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Abstract. RankRLS is a recently proposed state-of-the-art method for
learning ranking functions by minimizing a pairwise ranking error. The
method can be trained by solving a system of linear equations. In this
work, we investigate the use of conjugate gradient and regularization
by iteration for linear RankRLS training on very large and high dimen-
sional, but sparse data sets. Such data is typically encountered for ex-
ample in applications where natural language based data is used. We
show that even though a pairwise loss function is optimized when train-
ing RankRLS, the computational complexity of the proposed methods,
when learning from data with utility scores, is O(tms), where t is the re-
quired number of iterations, m the number of training examples and s the
average number of non-zero features per example. In addition, the com-
plexity of learning from pairwise preferences is O(tms+tl), where l is the
number of observed preferences in the training set. In the experiments,
it is further confirmed that restricting the number of conjugate gradi-
ent iterations has a regularizing effect and that the number of iterations
that provides optimal results is, in practice, a small constant. Thus, the
use of regularization by iteration, while providing similar performance as
the more well-known Tikhonov regularization, results in a tremendous
reduction in the computational cost of training and parameter selection.

1 Introduction

Learning to rank has been a topic of significant interest during the recent years.
This development has been largely motivated by applications such as search
engines and recommender systems. In these domains there are unprecedented
quantities of data available, meaning that scalability is an essential property for
machine learning algorithms for them to be useful in this setting.

A popular approach to modeling the ranking problem is to consider pairwise
preferences. In this setting, the aim is to minimize the number of pairwise mis-
orderings in the ranking produced when ordering a set of examples according
to predicted utility scores. A number of machine learning algorithms optimizing
relaxations of this criterion have been proposed [13, 15, 6, 3, 5, 21, 20]. In this work
we consider large scale training algorithms for the RankRLS method [21, 20].
RankRLS is based on optimizing a least-squares approximation of the pairwise
ranking error. The method can be seen as a modification of the regularized



least-squares method (RLS)[35, 24, 25], also known as the least-squares support
vector machine [29]. Further, the minimized objective function is very similar
to that of the ranking support vector machine (RankSVM)[13, 15], and the two
methods have been experimentally shown to often achieve very similar ranking
performance [21, 20].

An unique property of RankRLS, compared to other ranking algorithms, is
that its solution can be expressed as a solution to a system of linear equations. As
a result highly efficient and simple matrix calculus based training algorithms can
be used to train the method as long as either the number of training examples,
or dimensionality of the feature space is fairly small (i.e. few thousands or less)
[21, 20]. Additionally, efficient matrix algebra based shortcuts can be derived for
tasks such as fast regularization, cross-validation and multi-output learning [20],
as well as feature selection, [19] as shown in our previous work.

In many central ranking applications, such as web search, the data to be
ranked consists of natural language documents. In this domain it is typical to
encounter very large and high dimensional, sparse data sets. The number of pos-
sible features that a document can have is often related to the number of distinct
words in a vocabulary, or in n-gram models some power of this number. However,
most features for a given document will be zero-valued, since only a small set of
words actually appear in any give document. Most of the previously considered
RankRLS training algorithms [21, 20] are not practical in this setting, since they
are cubic either in the number of training examples, or in the number of distinct
features. On such high dimensional data linear models can be expected to be
already quite competitive, and this is to where we restrict our considerations in
this article.

We have previously [20] noted that RankRLS can be trained in this setting
using iterative conjugate gradient optimization. A similar approach has been
proposed for regular RLS regression and classification [28, 25, 4]. The original
RankRLS formulation relies on Tikhonov regularization [30], which is perhaps
the most commonly used strategy for avoiding overfitting among regularized risk
minimization based learners. This approach is compatible with conjugate gradi-
ent training. However, selection of the regularization parameter value requires
an expensive grid search, and the convergence speed of the conjugate gradient
method can be slow for small regularization parameter values.

Regularization has been a topic of intense research within the field of inverse
problems, where an efficient alternative to Tikhonov regularization has been
proposed for iterative gradient descent type of methods. Regularization by iter-
ation, or early stopping, relies on stopping the optimization process before noise
in the data begins to dominate the minimized objective function [11, 10]. In the
field of machine learning, these results have recently gained renewed interest.
For example, the framework of spectral regularization has been introduced for
the purpose of deriving and analyzing efficient learning methods that regularize
by early stopping [9].

