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Abstract

Reliable estimation of the classification performance of learned predictive models is difficult,
when working in the small sample setting. When dealing with biological data it is often the
case that separate test data cannot be afforded. Cross-validation is in this case a typical
strategy for estimating the performance. Recent results, further supported by experimental
evidence presented in this article, show that many standard approaches to cross-validation
suffer from extensive bias or variance when the area under ROC curve (AUC) is used as
performance measure. We advocate the use of leave-pair-out cross-validation (LPOCV)
for performance estimation, as it avoids many of these problems. A method previously
proposed by us can be used to efficiently calculate this estimate for regularized least-squares
(RLS) based learners.
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1. Introduction

Small-sample biological datasets, such as microarray data, exhibit properties which pose
serious challenges for reliable evaluation of the quality of prediction functions learned from
this data. It is typical for genomic studies to produce data containing thousands of features,
measured from a small sample of possibly only tens of examples. Further, the relative dis-
tribution of the classes to be predicted is often highly imbalanced and their discriminability
can be quite low.

AUC (area under the ROC curve) is a ranking-based measure of classification perfor-
mance, which has gained substantial popularity in the machine learning community during
recent years (Bradley, 1997; Huang and Ling, 2005; Provost et al., 1998; Waegeman et al.,
2008; Vanderlooy and Hüllermeier, 2008). Its value can be interpreted as the probability
that a classifier is able to distinguish a randomly chosen positive example from a randomly
chosen negative example. In contrast to many alternative performance measures, AUC is
invariant to relative class distributions, and class-specific error costs. These properties have
prompted the use of the AUC measure in microarray studies (Baker and Kramer, 2006;
Gevaert et al., 2006), medical decision making (Swets, 1988), natural language processing
(Pahikkala et al., 2009a) and evaluation of biomedical text mining systems (Airola et al.,
2008; Miwa et al., 2009) to name a few examples.

When setting aside data for parameter estimation and validation of results cannot be af-
forded, cross-validation is typically used. However, in (Parker et al., 2007) it was shown that
when considering AUC in the small-sample setting, many commonly used cross-validation
schemes suffer from substantial negative bias. In this work, we explore this issue further and
propose LPOCV, first considered by Cortes et al. (2007a) for ranking tasks, as an approach
that provides an almost unbiased estimate of expected AUC performance, and also does
not suffer from as high variance as some of the alternative strategies.

2. Performance Estimation

Let D be a probability distribution over a sample space Z = X ×Y, where the input space
X is a set and the output space Y = {−1, 1}. An example z = (x, y) ∈ Z is thus a pair
consisting of an input and an associated label, which describes whether the example belongs
to the positive or to the negative class. The notation D+ and D− is used to denote the
class-conditional distributions Dx|y=+1 and Dx|y=−1, respectively.

Further, let the sequence Z = ((x1, y1), . . . , (xm, ym)) ∈ Zm, independently drawn
and identically distributed from D, be a training set of m training examples, with
X = (x1, . . . , xm) ∈ Xm denoting the inputs and Y = (y1, . . . , ym) ∈ Ym the labels in
the training set.

Now let us consider a real-valued prediction function fZ returned by a learning algorithm
based on a fixed training set Z. Predictions made with the function can be used to produce
a ranking where inputs predicted as being the most likely to belong to the positive class
are ranked the highest. Alternatively, a threshold t can be chosen and used to assign a
predicted class to any given new input x, so that the positive class is chosen if fZ(x) > t,
and the negative class otherwise.
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We are interested in the generalization performance of this function, that is, how well it
will predict on unseen future data. The generalization performance of fZ can be measured
by its expected AUC A(fZ), sometimes also known as expected ranking accuracy (Agarwal
et al., 2005), over all possible positive-negative example pairs, that is

A(fZ) = Ex+∼D+x−∼D− [H(fZ(x+)− fZ(x−)),

where H is the Heaviside step function, for which H(a) is 1 if a > 0, 1/2 if a = 0, and 0 if
a < 0. We call this measure the conditional expected AUC of the prediction function, as it
is conditioned on a fixed training set Z.

Alternatively, we may also want to consider the expectation taken over all possible
training sets of size m. The unconditional expected AUC can be defined as

EZ∼Dm [A(fZ)].

