
Machine learning and performance estimation methods for ranking problems

Antti Airola∗

Department of Information Technology
University of Turku

Abstract

The task of learning to rank refers to the machine learning problem,
where the aim is to infer from past observations a ranking model
that can order new objects according to how well they match some
underlying criterion. Ranking problems are commonly encountered
in applications such as document retrieval, game playing, informa-
tion extraction and recommender systems. While learning to rank
has been a topic of active research for more than a decade, develop-
ing scalable learning methods, and reliable and efficient validation
methods has proven to be challenging.

The doctoral thesis of the author, summarized in this article, pro-
vides the following main contributions towards solving these is-
sues. First, novel training algorithms based on optimizing a pair-
wise criterion in the regularized risk minimization framework are
derived. Previously, the most well established method of this
type is the ranking support vector machine (RankSVM). The intro-
duced RankRLS method, as well as the proposed improvements to
RankSVM, lead to orders of magnitude gains in efficiency, without
decrease in predictive performance. Second, novel cross-validation
approaches are proposed in order to account for the data dependen-
cies and multivariate performance measures characteristic of rank-
ing tasks. Computational short-cuts allow the efficient computation
of these estimates for the RankRLS method. Finally, an application
study introducing a novel method for information extraction from
biomedical text combines several key ideas of the thesis, resulting
in a state-of-the-art solution to the problem.

Keywords: cross-validation, information extraction, kernel meth-
ods, learning to rank, machine learning, regularized least-squares,
regularized risk minimization, support vector machine

1 Introduction

In learning to rank, the aim is to infer from previously collected data
a ranking function, that is able to order new sets of objects accord-
ing to how well they match the underlying ranking criterion. Learn-
ing is necessary in such applications, where we do not know the
true underlying ranking function, but rather have access to previ-
ous judgements made by some actor, typically a human being. Two
typical examples of such applications are search engines that rank
documents according to their match to user queries [Joachims 2002]
and recommender systems [Minkov et al. 2010]. For an overview
of the problem domain and related work we refer to [Liu 2009;
Fürnkranz and Hüllermeier 2010; Airola 2011].

∗e-mail:antti.airola@utu.fi

We assume the availability of training data, which contains both
feature representations and judgements related to objects from the
application domain of interest. These previous judgements may be
categorical (e.g. good/bad, 1-5 stars) or supplied as real-valued util-
ity scores, where a higher score indicates higher rank than a lower
one. More generally, the information may be provided in terms of
pairwise comparisons, indicating that certain objects are preferred
over other ones. Based on the training data we learn a scoring func-
tion, that maps the feature representation of any given object to
a predicted utility score. When ranking a new set of objects, the
ranking is constructed by sorting the objects according to predicted
scores. An accurate ranking function is such that the produced rank-
ings match well the true rankings also for such sets of objects that
were not observed in the training set. Finding such a function re-
quires striking a balance between the phenomena of underfitting
and overfitting, as learning may fail either due to considering too
simple hypotheses (e.g. linear models for a highly non-linear con-
cept) or due to allowing too rich set of hypotheses and ending up
simply modeling the noise in the training data.

The family of regularized kernel methods embodies one of the
mainstream approaches to machine learning [Schölkopf and Smola
2002; Shawe-Taylor and Cristianini 2004]. These methods allow
the use of structured data and non-linear modeling, and offer prin-
cipled ways to dealing with both the underfitting and overfitting
phenomena, while still leading to convex optimization problems,
where globally optimal solutions can be found. Widely used ker-
nel methods include the support vector machine (SVM) [Vapnik
1995] and the regularized least-squares (RLS) [Poggio and Smale
2003] algorithms. The ranking support vector machine (RankSVM)
method extends standard SVMs to learning to rank by casting the
problem as a binary classification problem over pairs of objects.
While the method has been demonstrated to achieve excellent rank-
ing performance, the training methods proposed in [Herbrich et al.
1999; Joachims 2002] unfortunately lead to solving optimization
problems whose size may depend quadratically rather than linearly
on the size of the training set. For linear RankSVM more efficient
training methods are known [Joachims 2006; Chapelle and Keerthi
2010], but these are limited to settings where the number of possible
ranks in the data can be assumed a small constant.