In this work we introduce and experimentally evaluate different approaches
to RankRLS training using large, high dimensional data sets. Both standard



Tikhonov regularization and regularization by iteration, as well as a hybrid ap-
proach are considered. Efficient optimization approaches based on sparse matrix
operations and conjugate gradient optimization are presented. Experimental re-
sults verify that the proposed methods are suited for large-scale learning, and
that regularization by iteration allows substantial decrease in computational
costs compared to standard Tikhonov regularization by eliminating the need for
parameter selection via grid searching.

2 Learning setting

Let D be a probability distribution over a sample space Z = Rn×R. An example
z = (x, y) ∈ Z is a pair consisting of an n-dimensional column vector of real-
valued features, and an associated real-valued utility score. Let the sequence
Z = ((x1, y1), . . . , (xm, ym)) ∈ Zm drawn according to D be a training set of m
training examples. X ∈ Rn×m denotes the n × m data matrix whose columns
contain the feature representations of the training examples, and y ∈ Rm is
a column vector containing the utility scores in the training set. The utility
scores reflect the “goodness” of the training examples with respect to the ranking
criterion.

Let I = {1 . . .m} denote the index set for the training set. In many appli-
cation settings instead of having one global ranking over the training examples,
the training set consists of several separate rankings. In this setting we assume
that the indices are divided into a number of disjoint subsets Q = {Q1, . . . ,Qq}
such that Qi ⊂ I,

⋃q
i=1Qi = I and Qi∩Qj = ∅, if i 6= j. We shall refer to these

subsets as queries, a term that originates from the learning to rank for infor-
mation retrieval setting, where the data sets consists of query-document pairs.
Pairwise preferences exist only between examples from the same subset. In the
following, the setting where we have a single global ranking over all the training
examples should be interpreted as Q = {I}.

Our task is to learn from the training data a ranking function f : Rn → R. In
the linear case such a function can be represented as f(x) = xTw, where w ∈ Rn
is a vector of parameters. Where the ranking task differs in the scoring setting
from that of simple regression is that the actual values taken by the ranking
function are typically not of interest. Rather, what is of interest is how well the
ordering acquired by sorting a set of new examples according to their predicted
scores matches the true underlying ranking. This is a reasonable criterion for
example in the web search engines and recommender systems, where the task
is to choose a suitable order in which to present web pages or products to the
end user. A popular way to model this criterion is by considering the pairwise
preferences induced by a ranking (see e.g. [7, 8]). We say that an example zi is
preferred over example zj , if yi > yj , and zi and zj are comparable meaning that
they belong to the same query. In this case one would require from the ranking
function that f(xi) > f(xj).

By restricting the allowed range of utility scores we can recover some popular
special cases of the introduced setting. In ordinal regression (see e.g. [13, 34]) it



is assumed that there exists a finite, often quite small set of possible discrete
ordinal labels. For example, movie ratings ranging from one star to five stars
would constitute such a scale. In the bipartite ranking task where only two
possible scores are allowed, the ranking task becomes equivalent to the task of
maximizing the area under the ROC curve (AUC) [1, 31], a popular performance
measure in binary classification.

The performance of a ranking function can be measured by the pairwise
ranking error defined as

1

|Q|
∑
Qi∈Q

1

Ni

∑
j,k∈Qi,yj<yk

H(f(xj)− f(xk)), (1)

where H is the Heaviside step function defined as

H(a) =

1, if a > 0
1/2, if a = 0
0, if a < 0

and Ni is the number of pairs in Qi for which yj < yk holds true. The equation
(1) simply counts the number of swapped pairs between the true rankings and
the one produced by f . For trivial predictors that assign predictions randomly,
or give the same prediction to all examples, the resulting error is 0.5.

Additionally, we also consider the case where instead of utility scores, we are
supplied only with pairwise preferences between data points. As an example,
such data appears when gathering implicit user feedback from search engines
[15]. A link that was clicked by a user can be considered to be preferred over
those links that were not clicked. In this setting we still assume the transitivity of
the underlying preference relation, meaning that any intransitivities occurring in
the training data are treated as noise. For discussion on how to model and learn
intransitive preference relations, we refer to the work of Pahikkala et al. [18].

