray analysis, mass spectrometry and biomedical text
mining ([1]). Feature selection has the potential to deepen
the understanding of the studied biological phenomenon by
identifying relevant features, and to lead to more accurate,
or computationally efficient models by eliminating irrelevant
features. In this work, we consider as a case study the
task of gene selection from DNA microarray data (see e.g.
[2]). However, the introduced approach is general, being
applicable to many types of supervised learning tasks, where
feature selection needs to be performed.

We assume the standard binary classification setting,
where a training set containing the feature representations
and class labels of a number of examples is supplied. The
class labels determine whether a training example belongs
to the positive or to the negative class. For example, in
cancer classification the examples correspond to patients,

the features to gene expression level measurements and the
class labels to the diagnosis, whether the patient has cancer
or not. The aim is to learn a model which correctly predicts
the class label of any new example given its feature values.

Further, we consider the wrapper model for feature se-
lection ([3]), where features are selected through interaction
with a classifier training method. In the wrapper approach,
the power set of features is searched over. A new classifier
is trained during each search step using the corresponding
feature subset and an estimate of its classification error is
used to measure the quality of the subset. As suggested by
[3], we use leave-one-out (LOO) cross-validation (CV) (see
e.g. [4]) for estimating classification error.

So far, the most popular feature selection approaches in
bioinformatics have been univariate filter methods. Here
each feature is assessed separately with respect to its ability
to discriminate between the classes. The downside compared
to the the wrapper approach is, that when each feature is
considered in isolation, possible interactions between them
are lost. It has been recently experimentally shown that on
the DNA microarray domain the wrapper approach tends
to provide better performance than filter methods [5]. This
improvement is however coupled with considerable increase
in computational cost, when using the classifier inside the
wrapper as a black box method.

In many biological applications a typical property of the
data is small sample size (tens of examples), and high
dimensionality (thousands of dimensions). Further, the level
of signal in the data may be low, or even non-existent. In
such settings it is likely that strong patterns between the
features and the labels will arise in the training set simply
by random chance. It is a well documented result in the liter-
ature, further supported by experimental evidence presented
in this article, that this can lead to serious overfitting in
feature selection [6], [7], [8], [9]. A model constructed from
apparently informative features may have low CV error, and
yet fail to generalize beyond the training set. Nested CV,
where on each round of CV the selection process is re-run,
has been proposed for error estimation in this setting (see
e.g. [9]). While this estimator is almost unbiased, the high
variance of CV still remains a problem on small data sets



(see e.g. [10], [11]). On small data sets the CV error alone
may not provide enough information to decide whether the
features found by the selection method truly are informative.

Non-parametric permutation tests have been previously
proposed for measuring the statistical significance of CV
results for classification [12], [13]. In this work we explore
the suitability of the approach for assessing the significance
of feature selection. The null hypothesis is that the classifica-
tion method cannot reliably learn to predict the labels from
the selected set of features. The alternative hypothesis is
that a classifier with a low error rate can be trained from the
selected features. The test is done by repeatedly permuting
the labels of the training set, performing the feature selection
process, and evaluating the CV performance of the model
trained on the final set of selected features. The p-value is
simply the relative frequency of such runs that result in as
good as or better CV performance than the CV performance
of the model trained on the non-permuted labels.

In feature selection, permutation tests have been pre-
viously used as filter methods (see e.g. [14], [15]). In
this approach, the permutation test is used together with a
univariate statistic to calculate a p-value for each feature
separately. The p-value is for the null hypothesis that the
class conditional densities for a feature are equal for both
classes. This approach provides no estimate for the statis-
tical significance of the whole selection process itself, but
simply acts as a criterion for selecting individual features.
In contrast, our approach of combining the permutation test
with wrapper based feature selection allows us to capture in-
teractions between different features, and provides a tool for
estimating the statistical significance of the whole selection
process.