Cross-validation is one of the most widely used techniques in ma-
chine learning for estimating the predictive power of the learned
models. However, standard cross-validation approaches such as
the leave-one-out method turn out to be highly unreliable in many
ranking settings. The assumption that the training data is sampled
independently is routinely broken, leading to biased estimates (see
e.g. [Pahikkala et al. 2012b]). The use of multivariate ranking per-
formance measures, such as the area under the ROC curve (AUC)
and its generalizations leads to problems when predictions made on
different rounds of cross-validation are combined together [Parker
et al. 2007; Forman and Scholz 2010]. Further, straightforward im-
plementations of cross-validation procedures also incur high com-
putational costs, due to the necessity to re-train a learning algorithm
multiple times.

The thesis [Airola 2011] summarized in this article provides a
number of contributions towards solving the aforementioned prob-
lems. RankRLS [Pahikkala et al. 2009] is a novel learning to rank
method, that combines regularized risk minimization with a pair-



wise least-squares loss function. This choice leads to a closed-
from solution expressed as a system of linear equations, that can
be solved efficiently even though the loss is implicitly computed
over all pairs in the training set. Further, using matrix update
formulas, the regularization parameter can be selected, and exact
cross-validation estimates can be computed, at the same asymptotic
cost as training RankRLS once. [Airola et al. 2011b] introduces
an improved version of the linear RankSVM training method of
[Joachims 2006] reducing the worst-case quadratic computational
cost to O(m log(m)) scaling by applying self-balancing search
trees. [Airola et al. 2011a] considers the use of Nyström ap-
proximation for generating low-dimensional feature representations
for training kernel machines, and how to efficiently re-compute
these during cross-validation, in cases when there are dependen-
cies present in the data. In [Airola et al. 2011c] we consider the
problem of cross-validation when applying pairwise performance
measures, demonstrating that the proposed leave-pair-out proce-
dure provides almost unbiased performance estimates with low
variance. In [Airola et al. 2008] an application in protein-protein
interaction extraction from scientific articles combines a number of
ideas, later improved and refined in the aforementioned works, in
order to achieve computational efficiency and reliable performance
estimates.

2 Learning to rank

2.1 Regularized risk minimization

Let the input space X , and output space Y be sets. We are sup-
plied with a training set Z containing inputs, and associated la-
bel information, defined as Z = (X,Y ) ∈ Xm × Y . By
X = (x1, . . . , xm) ∈ Xm we denote the set of m inputs belong-
ing to the training set. By Y ∈ Y we denote a structured object
containing the label information associated with X . In learning to
rank, in the simplest case Y = Rm, meaning that each input is as-
sociated with one utility score. More generally, the labels may have
dependencies between them, or be associated with pairs of inputs
rather than with individual inputs.

The learning algorithm takes as input a finite training set Z, and
outputs a scoring function f : X → R, which aims to model the
dependency between the inputs and the labels. Let X ∈ Xm, m ∈
N be a sequence of inputs. Then by f(X) ∈ Rm we denote the
vector of predictions for this sample. A loss function

l :
⋃
m∈N

Rm × Y 7→ [0,∞)

measures how well the predicted labels and true labels for a data
set match. The goal of learning is to find such a scoring function
that would incur minimal expected loss on data drawn from the
same distribution from which the training data was sampled from.
In practice we can never compute the expected loss, but are rather
limited to using the estimate known as the empirical risk

R(f) = l(f(X), Y ),

that is simply the loss computed on the training set.

Let k : X × X → R be a a finitely positive semi-definite kernel
function. In the kernel methods framework, we consider hypotheses
of the type

f(x) =

m∑
i=1

αik(x, xi),

where αi ∈ R. In the special case where X = Rn and k = 〈·, ·〉
is the standard inner product in Rn this setting reduces to standard

linear models of the type f(x) = xTw. We denote the hypothesis
space asH.

