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Abstract. Reliable estimation of the classification performance of
learned predictive models is difficult, when working in the small sam-
ple setting. When dealing with biological data it is often the case that
separate test data cannot be afforded. Cross-validation is in this case a
typical strategy for estimating the performance. Recent results, further
supported by experimental evidence presented in this article, show that
many standard approaches to cross-validation suffer from extensive bias
or variance when the area under ROC curve (AUC) is used as perfor-
mance measure. We advocate the use of leave-pair-out cross-validation
(LPOCV) for performance estimation, as it avoids many of these prob-
lems.

1 Introduction

Small-sample biological datasets, such as microarray data, exhibit properties
which pose serious challenges for reliable evaluation of the quality of prediction
functions learned from this data. It is typical for genomic studies to produce data
containing thousands of features, measured from a small sample of possibly only
tens of examples. Further, the relative distribution of the classes to be predicted
is often highly imbalanced and their discriminability can be quite low.

AUC is a ranking-based measure of classification performance, which has
gained substantial popularity in the machine learning community during recent
years [1–3]. Its value can be interpreted as the probability that a classifier is
able to distinguish a randomly chosen positive example from a randomly chosen
negative example. In contrast to many alternative performance measures, AUC
is invariant to relative class distributions, and class-specific error costs. These
properties have prompted the use of the AUC measure in microarray studies [4,
5], medical decision making [6], and evaluation of biomedical text mining systems
[7] to name a few examples.

When setting aside data for parameter estimation and validation of results
cannot be afforded, cross-validation is typically used. However, in [8] it was shown
that when considering AUC in the small-sample setting, many commonly used
cross-validation schemes suffer from substantial negative bias. In this work, we



explore this issue further and propose LPOCV, first considered in [9] for ranking
tasks, as an approach that provides an almost unbiased estimate of expected
AUC performance, and also does not suffer from as high variance as some of the
alternative strategies.

2 Performance Estimation

Let D be a probability distribution over a sample space Z = X × Y, where
the input space X is a set and the output space Y = {−1, 1}. An example
z = (x, y) ∈ Z is thus a pair consisting of an input and an associated label, which
describes whether the example belongs to the positive or to the negative class.
The conditional distribution of an input from X , given that it belongs to the
positive class is denoted by D+, and given that it belongs to the negative class by
D−. Further, let the sequence Z = ((x1, y1), . . . , (xm, ym)) ∈ Zm drawn indepen-
dent and identically distributed from D be a training set of m training examples,
with X = (x1, . . . , xm) ∈ Xm denoting the inputs and Y = (y1, . . . , ym) ∈ Ym

the labels in the training set.
Now let us consider a prediction function fZ returned by a learning algo-

rithm based on a fixed training set Z. We are interested in the generalization
performance of this function, that is, how well it will predict on unseen future
data. The generalization performance of fZ can be measured by its expected
AUC A(fZ), sometimes also known as expected ranking accuracy [10], over all
possible positive-negative example pairs, that is

A(fZ) = Ex+∼D+x−∼D− [H(fZ(x+)− fZ(x−))]

where H is the Heaviside step function, for which H(a) is 1 if a > 0, 1/2 if
a = 0, and 0 if a < 0. We call this measure the conditional expected AUC of the
prediction function, as it is conditioned on a fixed training set Z.

Alternatively, we may also want to consider the expectation taken over all
possible training sets of size m. The unconditional expected AUC can be defined
as

EZ∼Dm [A(fZ)].

As discussed for example in [11, 12], these two measures correspond to two
different questions of interest. The conditional expected performance corresponds
to the question how well we expect that a prediction function learned from a
given training set will generalize to future examples. The unconditional expected
performance measures the quality of the learning algorithm itself, that is, how
well on average will a prediction function learned by the algorithm of interest
from a dataset of a given size generalize to new data.

More often, machine learning related articles concentrate on the uncondi-
tional performance, as the goal usually is to measure the quality of learning
algorithms, where the training data is treated as a random variable. However,
as argued by [11], the conditional error estimate is more of interest in a setting



where a researcher is using a certain dataset and wants to know how well a pre-
diction function learned from that particular dataset will do on future examples.
This is the setting we concentrate on in this paper.

In practice we almost never can directly access the probability distribution
D to calculate A, but are rather limited to using some estimate Â instead. To
measure the quality of an estimator, in terms of its ability to measure conditional
expected AUC, we follow the setting of [11]. We consider the deviation B(Z) =
Â(fZ) − A(fZ), which measures the difference between the estimated and true
conditional expected AUC of a prediction function.

We study the expected value EZ∼Dm [B(Z)] of the deviation distribution as
a measure of the biasedness of the estimator. Further, we consider the variance
VarZ∼Dm [B(Z)] of the deviation distribution, as a measure of the reliability
of individual estimates. Preferably an estimator would have both close to zero
deviation mean and variance.