One of the main challenges in applying permutation tests
for state-of-the-art wrapper based feature selection methods
is the computational cost. These methods are typically com-
putationally intensive, requiring the re-training of a machine
learning method for each tested feature set, and each round
of CV. Repeating this process for, say, 1000 permutations
of the labels, is typically not feasible. However, using
a wrapper method based on the regularized least-squares
(RLS) classifier ([16]), this process can be efficiently carried
out. RLS has been a popular algorithm for gene selection
from microarray data due to both the good classification
performance, and the availability of computational shortcuts
for CV (see e.g. [17], [15]). Recently, we have proposed the
greedy RLS wrapper method, which combines the RLS CV
shortcuts with efficient updating when adding new features,
leading to linear time and space complexities in training
([18]). Using greedy RLS, we achieve the computational
efficiency necessary for combining permutation tests with
wrapper based feature selection.

II. METHODS

A. Regularized Least-Squares

Let Rm and Rn×m, where n,m ∈ N, denote the sets of
real valued column vectors and n×m-matrices, respectively.
To denote real valued matrices and vectors, we use bold
capital letters and bold lower case letters, respectively. More-
over, index sets are denoted with calligraphic capital letters.
For index set R ⊆ {1, . . . , n}, we denote the submatrix of
M ∈ Rn×m having the rows of M indexed by R as MR.
We use an analogous notation also for column vectors, that
is, vR refers to a vector consisting of the entries of the
vector v ∈ Rn indexed by R.

Let X ∈ Rn×m be the data matrix containing the feature
representations of the training examples, where n is the
total number of features and m is the number of training
examples. The i, jth entry of X contains the value of
the ith feature in the jth training example. Moreover, let
y ∈ {−1, 1}m be a vector containing the labels of the
training examples.

In this paper, we consider linear predictors of type

f(x) = wTxS ,

where S ⊆ {1, . . . , n}, w is the |S|-dimensional vector
representation of the learned predictor and xS can be consid-
ered as a mapping of the data point x into |S|-dimensional
feature space. Note that the vector w only contains entries
corresponding to the features indexed by S. The rest of the
features are not used in the prediction phase. The class label
predicted for a new data point x is determined by the sign
of the real valued prediction.

Given training data and a set of feature indices S, we find
w by minimizing the RLS risk. This can be expressed as:

argmin
w∈R|S|

{
((wTXS)

T − y)T((wTXS)
T − y) + λwTw

}
.

The first term, called the empirical risk, measures how well
the prediction function fits to the training data. The second
term called the regularizer controls the tradeoff between the
loss on the training set and the complexity of the prediction
function. The computational complexity of learning a linear
RLS predictor with |S| features and m training examples is
O(min{|S|2m, |S|m2}) (see e.g. [16]).

B. Greedy Forward Feature Selection for RLS

Here, we consider greedy forward feature selection for
RLS with LOO criterion (for a description of LOO error, see
[4]). A high level pseudo code of greedy RLS is presented
in Algorithm 1. The outermost loop adds one feature at a
time to the set of selected features S until the size of the
set has reached the desired number of selected features k.
The inner loop goes through every feature that has not yet
been added to the set of selected features. For each feature
available for addition, the LOO error of the RLS predictor
trained on both the previously chosen features, and the new



feature, is evaluated. The feature whose addition provides
the lowest LOO error is then chosen. The function

l :

n⋃
i=1

(Ri×m × {−1,+1}m × R) 7→ R (1)

maps a data matrix XR, a label vector y, and a regularization
parameter λ to the LOO classification error l(XR,y, λ) of
RLS trained with the features indexed by R.