The regularized risk minimization problem (see e.g. [Evgeniou
et al. 2000]) can be defined as

argmin
f∈H

R(f) + λ‖f‖2, (1)

where the first term measures how well f fits the training data, and
the second term called the regularizer measures the complexity of
the hypothesis, and λ > 0 is the regularization parameter.

2.2 Ranking problem

In the following, we assume that the label information in the train-
ing set is supplied in terms of pairwise preferences. These may
be collected directly from pairwise comparisons. For example,
[Joachims 2002], collected such preferences from clickthrough data
from search engine, by considering clicked links to be preferred
over those that were not chosen by a user. When supplied with
scored data, preferences can be constructed by considering objects
with higher scores being preferred over those with lower ones. In
such cases not all objects may be comparable, for example the stan-
dard approach to modeling document retrieval problems [Joachims
2002; Liu 2009] results in a setting where data consists of query-
document pairs, and preferences are constructed only between pairs
such as are associated with same query. The concept of preference
graph allows us to unify all these settings, though for computational
reasons we might often in practice want to avoid its explicit con-
struction.

A set of pairwise preferences can be encoded as a directed pref-
erence graph, where input points serve as vertices, and the edges
encode preferences between the vertices. By an edge ei = (h, j),
where h 6= j, we encode that xh is preferred over xj . We denote a
preference graph drawn from the underlying distribution as

E = (e1, . . . , el).

In addition to pairwise preferences, we may in some settings have
access to preference magnitudes, that denote to which degree an
object is preferred over another. For scored data, preference mag-
nitude can be defined as y − y′. If such information is not avail-
able and magnitudes are required, we may assume that each prefer-
ence has a magnitude 1. In the following, we use EM to denote a
set of pairwise preferences augmented with preference magnitudes,
meaning that each ei = (h, j, wi) ∈ EM contains a magnitude wi

encoding the degree, to which xh is preferred over xj .

Following [Herbrich et al. 1999], we measure the discrepancy be-
tween predicted and true rankings using the pairwise ranking error,
defined as

l(f(X), E) =
∑

(i,j)∈E

H(f(xj)− f(xi)).

where H is the Heaviside step function defined as

H(a) =

 1, if a > 0
1/2, if a = 0
0, if a < 0

.

Intuitively, the loss can be considered as an estimate of the probabil-
ity that the function is able to correctly predict, which of two ran-
domly drawn examples is preferred over another. No polynomial
time algorithm is known for minimizing this loss, which motivates
the convex approximations introduced next.



2.3 RankRLS

The magnitude preserving pairwise ranking loss is defined as

l(f(X), EM ) =
∑

(h,j,wi)∈E

(wi − f(xh) + f(xj))
2.

By inserting this loss in to (1), we recover the RankRLS method.
The method extends the RLS regression method [Poggio and Smale
2003] by casting the problem of ranking into a pairwise regression
framework. In [Pahikkala et al. 2009] we proved that a global min-
imizer of the RankRLS risk functional can be found by solving a
system of linear equations.

Let us denote by m the number of training inputs, by l the number
of pairwise preferences in the training set, and by n the dimension-
ality of the feature space1. The complexity of training RankRLS
using the algorithm described in [Pahikkala et al. 2009] is O(m3),
which is based on solving am×m linear system, using matrix fac-
torization algorithms. This is a significant improvement compared
to the straightforward approach of training RankRLS using a black-
box RLS solver trained directly on the pairwise preferences, as this
would result in highly impractical O(l3) worst case complexity
(note that in many problems l ≈ m2). When using the linear ker-
nel, RankRLS can be solved inO(n3+min(n2m+m2n+ l, n2l))
time. If n << m this can be quite efficient. Thus using basic dense
linear algebra techniques based on matrix factorization, RankRLS
can be trained in a time that is either cubic in the number of training
examples, or cubic in the dimensionality of feature space.