The AUC measure can be calculated using the following formula, also called
the Wilcoxon-Mann-Whitney statistic:

Â(S, fZ) =
1

|S+||S−|
∑

xi∈S+

∑
xj∈S−

H(fZ(xi)− fZ(xj)),

where S is a sequence of examples, and S+ ⊂ S and S− ⊂ S denote the positive
and negative examples in S, respectively. (for proof, see [13]).

In this paper, we consider a commonly used performance evaluation technique
known as cross-validation. Here, the dataset is repeatedly partitioned into two
non-overlapping parts, a training set and a hold-out set. For each partitioning,
the hold-out set is used for testing while the remainder is used for training. The
two most popular variants are tenfold cross-validation, where the data is split
into ten mutually disjoint folds, and leave-one-out cross-validation (LOOCV),
where each training example constitutes its own fold.

Stratification is commonly done to ensure that the hold-out sets share ap-
proximately the same class distributions. Further, for stratified CV on small
datasets [8] has recently suggested a balancing strategy to ensure that all the
training sets share the same number of positive and negative examples. When
the sample size for a class is not a multiple of the number of folds, some folds
will contain one extra example from that class compared to the other folds. The
balancing is done by randomly removing members of overrepresented classes on
each round of cross-validation, so that all the training sets contain the same
number of examples from each class.

As discussed in [1, 8], two alternative strategies can be used to calculate the
cross-validation estimate over the folds, pooling and averaging.

In pooling, the predictions made in each cross-validation round are pooled
into a one set and one common AUC score is calculated from it. For LOOCV
this is the only way to obtain the AUC score. The assumption made when
using pooling is that classifiers produced on different cross-validation rounds
come from the same population. This assumption may make sense when using
performance measures such as classification accuracy, but it is more dubious



when computing AUC, since some of the positive-negative pairs are constructed
using data instances from different folds. Indeed, [8] show that this assumption
is generally not valid for cross-validation and can lead to large pessimistic biases.
In their experiments with no-signal data sets, AUC values of less than 0.3 were
observed instead of the expected 0.5.

An alternative approach, averaging, is to calculate the AUC score separately
for each cross-validation fold and average them to obtain one common perfor-
mance estimate. However, the number of positive-negative example pairs in the
folds may be too small for calculating AUC reliably when using small imbalanced
datasets. As an extreme case, if there are more folds than observations for the
minority class, then some of the folds cannot have examples from this class. For
such folds, the AUC cannot be calculated.

LPOCV [9, 14] was first introduced for general ranking tasks. Here, we pro-
pose its use for AUC calculation, since it avoids many of the pitfalls associated
with the pooling and averaging techniques. Analogously to LOOCV, each pos-
sible positive-negative pair of training instances is left out of at a time from the
training set. Formally, the AUC performance is calculated with LPOCV as

1
|X+||X−|

∑
xi∈X+

∑
xj∈X−

H(f{i,j}(xi)− f{i,j}(xj)),

where f{i,j} denotes a classifier trained without the i-th and j-th training ex-
ample. Being an extreme form of averaging, where each positive-negative pair of
training examples forms an individual hold-out set, this approach is natural when
AUC is used as a performance measure, since it guarantees the maximal use of
available training data. Moreover, the LPOCV estimate, taken over a training
set of m examples, is an unbiased estimate of the unconditional expected AUC
over a sample of m− 2 examples (for a proof, see [9]).

The computational cost can be seen as a limitation for cross-validation tech-
niques in general, and in particular for the LOOCV and LPOCV. For a training
set of m examples a straightforward implementation of LOOCV requires train-
ing the learner m times, with LPOCV the required number of training rounds is
of the order O(m2). While these computational costs may be affordable on small
training sets, they can become a limiting factor as the training set size increases.

However, for regularized least-squares (RLS) [15] and the AUC-maximizing
ranking RLS (RankRLS) [16], efficient algorithms for cross-validation can be
derived using techniques based on matrix calculus [17, 14]. Since these algorithms
have state-of-the-art classification performance similar to that of the Support
Vector Machine (SVM), and Ranking SVM (see e.g. [18, 16]), they are a natural
choice to use in settings where cross-validation is important.

3 Empirical study

In the simulation study, we measure the mean and variance of the deviation
distribution of several different cross-validation estimators. We consider three



pooled strategies; LOOCV, balanced LOOCV and pooled tenfold, as well as the
averaged fivefold, tenfold and LPOCV. Stratification is used where possible.

Our setting is similar to that of [8], where the bias of pooling and averaging
approaches was compared on low-dimensional data. We consider synthetic data,
as this allows estimating the conditional expected AUC of the learned prediction
functions. The training set size is 30 examples in all the simulations, the relative
distribution of positive examples is varied between 10% and 90% on 10 percent-
age unit intervals. We consider both low-dimensional data with 10 features, and
high-dimensional data with 1000 features.