Algorithm 1: Pseudo code of greedy RLS
Input: X ∈ Rn×m, y ∈ Rm, k, λ
Output: S
S ← ∅;
while |S| < k do

e←∞;
b← 0;
foreach i ∈ {1, . . . , n} \ S do
R← S ∪ {i};
ei ← l(XR,y, λ);
if ei < e then

e← ei;
b← i;

end
end
S ← S ∪ {b};

end

In the standard wrapper approach for feature selection
(see e.g. [3]), RLS is used as a black-box method mean-
ing that a new RLS predictor is trained for each tested
feature set and for each CV round. However, given that
the computation of LOO classification error requires m
retrainings, that the forward selection goes through O(n)
features in each iteration, and that k features are chosen,
the process would become computationally costly. Namely,
the overall computational complexity of the greedy forward
selection with LOO criterion is O(min{k3m2n, k2m3n}).
Even worse, the whole process would have to be repeated
for each considered permutation when assessing statistical
significance with permutation tests.

In [18], we have proposed an algorithm for learning
sparse predictors, called greedy RLS, whose computational
complexity is O(kmn), that is, it scales linearly with the
desired number of features to be selected, the size of the
training set, and with the overall number of features in the
training set. Moreover, we have shown that the predictor
trained with greedy RLS is exactly the same as the one
obtained via the standard wrapper approach with LOO
criterion. For a detailed technical description of the method,
we refer the reader to [18].

C. Permutation Tests

Here, we consider permutation tests similar to those used
for classification (see e.g. [12]). In permutation tests, the
labels of the training data are shuffled randomly and a new
predictor is then constructed and evaluated with the data with
permuted labels. The shuffling, training, and performance

Algorithm 2: Permutation test
Input: X ∈ Rn×m, y ∈ Rm, k, λ, r
Output: p
S ← GreedyRLS(X,y, k, λ);
γ ← l(XS ,y, λ);
c← 0;
repeat r times

y′ ← π(y);
S′ ← GreedyRLS(X,y′, k, λ);
γ′ ← l(XS′ ,y′, λ);
if γ′ ≤ γ then c← c+ 1

end
p← c/r;

evaluation is repeated many times and the evaluation results
are used for computing the statistical significance of the
result obtained with the original training data.

Following [12], the performance of a trained predictor is
evaluated via a statistic T measuring the similarity between
the sets of positive {(xi, yi) | yi = 1} and negative
{(xi, yi) | yi = −1} training examples. The null hypothesis
assumes the independence of the data and the labels, that is,
the data would contain no signal related to the class labels.

The pseudo code of the algorithm calculating the per-
mutation test is given in Figure 2. The algorithm is pro-
vided with the original training data, the desired number
of features to be selected k, the regularization parameter
λ, and the number of permutation rounds r. First, the
algorithm evaluates the predictor trained with greedy RLS
and with the original labels. In the algorithm description,
“GreedyRLS” denotes a function which performs the whole
feature selection process via the greedy RLS algorithm.
The permutation test algorithm then repeats r times the
computation of the evaluation statistic for a predictor trained
with permuted labels. The function providing shuffled label
vectors is denoted by π. The algorithm returns the value p,
which is the relative frequency of such evaluation results
achieved with the permuted labels, which are as good as or
better as the results gained with the true labels. Let α be the
acceptable significance level. Then the null hypothesis can
be rejected if p < α.

As a statistic T , we use the LOO classification error (1)
of the predictor obtained with the greedy RLS algorithm.
Note that since we use the LOO error also as a criterion
in the feature selection process, it is likely that its value
will be very low even with data sets containing no signal.
However, the whole feature selection process is rerun for
each permutation of the training labels, and hence it is as
likely to get low LOO errors with the shuffled labels as
with the original labels containing no signal. That is, the
permutation test is able to capture the expressive power of
greedy RLS and the overfitting of the LOO error measure
during the whole feature selection process.

The overall computational complexity of running the test
with greedy RLS is O(rkmn), where r is the number



of permutations performed by the test. In order for the
permutation test to be exact, we should go through every
possible permutation of the class labels. The number of
permutations grows exponentially with respect to the number
of training examples, and hence computing the exact test is
infeasible. However, reliable estimates of the p-value can be
achieved with Monte Carlo sampling of permutations.

D. Number of Features to be Selected

A question still left open is how many features one should
select. There are many possible approaches, each having
their own advantages and disadvantages. The answer, of
course, also depends on the background and characteristics
of the feature selection task. We next consider three possible
approaches.