Perhaps the main advantage of the RankRLS approach is the num-
ber of computational shortcuts made possible by the closed form
solution. First, it can be shown that solutions for different regu-
larization parameter values λ can subsequently be computed by re-
using computations needed for RankRLS training in quadratic time.
This is quite useful, since one rarely knows in advance the suitable
value for λ, rather it is typically chosen by grid searching. Sec-
ond, based on low-rank matrix update operations, one can develop
computationally efficient cross-validation algorithms for RankRLS.
These methods in effect allow a trained RankRLS model with a
minimal number of operations to “unlearn” the effects of a hold-
out set of examples. In [Pahikkala et al. 2009] we introduce ex-
act methods for leave-pair-out cross-validation and leave-query-out
cross-validation, and prove that these estimates can be computed
with no additional asymptotic cost compared to training RankRLS
once.

When using kernels, reduced set approximation can be used to scale
RankRLS training beyond a few thousand training examples. This
approach is considered in detail in [Pahikkala et al. 2009], and can
be seen as a special case of the Nyström approximation scheme
studied in [Airola et al. 2011a]. Finally, let us consider applica-
tion domains where the data is sparse, meaning that the data matrix
is filled mostly with zeroes. Using the linear kernel, it is possible
to make use of this sparsity, avoiding explicitly constructing dense
m ×m or n × n matrices. Using the conjugate gradient method,
the RankRLS optimization can rather be formalized in terms of
sparse matrix - vector products. The basic technique is described
in [Pahikkala et al. 2009], more detailed analysis and further exper-
imental results are presented in [Airola et al. 2010]. Let n be the
average number of non-zero features per example, and t the number
of iterations that conjugate gradient optimization needs to converge.
Then linear RankRLS can be trained with O(tmn+ tl) cost.

1Learning from scored data is more efficient than from pairwise prefer-
ences. In this setting, the terms containing l can be removed from all the
following RankRLS complexities

Running times
Inputs 200 500 1000 2000 2500 4000

RankRLS 1 3 10 48 83 280
RankSVM 2 150 1740 13707 20055 -

Table 1: Runtime comparisons of training kernel RankRLS and
RankSVM in CPU seconds. The number of inputs ranges from 200
to 4000, the runtimes are measured in seconds.

2.4 RankSVM

The pairwise hinge loss is defined as

l(f(X), E) =
∑

(i,j)∈E

max(1− f(xi) + f(xj), 0).

By inserting this loss in to (1), we recover the RankSVM method.
The method extends SVMs [Vapnik 1995] by casting the problem
of ranking into a pairwise classification framework. The approach
was first considered in [Herbrich et al. 1999].

In theory, any standard SVM solver can be used to solve also the
RankSVM problem by training on pairwise preferences directly.
This approach was originally adapted in [Herbrich et al. 1999]. Fur-
ther, the popular kernel RankSVM solver included in the SVMlight

software package uses a standard SVM solver trained on pairwise
preferences for training the RankSVM [Joachims 2002]. The down-
side of this approach is that the computational complexity of these
solvers becomes dependent not on the number of examples, but on
the number of pairwise preferences, leading to O(m4) or worse
scaling. For scored data and linear kernel, [Joachims 2006] intro-
duce a method withO(mn+m log(m)+rm), where r is the num-
ber of different utility levels in the data. If the number of allowed
scores is not restricted, at worst case r = m with the resulting
complexity O(mn+m2), meaning quadratic behavior.

[Airola et al. 2011b] presents a technique for removing this depen-
dence on r from the complexity. The method uses balanced binary
search trees to speed up loss and subgradient computations, allow-
ing O(mn+m log(m)) worst case behavior for linear RankSVM
training. On large enough data sets this can make a substantial dif-
ference in training times, reducing days of training time to minutes.
Efficient kernel RankSVM training can be achieved using the em-
pirical kernel map corresponding to the Nyström approximation,
explored especially in [Airola et al. 2011a], in order to convert the
dual RankSVM problem to the primal problem. This idea was in-
troduced already in [Pahikkala et al. 2009]. The use of this ap-
proach for kernel RankSVM training has subsequently been inde-
pendently considered by [Chapelle and Keerthi 2010]. Briefly put,
using the efficient linear RankSVM training method this approach
leads toO(mk2+m logm) RankSVM training complexity, where
k << m is a parameter that controls the amount of approximation.