As discussed for example by Dietterich (1998), Schiavo and Hand (2000), and Hastie
et al. (2009), these two measures correspond to two different questions of interest. The
conditional expected performance corresponds to the question how well we expect that a
prediction function learned from a given training set will generalize to future examples. The
unconditional expected performance measures the quality of the learning algorithm itself,
that is, how well on average will a prediction function learned by the algorithm of interest
from a dataset of a given size generalize to new data.

More often, machine learning related articles concentrate on the unconditional perfor-
mance, as the goal usually is to measure the quality of learning algorithms, where the
training data is treated as a random variable. However, as argued by Dietterich (1998) and
Schiavo and Hand (2000), the conditional performance estimate is more of interest in a set-
ting where a researcher is using a certain dataset and wants to know how well a prediction
function learned from that particular dataset will do on future examples. This is the setting
we concentrate on in this paper.

In practice we almost never can directly access the probability distribution D to calculate
A, but are rather limited to using some estimate Â instead, such as one obtained from
cross-validation. To measure the quality of an estimator, in terms of its ability to measure
conditional expected AUC, we follow the setting of Braga-Neto and Dougherty (2004). We
consider the deviation

B(Z) = Â(fZ)−A(fZ),

which measures the difference between the estimated and true conditional expected AUC
of a prediction function.

We study the expected value EZ∼Dm [B(Z)] of the deviation distribution as a measure
of the biasedness of the estimator. Further, we consider the variance VarZ∼Dm [B(Z)] of the
deviation distribution, as a measure of the reliability of individual estimates. Preferably an
estimator would have both close to zero deviation mean and variance.

The AUC measure can be calculated using the following formula, also called the
Wilcoxon-Mann-Whitney statistic:

Â(S, fZ) =
1

|S+||S−|
∑

xi∈S+

∑
xj∈S−

H(fZ(xi)− fZ(xj)),
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where S is a sequence of examples, and S+ ⊂ S and S− ⊂ S denote the positive and
negative examples in S, respectively (Cortes and Mohri, 2004).

In this paper, we consider a commonly used performance evaluation technique known as
cross-validation. Here, the dataset is repeatedly partitioned into two non-overlapping parts,
a training set and a hold-out set. For each partitioning, the hold-out set is used for testing
while the remainder is used for training. Perhaps the most popular variant is tenfold cross-
validation. In tenfold cross-validation the data is split into ten mutually disjoint folds. Each
of the ten folds is then in turn used as the hold-out set, while the remaining nine folds are
combined together to form the training set. Another popular approach is the leave-one-out
cross-validation (LOOCV), where each example constitutes its own holdout set.

Stratification is commonly done to ensure that the hold-out sets share approximately the
same class distributions. Further, for stratified CV on small datasets, Parker et al. (2007)
have recently suggested a balancing strategy to ensure that all the training sets share the
same number of positive and negative examples. When the sample size for a class is not
a multiple of the number of folds, some folds will contain one extra example from that
class compared to the other folds. The balancing is done by randomly removing members
of overrepresented classes on each round of cross-validation, so that all the training sets
contain the same number of examples from each class.

As discussed by Bradley (1997) and Parker et al. (2007), two alternative strategies can
be used to calculate the cross-validation estimate over the folds, pooling and averaging.

In pooling, the predictions made in each cross-validation round are pooled into a one set
and one common AUC score is calculated from it. For LOOCV this is the only way to ob-
tain the AUC score. The assumption made when using pooling is that classifiers produced
on different cross-validation rounds come from the same population. This assumption may
make sense when using performance measures such as classification accuracy, but it is more
dubious when computing AUC, since some of the positive-negative pairs are constructed
using data instances from different folds. Indeed, Parker et al. (2007) show that this as-
sumption is generally not valid for cross-validation and can lead to large pessimistic biases.
In their experiments with no-signal data sets, AUC values of less than 0.3 were observed
instead of the expected 0.5.

An alternative approach, averaging, is to calculate the AUC score separately for each
cross-validation fold and average them to obtain one common performance estimate. How-
ever, the number of positive-negative example pairs in the folds may be too small for
calculating AUC reliably when using small imbalanced datasets. As an extreme case, if
there are more folds than observations for the minority class, then some of the folds cannot
have examples from this class. For such folds, the AUC cannot be calculated.