Let E = (e1, . . . , el)
T ∈ (I × I)l be a sequence of observed preferences

between the inputs, that is, for each e = (i, j), we say that xi is preferred over
xj . Clearly, E can be considered as a preference graph in which the inputs are the
vertices and the observed preferences are the edges. In this setting, the pairwise
disagreement error may be defined more generally as∑

(xi,xj)∈E

H(f(xi)− f(xj)), (2)

possibly normalized by the total number of considered pairs.

Minimizing (1) or (2) directly is computationally intractable, successful ap-
proaches to learning to rank according to the pairwise criterion typically min-
imize convex relaxations instead. In this work we consider the pairwise least-
squares approximation, which leads to the RankRLS algorithm introduced in
the next section.



3 RankRLS

In this section we formalize the empirical RankRLS risk, consider different reg-
ularization strategies and introduce an efficient learning algorithm for learning
linear ranking functions from large sparse data sets. We first present an ap-
proach that is compatible with learning from utility scores, and then present an
extension to learning directly from pairwise preferences.

3.1 Empirical risk

The empirical risk, which is the normalized pairwise least-squares loss over the
training data, is formally defined as∑

Q∈Q

1

2|Q|
∑
i,j∈Q

(yi − yj − xT
i w + xT

j w)2. (3)

The choice of normalizer differs slightly from the one previously used by us [21,
20], the reason for the modification is that it simplifies considerably the following
derivations.

Let

Lh = Ih −
1

h
1h(1h)T

be the h× h-centering matrix with h ∈ N, where I is the h× h identity matrix,
and 1 a h × 1 column vector of ones. The matrix L is a symmetric idempotent
matrix and multiplying it with a vector removes the mean of the vector entries
from all elements of the vector. Moreover, the following equality can be shown

1

2h

h∑
i,j=1

(ci − cj) = cTLhc ,

where ci are the entries of any vector c. Without loss of generality, we can
assume that the training data is ordered according to the queries, so that first
come the examples belonging to the first query, next to the second, etc. Now,
let us consider the following quasi-diagonal matrix:

L =

L|Q1|
. . .

L|Qq|

 .

The matrix L is again symmetric and idempotent, and can be interpreted as a
query-wise centering matrix, that removes the mean from the prediction errors
for each query. It is also a normalized version of the Laplacian matrix encoding
the structure of the preference graph induced by the queries, which has been used
in previous derivations of RankRLS [21, 20]. The matrix L can be decomposed
as

L = I−PPT (4)



where P ∈ Rm×q is a sparse matrix whose entries are defined as

Pi,j =

{
1√
|Qj |

if i ∈ Qj
0 otherwise

.

P has exactly m non-zero entries. Using this decomposition, the memory cost of
storing L, as well as the computational cost of multiplying a column vector with
L are both O(m). This forms the basis for developing the efficient RankRLS
training algorithms presented in the following sections.

The empirical risk (3) can be re-written in matrix notation as

(XTw − y)TL(XTw − y) = (LXTw − Ly)T(LXTw − Ly),

where the equality is due to the symmetry and idempotence of L. What can be
seen now is that by query-wise centering of the data matrix and label vector,
we have transformed the empirical risk term to a standard least-squares form,
equivalently expressed as

‖ LXTw − Ly ‖2, (5)

whose minimizer is the best fit, in the least-squares sense, to the equation

LXTw = Ly.

This connection between standard least-squares and RankRLS means that
in theory, we could center the data matrix and the label vector, and proceed by
using known training algorithms for (regularized) least-squares. However, as we
will discuss next in more detail, this would destroy the sparse structure of the
data matrix, meaning that methods would not scale to large but sparse data
sets.

3.2 Tikhonov regularization

Solving algebraic systems of linear equations has been studied extensively in the
field of inverse problems, and it is a well known result that problems of this form
are often ill-conditioned. This idea has been directly linked to the phenomenon
of over-fitting in machine learning, where it has been noticed that pure empirical
risk minimization can lead to over-fitting, where the solution models the noise
in the data rather than the true underlying concept. The problem is usually
addressed by means of regularization.