2.5 Experimental results

In [Pahikkala et al. 2009], we report results for an experimental
comparison of RankRLS and RankSVM, as well as RLS regres-
sion as baseline. Considered problems include collaborative filter-
ing, document retrieval, n-best re-ranking of syntactic parses and
text categorization. The main conclusion of the experiments is that
there are rarely significant differences in ranking performance be-
tween the RankRLS and RankSVM approaches, while both tend
to outperform the baseline method. However, as discussed before,
there are major differences in computational efficiency.

In Table 1, we re-produce subset of the runtime comparison be-
tween RankRLS and RankSVM presented in [Pahikkala et al.



103 104 105

Training set size

100

101

102

103

104

105

106

CP
U 

tim
e

TreeRSVM
PairRSVM
SVMrank

PRSVM

Figure 1: Linear RankSVM runtime comparison.

2009]. The RankRLS implementation is based on an early version
of the RLScore software, whereas the RankSVM implementation is
from SVMlight. As can be expected from the computational com-
plexity considerations, RankRLS has much better scalability than
the standard RankSVM implementation. When one further consid-
ers the costs of performing regularization parameter selection and
cross-validation the difference becomes much larger, since these
procedures can be performed essentially for free for RankRLS.

For the linear kernel, both RankRLS and RankSVM can be scaled to
much larger problem sizes. Next, we consider how the RankSVM
training algorithm that was introduced in [Airola et al. 2011b] for
linear models and scored data, compares to the best previously
known methods. The proposed method (TreeRSVM) is compared
to the methods of [Joachims 2006] (SVMrank and PairRSVM)
as well as to that of [Chapelle and Keerthi 2010] (PRSVM).
With 512000 training examples, training SVMrank took 83 hours,
whereas training TreeRSVM took only 18 minutes in the same set-
ting. Both methods reach the same solution. These results also sug-
gest quite simple approach to improving nonlinear RankSVM train-
ing methods, since as discussed previously, for regularized kernel
methods the kernelized learning problem can always be cast into a
linear learning problem. Comparing results in [Airola et al. 2011b]
and [Airola et al. 2010], it can be established that the fastest lin-
ear RankSVM and RankRLS training methods have quite similar
scalability.

3 Cross-validation

Cross-validation is one of the most widely used methods in ma-
chine learning for model selection and performance evaluation. In
cross-validation, one repeatedly splits the data set into two parts, a

0.1 0.2 0.3 0.4 0.5
fraction of positive examples

0.08

0.06

0.04

0.02

0.00

0.02

m
ea

n 
of

 d
ev

ia
tio

n

RLS, signal data: 10 features

LPO
LOO
BLOO
A 5-F
A 10-F
P 10-F

Figure 2: Comparison of different cross-validation strategies.

training set and a holdout set. The model is trained on the train-
ing set, after which it is used to make predictions on the holdout
set. This procedure is repeated a number of times, after which a
final estimate of the performance is computed over all the holdout
sets on which predictions were made on. One major challenge in
applying cross-validation is the computational cost, due to having
to train a learner multiple times; our contributions towards solving
this issue were briefly discussed in the previous section. In typical
ranking problems further challenges are encountered with regards
to reliability of cross-validation results, these are discussed next.

First, there exist two general strategies for aggregating cross-
validation results together. [Bradley 1997] who considered the spe-
cific problem of AUC estimation referred to these alternatives as
pooling and averaging. In pooling all the predictions are combined
together and the performance measure is then computed over the
combined predictions. In averaging, the performance is computed
separately for each holdout set, and finally the average over these is
computed. For classical univariate performance measures such as
classification accuracy, or squared error, it makes little difference
which strategy is used. However, for pairwise ranking measures,
there is a clear difference. Briefly put, in pooling most of the com-
pared pairs are formed from predictions made on different rounds
of cross-validation. It can be shown that this can lead to substan-
tial biases in the results. The averaging strategy avoids comparing
predictions from different rounds. However, for typical approaches
this leads to increased variability in the estimates, since most of the
pairs are in this case ignored during cross-validation. These issues
are further discussed in [Airola et al. 2011c].