First, we can decide the number of features to be selected
in advance. One may use prior knowledge such as, for
example, if it has been previously conjectured that the
underlying concept depends on a certain number of features.
Alternatively, the number of selected features may be con-
strained by the memory available for storing the predictor,
or by real-time demands for the prediction speed. In this
case, the technical limitations may dictate an upper bound
on the number of features to be selected. A advantage of this
approach is that the actual feature selection process has one
free parameter less. An obvious disadvantage is that setting
the number of selected features too high can lead to selecting
a large number of non-relevant features, and setting it too
low leads to missing important ones.

The second approach we test in our experiments is to
stop the feature selection process when the LOO error stops
decreasing. This method has also certain disadvantages.
Firstly, it can get stuck to a local minima. This is the case, for
example, in our the experiments with the breast cancer data.
Moreover, it can not be guaranteed that the method will stop
before the statistical significance is lost due to overfitting.
In fact, according to the p-value curves of our experiments,
the results are statistically significant only for feature sets of
very small size. Nevertheless, in our experiments with real
data, results provided by this approach are significant.

A third possibility is to use the permutation test itself
for determining when to stop the selection. Namely, more
features would be added to the set of selected features as
long as the p-value returned by the permutation test is below
the significance threshold. A downside of this approach is
that it makes permutation test less reliable for computing
the overall significance of the final result of the feature
selection compared to the case in which the test is computed
only once. This problem can in turn be solved by, for
example, by adjusting the significance threshold via some
sort of a correction for multiple-hypothesis testing, such as
the Bonferroni correction.

III. RESULTS

We perform experiments on an artificial non-signal data
set, as well as two real world microarray data sets. First, we
explore the degree to which performing feature selection on
the whole data set biases the LOO error estimate. Second, we
show how permutation tests can be used to detect whether
the results of a feature selection method are significant.

The non-signal data consists of 50 examples with 2000
features each. The feature values are generated from a
normal distribution with zero mean and unit variance. We
assume a balanced class distribution, so that half of the
examples are randomly assigned positive, and half of the
examples negative class labels. Any classifier trained on this
data will have expected error rate of 0.5 on new examples,
since class labels are assigned with equal probability, and
independently of the feature values.

The two real world data sets are a colon cancer data
set ([19]), with 62 examples and 2000 features, and a
breast cancer data set ([20]) with 44 examples and 7129
features. The classification problem is that of performing
cancer diagnosis on basis of gene expression level profiles
measured on DNA microarray. Previous work on the data,
further supported by our results, indicates a high probability
of real signal being present in the data sets.

In the initial experiments the test protocol is as follows.
First, a number of features to be selected is fixed. Then, for
each fixed number of features greedy RLS is run starting
from empty feature set until the given number has been
selected with the true labels, as well as with 1000 permu-
tations of the labels. For the non-signal data we consider
only the permutation distribution, since there is no correct
true labeling. We repeat the procedure for all the feature set
sizes ranging from 1 to 100, and calculate at each point the
LOO error with the true labels, the mean and variance of
LOO error for the permutation distribution, and the p-values.
We set λ = 1 on all the experiments.

In Figure 1 are the mean LOO-errors for the permutation
distributions, as well as the LOO-errors with the true labels
when available. When studying the results for the non-signal
data, the strength of the overfitting phenomenon becomes
clear. The true error rate of each model is 0.5. However,
performing feature selection on the full data set allows the
learners to overfit to the LOO-criterion, so that the mean
of the LOO-error can be as low as 0.04. Thus it is clear
that studying the LOO-performance of a classifier alone is
not sufficient to determine whether the selected feature set is
informative, when the whole data set is used in the selection
process. The same overfitting occurs on the real world data
sets. However, the error of the classifier trained on the true
labels is still clearly lower than the mean of the permutation
distribution.