By far the most popular approach has been Tikhonov regularization [30],
where a regularization term, typically of the form λ ‖ w ‖2, is added to the
minimization problem. λ known as the regularization parameter is a positive
constant that controls the tradeoff between the data fit and model complexity.
A large body of machine learning literature is based on this choice, starting from
the works of Vapnik [32, 33], Wahba [35] and Poggio and Girosi [24]. The family of
regularized risk minimization based learning algorithms includes methods such
as RLS [35, 24, 25], support vector machines [33], RankSVM [13, 15] and the



original RankRLS method [21, 20], among others. For RankRLS, the regularizer
guarantees the existence of an unique minimizer, which can be recovered from

w = (XLXT + λI)−1XLy (6)

(for proof, see [21]). Also, based on the matrix equivalences of Henderson and
Searle [12] and the idempotence of L, it can be seen that the RankRLS solution
can be equivalently obtained from

w = XL(LXTXL + λI)−1Ly. (7)

Using the sparse decomposition of L (4), XLXT can be calculated in O(mn2)
time and Ly in O(m) time. The overall complexity of solving (6) is O(mn2 +n3)
and of solving (7) O(m2n+m3).

In practice direct matrix inversion is not the recommended strategy for solv-
ing RankRLS. Instead algorithms based on matrix decompositions, such as the
singular value decomposition of the data matrix, are recommended. These ap-
proaches are faster than direct matrix inversion by a constant factor, and allow
efficient search for the value of the regularization parameter λ [20]. Additionally,
efficient computational shortcuts are known for calculating statistics, such as
the leave-query-out, or the leave-pair-out ranking error and parallel learning of
multiple models simultaneously [20], as well as for feature selection [19].

These training algorithms that are based on dense linear algebra are practical
as long as we can guarantee that either m of n is small. For example the first is
often the case in life sciences, where the data may be high dimensional measuring
thousands of genes, but the sample size is small due to the costs of administering
expensive tests on real human patients. Conversely, in much of the recent learning
to rank research in information retrieval the considered data sets have consisted
of tens to hundreds of thousands of examples, but only tens of high-level features.
In both of these settings the dense linear algebra based training algorithms for
RankRLS are highly competitive. However, for large and high dimensional, but
sparse data sets both (6) and (7) are impractical, since they require quadratic
memory storage and cubic computational time either with respect to m or n.

3.3 The conjugate gradient method

The conjugate gradient method [14, 26] provides a powerful iterative method
for solving sparse systems of linear equations. The method is well suited sparse
equations, since it relies only on repeated multiplication of a vector with the
sparse matrices. Further, it has minimal storage requirements and provably con-
verges much faster than regular gradient descent. Previously, Suykens et al. [28]
and Chu et al. [4] have proposed the method for non-linear RLS training with
kernels, Rifkin et al. [25] noted that conjugate gradient has many additional
benefits when training linear RLS classifiers, and in our previous work [20] we
have noted the suitability of conjugate gradient for large scale linear RankRLS
training, and performed some runtime experiments.



Conjugate gradient is a method for solving equations of the type Ab = c,
where A is symmetric and positive definite. The equation

(XXT −XPPTXT + λI)w = X(y −PPTy). (8)

for finding the RankRLS solution, fulfills this criterion. Note that we have re-
placed L with I − PPT to facilitate efficient computation that preserves the
sparsity of the data. None of the matrix products on the left side are explic-
itly calculated, but rather the presented decomposed form is used as such when
multiplying it with a vector.

On each iteration of conjugate gradient training, the most expensive op-
eration is the multiplication of the matrix on the left side of (8) to a col-
umn vector dt ∈ Rn, that changes each iteration. This can be calculated as
X(XTdt −P(PT(XTdt))) + λdt, where the parentheses are used to denote the
order in which the multiplications are carried out in. Only sparse matrix - vector
multiplications are needed. Since X has ms, and Pm non-zero entries, the whole
sequence of operations can be calculated in O(ms) time. The overall complex-
ity of training RankRLS with conjugate gradient is thus O(tms) where t is the
required number of iterations.

A basic result about the convergence of conjugate gradient is that t is
bounded by the number of distinct eigenvalues of A [26]. The maximum rank of
XLXT gives us an upper bound on the number of required iterations, since the
matrix has at most as many distinct eigenvalues as its rank is, and the regulariza-
tion term will at most add one new eigenvalue. Thus t ≤ min{m+1, n+1}. This
means that conjugate gradient method is guaranteed to converge very rapidly if
either sample size or dimensionality of the data is low. However, for very large
sparse data matrices this does not guarantee efficiency, since both m and n may
be very large.