LPOCV (Cortes et al., 2007a; Pahikkala et al., 2008) was first introduced for general
ranking tasks. Here, we propose its use for AUC calculation, since it avoids many of the
pitfalls associated with the pooling and averaging techniques. Analogously to LOOCV, each
possible positive-negative pair of training instances is left out of at a time from the training
set. Formally, the AUC performance is calculated with LPOCV as

1
|X+||X−|

∑
xi∈X+

∑
xj∈X−

H(f{i,j}(xi)− f{i,j}(xj)),
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where f{i,j} denotes a classifier trained without the i-th and j-th training example and
X+ ⊂ X and X− ⊂ X denote the positive and negative examples in the training set X,
respectively.

Being an extreme form of averaging, where each positive-negative pair of training ex-
amples forms an individual hold-out set, this approach is natural when AUC is used as
a performance measure, since it guarantees the maximal use of available training data.
Moreover, the LPOCV estimate, taken over a training set of m examples, is an unbiased
estimate of the unconditional expected AUC over a sample of m− 2 examples (for a proof,
see (Cortes et al., 2007a)).

The computational cost can be seen as a limitation for cross-validation techniques in
general, and in particular for the LOOCV and LPOCV. For a training set of m examples
a straightforward implementation of LOOCV requires training the learner m times, with
LPOCV the required number of training rounds is of the order O(m2). While these compu-
tational costs may be affordable on small training sets, they can become a limiting factor
as the training set size increases.

However, for regularized least-squares (RLS) (Rifkin et al., 2003), efficient algorithms
for cross-validation can be derived using techniques based on matrix calculus. The existence
of an efficient LOOCV procedure is a classical result (Vapnik, 1979). This result has been
recently extended to repeated hold-out and cross-validation with arbitrary sized, possibly
overlapping holdout sets by Pahikkala et al. (2006) and An et al. (2007), independently
of each other. Analogously, for the AUC-maximizing ranking RLS (RankRLS) (Pahikkala
et al., 2007; Cortes et al., 2007b; Pahikkala et al., 2009b), an efficient exact leave-pair-out
procedure has been derived by Pahikkala et al. (2008, 2009b). Since these algorithms have
state-of-the-art classification performance similar to that of the Support Vector Machine
(SVM), and Ranking SVM (for comparisons, see Zhang and Peng, 2004; Pahikkala et al.,
2009b) they are a natural choice to use in settings where cross-validation is important.

3. Empirical study

In the simulation study, we measure the mean and variance of the deviation distribution of
several different cross-validation estimators. We consider three pooled strategies; LOOCV,
balanced LOOCV and pooled tenfold, as well as the averaged fivefold, tenfold and LPOCV.
Stratification is used where possible.

Our setting is similar to that of Parker et al. (2007), who compared the bias of pooling
and averaging approaches on low-dimensional data. We consider synthetic data, as this
allows estimating the conditional expected AUC of the learned prediction functions. The
training set size is 30 examples in all the simulations. The relative distribution of positive
examples is varied between 10% and 90% on 10 percentage unit intervals to measure whether
differences in the reliability of estimates arise for balanced and non-balanced datasets. We
consider both low-dimensional data with 10 features, and high-dimensional data with 1000
features.

In the no-signal experiment, there is no difference between the two classes. Examples
from both classes are sampled from normal distributions with zero mean, unit variance and
no covariance between the features. The conditional expected AUC of a prediction function
is in this setting 0.5, as no model can do either better or worse than random, in terms of
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AUC. In the signal experiment the means of a number of features are shifted to 0.5 for
the positive, and to -0.5 for the negative class. With 10 features, 1 feature is shifted, with
1000 features, 10 features are shifted. Generated test sets with 10000 examples are used to
estimate the conditional expected AUC of the learned prediction functions.