In Figure 2 are the variances of the LOO-errors for the
permutation distributions. It can be seen that the variance
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Figure 1. Mean LOO-errors over 1000 permutations, and the LOO errors for true labels. Non-signal (left), colon cancer (middle), breast cancer (right)

grows quite fast as the feature selection proceeds, though it
seems to level off once enough features have been selected.
One conclusion that can be drawn from studying the vari-
ances is that for small high-dimensional data sets one should
aim to select only a handful of features. For too large set
of selected features the variance will become so high that
it will become impossible to detect whether the selection
procedure was successful. The p-values presented in Figure
2 support this conclusion, the uncertainty grows quite high
very soon as the feature selection process continues.

Based on these considerations, we perform a further set
of experiments. We study whether the greedy RLS can
successfully find relevant features on the two real world data
sets, using permutation tests. In this test we use an adaptive
stopping criterion for greedy RLS. In the first experiment,
we terminate selection once selecting a new feature no
longer lowers the LOO-error. Naturally the same termination
criterion is used both when running greedy RLS with the
true labels, and with the permuted labels. Here, we test for
statistical significance at p < 0.05. In the second experiment,
we test the use of the permutation test itself as a stopping
criterion. Namely, we stop the feature selection process at
the point when adding a new feature would rise the p-value
over the significance threshold. Then, we select the feature
set having the lowest LOO error from among the sets seen
during the previous steps of the greedy forward selection.
If there are several such sets, we select the one with least
number of features. Note that when we use the p-value as a
stopping criterion, its reliability for computing the statistical
significance of the final result would be questionable.

The resulting feature set sizes, LOO-errors, and for the
first experiment also the corresponding p-values, are pre-
sented in Table I. Further, histograms for the permutation
distributions in the first experiment are presented in Figure
3. First, we consider the results for the first experiment. The
selected number of features is quite small. For colon cancer
data 5 features are selected, for breast cancer 4. The LOO-
errors are also very small, with 0 error for colon cancer,
and 0.048 error for breast cancer. Both results are significant.
Interestingly enough, while with the cancer data the resulting
error is 0, the p-value 0.042 is much higher than that of the
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Figure 2. Variances of the permutation distributions (left). p-values for
the experiment (right).
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Figure 3. Histograms of the LOO-errors for the permutation test, calculated
at the point where feature selection terminates. Error for true labels
presented as a dashed red line. Colon cancer (left), breast cancer (right).
For colon cancer, error with true labels is 0.00.

breast cancer data (0.006). The reason for this can be seen
from the histograms. For the colon cancer data it can be seen
that 0 error is achieved also for a number of permutations,
indicating the possibility that the good result might have
arisen simply by luck. However, the breast cancer result,
as seen, is more of an outlier, with only very few of the
permutations resulting in as good as, or better performance.
In the second experiment, the feature selection process with
the colon cancer data stops after selecting 5 features, since
the LOO error becomes zero and the p-value is below the
threshold. With the breast cancer data, the process stops
when it has reached the LOO error 0.032 after selecting
6 features.

IV. CONCLUSION

The experiments further verify the need for significance
testing in wrapper based feature selection, as such methods



Table I
EXPERIMENT 1: THE FEATURE SELECTION PROCESS IS STOPPED WHEN
THE LOO ERROR STOPS DECREASING. EXPERIMENT 2: THE SMALLEST
FEATURE SET HAVING THE LOWEST STATISTICALLY SIGNIFICANT LOO

ERROR IS SELECTED.

Exp1 Exp2
data set selected LOO p-value selected LOO
colon cancer 5 0.000 0.042 5 0.000
breast cancer 4 0.048 0.006 6 0.032

possess a notable risk of overfitting on small high dimen-
sional samples. The permutation test captures the expressive
power of the wrapper methods, allowing one to detect
whether the results are significant or not. However, due to the
computational costs of performing the test, the used wrapper
method must be efficient. One suitable choice is the greedy
RLS algorithm. Though we have limited our considerations
to binary classification, the presented approach is applicable
also for other types of learning tasks where feature selection
is needed, such as learning to rank [21].
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