Let γmax

γmin
be the condition number of the matrix XLXT, where γmax and γmin

are the largest and smallest eigenvalue of XLXT, respectively. By examining the
eigen decomposition of this matrix, we can verify that the condition number of
the matrix XLXT +λI, which is equivalent to the one present on left side of (8),
is κ = γmax+λ

γmin+λ
. The maximum number of iterations required by the conjugate

gradient method to reduce the norm of the error by a factor of ε is t ≤ 1
2

√
κ ln( 2

ε )
[26]. Because κ approaches one from above as regularization is increased, the
bound suggests that speed of convergence depends inversely on the size of the
regularization parameter. In the experiments we observed this to be the case,
with large enough values of λ the conjugate gradient method needed finally only
one iteration to converge. On the other hand, for very small values of λ the
number of iterations required can be very large. Additionally, a problem is how
to select the correct value of λ in the first place. Unlike when using the dense
linear algebra based training algorithms, no computational shortcuts exist for
fast evaluation of a suitable value of λ. Rather, brute force grid search using
cross-validation or a separate validation set is needed.



3.4 Regularization by iteration

In numerical optimization literature, a more efficient alternative to using
Tikhonov type of regularization is known. The approach is known as regulariza-
tion by iteration, or early stopping. The technique originated with Landweber
iteration [16], which corresponds to a steepest-descent minimization of least-
squares equations, such as (5). The basic intuition of this approach is, that the
noise in the training data begins to influence the convergence of gradient descent
type of methods only during the later iterations. In the first iterations the phe-
nomenon of semi-convergence is observed, at first the methods converge towards
a good solution, but after a certain point begin to diverge, as the noise starts to
dominate the objective function.

The regularizing effect of early stopping is also known to apply to the conju-
gate gradient method. Hanke and Hansen [11] discussed different regularization
methods for solving large ill-conditioned algebraic systems of linear equations,
and recommended the use of conjugate gradient with regularization by iteration.
A clear exposition of many of the considered ideas, together with further em-
pirical results can be found in the work of Hanke [10]. In machine learning, the
regularizing effect of early stopping is an old well-known result in neural net-
works literature (see e.g. [27]). Recently, there has been a renewed interest in the
use of early stopping for training kernel based learning algorithms. Yao et al. [36]
discuss using gradient descent with early-stopping for regularized least-squares,
and also discuss the connections of this approach to boosting. Gerfo et al. [9]
introduce the framework of spectral regularization for machine learning, which
gives rise to regularized learning algorithms based on gradient descent type of
optimization algorithms, that regularize by early stopping. Spectral regulariza-
tion based classifiers were shown to be efficient, and in terms of performance to
compare favorably to SVMs and AdaBoost.

Formally, in regularization by iteration we apply t iterations of conjugate
gradient for solving approximately

(XXT −XPPTXT)w = X(y −PPTy).

As previously, the cost of each iteration is O(ms). However, early stopping offers
two advantages in terms of efficiency. First, since the optimization is terminated
early, the required number of iterations t is typically quite small. Second, one
does not have to choose the correct value of λ, since t itself acts as the regu-
larization parameter. A problem is how to correctly choose t, since this has a
major impact on performance. The most natural choice is to measure perfor-
mance on an independent validation set, and terminate optimization once no
improvement has been seen for a specified number of iterations, retaining the
best solution seen before termination. Results in the literature [11, 10, 9] suggest
that regularization by iteration should, in terms of performance, be competitive
with Tikhonov regularization.

Finally, Hanke and Hansen [11] and Gerfo et al. [9] discuss also hybrid meth-
ods, that combine Tikhonov regularization and early stopping. While one may
still have to re-start the optimization many times for different values of λ, this



offers some computational benefits, since running conjugate gradient until it
converges can require a substantial number of iterations for small values of λ.

3.5 Learning from pairwise preferences

When supplied with only pairwise comparisons between the data points, the
empirical risk based on pairwise least-squares loss can be defined as∑

(i,j)∈E

(1− xT
i w + xT

j w)2. (9)

Alternatively, as discussed in [20], if we have also information about the mag-
nitudes of the pairwise preferences, we can replace the constant 1 in (9) with
this information. In the following we assume that we do not have access to such
information.