Two learning algorithms are considered in the experiments, RLS and RankRLS. RLS
optimizes an approximation of accuracy, like most machine learning algorithms, while
RankRLS optimizes more directly the AUC. We only investigated the linear kernel, since
in bioinformatics it is commonly assumed that high-dimensional data can be separated in a
linear way. The considered learners have also a regularization parameter, which controls the
tradeoff between model complexity and fit to the training data. In the experiments we did
not find the level of regularization applied to have major effect on the relative quality of the
cross-validation estimates, so we consider only the results for regularization parameter value
1. The used learning and cross-validation algorithms are from our RLScore software pack-
age, available at http://www.tucs.fi/rlscore. All the experiments are repeated 10000
times. We assess the significance of the difference between the deviation of the LPOCV
estimate and the alternative estimates using the Wilcoxon signed-rank test, with p = 0.05,
applying the Bonferroni correction for multiple hypothesis testing.

Figure 1 displays the results for non-signal data. When using the RLS- learner on low-
dimensional data, we observe a substantial bias for the pooled estimators, with balanced
LOOCV being the least biased of them. The averaging strategies work better, with LPOCV
showing significantly less bias than all of the pooled strategies. These results are consistent
with those reported by Parker et al. (2007). With RankRLS and low-dimensional data,
the pessimistic bias of the pooled strategies is much smaller, but nonetheless significant
differences compared to the less pessimistic LPOCV are observed. LPOCV and the other
averaged strategies behave similarly. On high-dimensional data none of the estimates show
clear bias.

Figure 2 displays the results for signal data. Again, with the RLS learner and low-
dimensional data, a large pessimistic bias is present in the pooled estimates. LPOCV gives
significantly less biased performance estimates. For RankRLS we observe the same phe-
nomenon, though the negative bias of the pooled strategies is much smaller than for RLS
(similarly to the no-signal experiment). On high-dimensional data, most of the pessimistic
bias seems to disappear from the pooled estimates. With RankRLS, LOOCV actually pro-
vides significantly more optimistic performance estimates than LPOCV, though the magni-
tudes of the differences in their mean deviations are very small. Of the averaged strategies,
the bias of tenfold cross-validation is similar to that of LPOCV. However, averaged fivefold
cross-validation is in most of the signal experiments much more pessimistically biased than
LPOCV.

In all of the experiments, averaged tenfold and fivefold strategies have larger variance
than the pooled strategies and LPOCV. The more imbalanced the relative class distribu-
tions, the higher the variance becomes. This effect is magnified for averaged tenfold and
fivefold, as folds which do not have examples from both classes can not be considered when
calculating the average AUC.

To conclude, LPOCV shows very little bias in both low- and high-dimensional feature
space, and has a very similar variance to that of the pooled strategies. Averaged tenfold
cross-validation is also very competitive in terms of bias, but suffers from large variance, as
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Figure 1: Mean and variance of the deviation distribution for the non-signal data.
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Figure 2: Mean and variance of the deviation distribution for the signal data.
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does averaged fivefold cross-validation. Furthermore, for averaged fivefold large pessimistic
bias appears in the signal experiment. This is probably due to the fact that one fifth of the
training data is held out of the already very small training set in each round. LOOCV and
balanced LOOCV worked well in many settings, but both suffered from a large negative
bias on low-dimensional data and RLS learner.

4. Conclusion

In this work we have considered the merits and drawbacks of different cross-validation esti-
mators for conditional expected AUC, in the small sample setting. In terms of variance, the
averaged fivefold and tenfold cross-validation proved to be inferior to the pooled strategies
and LPOCV. On low-dimensional data sets, large negative bias was observed in the pooled
estimators, showing that they can systematically fail in such a setting. However, with in-
creased dimensionality this effect disappeared, suggesting that the pooled estimators can
be very competitive when using high-dimensional data. LPOCV seems to be overall the
most reliable method, as it is in all settings almost unbiased, and shows variance that is
competitive with that of the pooled estimators.

Based on the simulation results we suggest the use of LPOCV for AUC-estimation.
For RLS based learners calculating the LPOCV can be done efficiently, for other types of
methods the computational cost can be high. Further study is needed to ascertain whether
the large bias exhibited by the pooled estimators is a phenomenon that appears only when
dealing with low-dimensional data. If this is the case, the pooled CV strategies may also
be considered suitable for AUC estimation for high-dimensional data, which is a typical
property of data produced by biomolecular studies.

The efficient cross-validation algorithms and learners used in this study are made pub-
licly available under open source license, as part of the RLScore machine learning software
package distributed at http://www.tucs.fi/rlscore.