In the no-signal experiment, there is no difference between the two classes.
Examples from both classes are sampled from normal distributions with zero
mean, unit variance and no covariance between the features. The conditional
expected AUC of a prediction function is in this setting 0.5, as no model can do
either better or worse than random, in terms of AUC. In the signal experiment
the means of a number of features are shifted to 0.5 for the positive, and to -0.5
for the negative class. With 10 features, 1 feature is shifted, with 1000 features,
10 features are shifted. Generated test sets with 10000 examples are used to
estimate the conditional expected AUC of the learned prediction functions.

Two learning algorithms are considered in the experiments, RLS and
RankRLS. RLS optimizes an approximation of accuracy, like most machine learn-
ing algorithms, while RankRLS optimizes more directly the AUC. We only in-
vestigated the linear kernel, since in bioinformatics it is commonly assumed that
high-dimensional data can be separated in a linear way. The considered learners
have also a regularization parameter, which controls the tradeoff between model
complexity and fit to the training data. In the experiments we did not find the
level of regularization applied to have major effect on the relative quality of the
cross-validation estimates, so we consider only the results for regularization pa-
rameter value 1. The used learning and cross-validation algorithms are from our
RLScore software package, available at http://www.tucs.fi/rlscore. All the
experiments are repeated 10000 times. We assess the significance of the differ-
ence between the deviation of the LPOCV estimate and the alternative estimates
using the Wilcoxon signed-rank test, with p = 0.05, applying the Bonferroni cor-
rection for multiple hypothesis testing.

Figure 1 displays the results for non-signal data. When using the RLS- learner
on low-dimensional data, we observe a substantial bias for the pooled estimators,
with balanced LOOCV being the least biased of them. The averaging strategies
work better, with LPOCV showing significantly less bias than all of the pooled
strategies. These results are consistent with those reported in [8]. With RankRLS
and low-dimensional data, the pessimistic bias of the pooled strategies is much
smaller, but nonetheless significant differences compared to the less pessimistic
LPOCV are observed. LPOCV and the other averaged strategies behave simi-
larly. On high-dimensional data none of the estimates show clear bias.

Figure 2 displays the results for signal data. Again, with the RLS learner and
low-dimensional data, a large pessimistic bias is present in the pooled estimates.
LPOCV gives significantly less biased performance estimates. For RankRLS we



observe the same phenomenon, though the negative bias of the pooled strate-
gies is much smaller than for RLS (similarly to the no-signal experiment). On
high-dimensional data, most of the pessimistic bias seems to disappear from the
pooled estimates. With RankRLS, LOOCV actually provides significantly more
optimistic performance estimates than LPOCV, though the magnitudes of the
differences in their mean deviations are very small. Of the averaged strategies,
the bias of tenfold cross-validation is similar to that of LPOCV. However, av-
eraged fivefold cross-validation is in most of the signal experiments much more
pessimistically biased than LPOCV.

In all of the experiments, averaged tenfold and fivefold strategies have larger
variance than the pooled strategies and LPOCV. The more imbalanced the rela-
tive class distributions, the higher the variance becomes. This effect is magnified
for averaged tenfold and fivefold, as folds which do not have examples from both
classes can not be considered when calculating the average AUC.

To conclude, LPOCV shows very little bias in both low- and high dimensional
feature space, and has a very similar variance to that of the pooled strategies.
Averaged tenfold cross-validation is also very competitive in terms of bias, but
suffers from large variance, as does averaged fivefold cross-validation. Further-
more, for averaged fivefold large pessimistic bias appears in the signal experi-
ment. This is probably due to the fact that one fifth of the training data is held
out of the already very small training set in each round. LOOCV and balanced
LOOCV worked well in many settings, but both suffered from a large negative
bias on low-dimensional data and RLS learner.

4 Conclusion

In this work we have considered the merits and drawbacks of different condi-
tional expected AUC cross-validation estimators, in the small sample setting. In
terms of variance, the averaged fivefold and tenfold cross-validation proved to
be inferior to the pooled strategies and LPOCV. On low dimensional data sets,
large negative bias was observed in the pooled estimators showing that they can
systematically fail in such a setting. However, with increased dimensionality this
effect disappeared, suggesting that the pooled estimators can be very compet-
itive when using high dimensional data. LPOCV seems to be overall the most
robust method, as it is in all settings almost unbiased, and shows variance that
is competitive with that of the pooled estimators.

Based on the simulation results we suggest the use of LPOCV for AUC-
estimation due to its robustness. For RLS based learners calculating the LPOCV
can be done efficiently, for other types of methods the computational cost can
be high. Further study is needed to ascertain whether the large bias exhibited
by the pooled estimators is a phenomenom that appears only when dealing with
small dimensional data. If this is the case, the pooled CV strategies may also
be considered suitable for AUC estimation for high dimensional data, which is
a typical property of data produced by biomolecular studies.
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Fig. 1. Mean and variance of the deviation distribution for the non-signal data.
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Fig. 2. Mean and variance of the deviation distribution for the signal data.