Let M ∈ Rm×l be a matrix whose rows and columns are indexed by the
vertices and edges of the preference graph for the training set, and its entries
are given by

Mi,h =

1 if eh = (i, j), for some j 6= i
−1 if eh = (j, i), for some j 6= i
0 otherwise

.

In the graph theory, this matrix is sometimes called the oriented incidence matrix
of a graph (see e.g. [2]).

The empirical risk can be re-written in matrix notation as

(1−MTXTw)T(1−MTXTw),

where 1 is a length l column vector of ones. This corresponds again to a least-
squares minimization problem, which, when combined with Tikhonov regulariza-
tion, can be solved by applying the conjugate gradient method on the equation

(XMMTXT + λI)w = XM1

The computational cost of the matrix-vector multiplications required in each
iteration is O(ms + l), which is the number of non-zero entries in matrices X
and M. Thus the approach scales linearly in the number of examples, non-
zero features and pairwise preferences. Again, we can perform regularization by
iteration by setting λ = 0 and by stopping the conjugate gradient method after
a suitable number of iterations t, where the value of t is chosen on independent
validation data.

Should we transform scored data into pairwise preferences and use label dif-
ferences as preference magnitudes, the approach presented here would be equiv-
alent to the approach we use for scored data, ignoring the query-wise normal-
izations. When learning from a single global ranking l grows quadratically with
respect to m, leading to O(ms+m2) iteration cost, which can be too much on
very large data sets. For data with query structure this approach would be more
manageable, as l grows quadratically with respect to query size, but only linearly
with respect to the number of queries.



4 Experimental results

In the experiments we measure the computational efficiency and performance of
different RankRLS training algorithms. We compare a training algorithm that
uses Tikhonov regularization, a training algorithm that relies on early stopping,
and a hybrid method that combines these approaches. In the hybrid approach
we choose the value of the regularization parameter as in regular Tikhonov reg-
ularization, but terminate the optimization as soon as validation error has not
decreased in ten consecutive iterations In addition to training time we measure
the parameter selection time, since in practice one cannot know in advance the
correct values of λ and t. We do not consider training algorithms based on dense
linear algebra, since they would not scale to the considered data set sizes.

The learning algorithms were implemented as part of the RLScore open
source machine learning framework 1. Scientific Tools for Python (SciPy) sparse
matrix and conjugate gradient method implementations were used in the im-
plementations. The experiments were run on a modern desktop computer with
2.4 GHz Intel Core 2 Duo E6600 processor, 8 GB of main memory, and 64-bit
Ubuntu Linux 9.10 operating system.

We consider two ranking problems. The characteristics of both the considered
data sets are presented in Table 1. Both data sets are divided into three parts,
of which the validation set is used for selecting the regularization parameter λ,
and in regularization by iteration to select when to stop.

The parse ranking problem comes from the field of natural language process-
ing. Due to the ambiguity of natural language, automatic syntactic parsers often
produce a large number of syntactically valid candidate parses, when given a
sentence as an input. In parse ranking, the task is given a sentence and a set
of candidate parses, to rank them according to how well they match the true
(at test time unknown) parse for the sentence. The data set is the same as used
in [22], and consists of 12000 examples, which are joint feature representations
of sentences and parses. The feature set is a linearization of the graph kernel
described in [22], resulting in a sparse but very high dimensional feature repre-
sentation. The labels in the data are real valued utility scores, and instead of a
single global ranking, groups of candidate parses related to the same sentence
constitute queries.

The other considered problem is bipartite ranking (or equivalently, AUC-
maximization), on a text classification task. The data set is constructed from
the Reuters RCV1 collection [17], and the task is to rank higher the documents
in the CCAT category, than documents not belonging to this category. The
features consist of TF/IDF values. The data set consists of close to eight hundred
thousand examples, and is also very high dimensional and sparse.

Finally, we run a third experiment to test the behavior of RankRLS when
learning directly from pairwise preferences rather than from data with utility
scores. Since we are not aware of any very large datasets consisting of pairwise

1 Available at http://www.tucs.fi/RLScore
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Fig. 1. Ranking error on the parse ranking validation data.

preferences, we create such data by taking a random sample of 106 positive-
negative example pairs from the Reuters data set.