Acknowledgments

This work has been supported by the Academy of Finland. W.W. was supported by a
research visit grant from the Research Foundation - Flanders.

References

Shivani Agarwal, Thore Graepel, Ralf Herbrich, Sariel Har-Peled, and Dan Roth. General-
ization bounds for the area under the ROC curve. Journal of Machine Learning Research,
6:393–425, 2005.

Antti Airola, Sampo Pyysalo, Jari Björne, Tapio Pahikkala, Filip Ginter, and Tapio
Salakoski. All-paths graph kernel for protein-protein interaction extraction with eval-
uation of cross-corpus learning. BMC Bioinformatics, 9(Suppl 11):S2, 2008.

Senjian An, Wanquan Liu, and Svetha Venkatesh. Fast cross-validation algorithms for least
squares support vector machine and kernel ridge regression. Pattern Recognition, 40(8):
2154–2162, 2007.

11



Airola and Pahikkala and Waegeman and De Baets and Salakoski

Stuart Baker and Barnett Kramer. Identifying genes that contribute most to good classifi-
cation in microarrays. BMC Bioinformatics, 7:407, 2006.

Andrew P. Bradley. The use of the area under the ROC curve in the evaluation of machine
learning algorithms. Pattern Recognition, 30(7):1145–1159, 1997.

Ulisses M. Braga-Neto and Edward R. Dougherty. Is cross-validation valid for small-sample
microarray classification? Bioinformatics, 20(3):374–380, 2004.

Corinna Cortes and Mehryar Mohri. AUC optimization vs. error rate minimization. In
Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural
Information Processing Systems 16. MIT Press, Cambridge, Massachusetts, USA, 2004.

Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. An alternative ranking problem
for search engines. In Camil Demetrescu, editor, Proceedings of the 6th Workshop on
Experimental Algorithms, volume 4525 of Lecture Notes in Computer Science, pages 1–
21. Springer, Berlin / Heidelberg, Germany, 2007a.

Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. Magnitude-preserving ranking al-
gorithms. In Zoubin Ghahramani, editor, Proceedings of the 24th Annual International
Conference on Machine Learning, volume 227 of ACM International Conference Proceed-
ing Series, pages 169–176, New York, NY, USA, 2007b. ACM Press.

Thomas G. Dietterich. Approximate statistical tests for comparing supervised classification
learning algorithms. Neural Computation, 10:1895–1923, 1998.

Olivier Gevaert, Frank De Smet, Dirk Timmerman, Yves Moreau, and Bart De Moor.
Predicting the prognosis of breast cancer by integrating clinical and microarray data
with bayesian networks. Bioinformatics, 22(14):184–190, 2006.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference and Prediction, Second Edition. Springer Series in Statistics.
Springer, 2009.

Jin Huang and Charles X. Ling. Using AUC and accuracy in evaluating learning algorithms.
IEEE Transactions on Knowledge and Data Engineering, 17(3):299–310, 2005. ISSN
1041-4347.

Makoto Miwa, Rune Sætre, Yusuke Miyao, and Jun’ichi Tsujii. Protein-protein interaction
extraction by leveraging multiple kernels and parsers. International Journal of Medical
Informatics, 78(12):e39–e46, 2009.

Tapio Pahikkala, Jorma Boberg, and Tapio Salakoski. Fast n-fold cross-validation for regu-
larized least-squares. In Timo Honkela, Tapani Raiko, Jukka Kortela, and Harri Valpola,
editors, Proceedings of the Ninth Scandinavian Conference on Artificial Intelligence, pages
83–90, Espoo, Finland, 2006. Otamedia.

Tapio Pahikkala, Evgeni Tsivtsivadze, Antti Airola, Jorma Boberg, and Tapio Salakoski.
Learning to rank with pairwise regularized least-squares. In Thorsten Joachims, Hang

12



A comparison of AUC estimators in small-sample studies

Li, Tie-Yan Liu, and ChengXiang Zhai, editors, SIGIR 2007 Workshop on Learning to
Rank for Information Retrieval, pages 27–33, 2007.

Tapio Pahikkala, Antti Airola, Jorma Boberg, and Tapio Salakoski. Exact and efficient
leave-pair-out cross-validation for ranking RLS. In Timo Honkela, Matti Pöllä, Mari-
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