First, we study the convergence behavior of conjugate gradient trained
RankRLS. We plot for different regularization parameter values the pairwise
ranking error on the validation set as a function of performed iterations. The
termination criterion is ε < 10−5. In Figure 1 are the results for the parse rank-
ing task, in Figure 2 on the Reuters data when learning from utility scores. The
results for Reuters data when learning from pairwise preferences look essentially
the same as when learning from utility scores, so we do not present them sepa-
rately. The parse ranking and Reuters plots are very similar. Runs with zero or
close to zero regularization achieve good performance at first, but begin then to
overfit to the noise, confirming the regularizing effect of early stopping. As the
value of λ is increased the methods converge faster. If optimization is run until
convergence, it is crucial that the value of λ is chosen correctly. Too small values
overfit, and too large values underfit, leading to notably decreased performance.

Next we compare three approaches to RankRLS training. Method 1 selects
the value of λ with a grid search on the validation set. Optimization is either
run until the termination criterion ε < 10−5 is fulfilled, or 500 iteration limit
reached. Method 2 relies solely on regularization by iteration, with λ = 0. The
method keeps in memory the solution that has had the lowest validation error
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Fig. 2. Ranking error on the Reuters validation data.

this far, and once no improvements have been seen for 10 consecutive iterations,
the method terminates. Method 3 is a hybrid approach that combines the first
and the second method. Methods 1 and 3 select the regularization parameter
from the grid {2−10 . . . 210}.

In table 1 are the results for all the tasks. The method that runs conjugate
gradient optimization with Tikhonov regularization until convergence, and the
hybrid method that combines this with early stopping achieve essentially the
same performance. Since using early stopping here already results in a tenfold
reduction in parameter selection time, we conclude that this approach can yield
substantial computational savings when combined with normal Tikhonov regu-
larization. The savings are much more dramatic for method 2, that uses only
regularization by iteration, with no separate regularization term. Even on close
to million training examples on the Reuters data, the method takes only about
one and a half minute to train. The results for regularization by iteration are
slightly better than the two other approaches on the parse ranking data, and
slightly worse on the Reuters data. On Reuters data the performance is lower
when learning from the sample of pairwise preferences than when learning from
the utility scores. This is not surprising, since the formulation of RankRLS that
learns from utility scores implicitly considers all pairwise preferences in the train-



Name Train size Val size Test size Features Sparsity

Parse ranking 7539 2497 2354 195100 0.27%
Reuters 781265 8149 23149 47152 0.16%

Method Test error Training time Param. select. time

1 0.2185 11 s 1743 s
2 0.2180 6 s 9 s
3 0.2185 7 s 137 s

Method Test error Training time Param. select. time

1 0.01472 352 s 17186 s
2 0.01531 65 s 97 s
3 0.01473 155 s 2120 s

Method Test error Training time Param. select. time

1 0.01530 226 s 15295 s
2 0.01621 52 s 78 s
3 0.01530 94 s 1695 s

Table 1. The topmost table contains the data set characteristics. The next two tables
contain the results for Parse ranking and Reuters when learning from scored data.
The lowermost table contains the results for Reuters, when learning from a sample
of 106 pairwise preferences. In the three result tables, the methods 1, 2, and 3 refer
to conjugate gradient with Tikhonov regularization, regularization by iteration, and
combination of Tikhonov regularization and early stopping, respectively.

ing set, whereas only a subsample of 106 pairwise preferences is used for training
the pairwise formulation of the method.

5 Conclusion

In this article we have proposed large-scale training algorithms for learning lin-
ear ranking functions from very large sparse data sets. The minimizer of the
RankRLS loss can be found as a solution to a system of linear equations, al-
lowing the use of conjugate gradient optimization. This leads to a training algo-
rithm that is both fast and simple to implement. In addition to using standard
approach based on Tikhonov regularization, we have considered the merits of
early stopping. Experimental results show that regularization by iteration is a
viable alternative to using Tikhonov regularization, as it leads to competitive
performance and considerable computational savings.

Though we have in this work limited our considerations to linear RankRLS
training, the considered approaches are suitable also for training the kernel ver-
sion of RankRLS. Explicit construction of the full kernel matrix is not required,
as long as an efficient way to calculate the kernel matrix - vector products exist.
Such computational shortcuts are available for example for pairwise Kronecker
product kernels used in learning intransitive preference relations [18], and more
generally in conditional ranking [23].
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