Next, we consider one of the simulation studies reported in [Airola
et al. 2011c], where a number of cross-validation strategies, are ap-
plied for AUC estimation. The problem is a bipartite ranking task
(or equivalently, binary classification), with 30 training examples
and 10 features. Instances from both classes are first drawn from
normal distributions with unit variance and no covariance between
the features. Nine of the features have mean zero for both classes,
the tenth has mean 0.5 for the positive, and −0.5 for the negative



Figure 3: Graph representation of a sentence.

class. We compute the cross-validation estimates over 10000 repe-
titions of the experiments, and compare these to the true expected
AUC computed on a simulated test set of 10000 examples. The de-
viation measures the mean difference between estimated and true
AUC. For an unbiased estimator this should be 0, positive values
indicate optimistic, and negative values pessimistic bias.

The compared standard approaches are averaged 10-fold cross-
validation (A 10-F), averaged 5-fold cross-validation (A 5-F),
pooled 10-fold cross-validation (P 10-F), and leave-one-out (LOO).
Further, we consider the balanced leave-one-out variant proposed
by [Parker et al. 2007] (BLOO). Finally, we test the leave-pair-out
method (LPO) where pairs of data points are used as holdout sets,
which we argue to be the most natural choice for pairwise perfor-
mance measures such as AUC. The results, presented in Figure 2
demonstrate substantial biases in all the pooled methods. The aver-
aged methods have less bias, with LPO providing the least biased
estimates. Further experiments verify this trend over a large num-
ber of settings, while experiments that consider the variability of the
approaches show LPO to be more reliable than the other averaging
methods in this respect. The conclusion of the study is that for AUC
estimation LPO should be preferred over other approaches, in cases
where it can be computationally afforded.

Further studies in cross-validation can be found in [Airola et al.
2011a] where we consider how to correctly and efficiently deal
with hold-out basis vectors when using the Nyström approxima-
tion to speed up training of kernel methods. In [Airola et al. 2008],
we consider in an information extraction study the substantial bi-
ases that can arise due to the fact that training examples generated
from the same sentence are much more similar to each other, than
those generated from different sentences. The findings support the
notion that for data where strong dependencies occur between the
examples, dependent data points should never be split between the
training and test sets, in order to ensure reliable performance esti-
mation.

4 Biomedical information extraction

The task of protein-protein interaction (PPI) extraction from sci-
entific literature is one of the major tasks considered in the field
of biomedical natural language processing. Online resources, such
as PubMed offer researchers access to millions of research articles
in the biomedical domain, making manual search for stated results
about interactions impractical. Rather, automated information ex-
traction systems are needed. In the past, both rule-based approaches
and methods based on machine learning have been proposed for
solving the problem (see references in [Airola et al. 2008; Airola
2011]). In [Airola et al. 2008], we proposed and evaluated a novel
approach for PPI extraction. The approach combines a novel graph
kernel approach to learning from syntactic parses of sentences with
an RLS based learning method, and efficient and reliable cross-
validation strategies for model selection.

In Figure 3 we see an example of a sentence talking about PPI-
interactions. In addition to the sentence itself, the figure presents a

dependency parse for the graph, that was generated using an auto-
mated syntactic parser. Based on both the syntactic parse, as well
as the linear ordering of the words in the sentence, the system has
to decide which of the protein pairs appearing in a sentence are
stated to interact, and which are not. Using kernel methods learn-
ing from this type of structured data becomes possible once we can
define a suitable kernel function between the graph representations.
In [Airola et al. 2008] we propose such an approach that is based
on random walks in a graph, extending the earlier work of [Gärtner
et al. 2003; Pahikkala et al. 2006].

The final method combines a wide range of approaches considered
in other articles related to the thesis. Learning and parameter op-
timization is done by optimizing a RLS based objective function,
using the Nyström approximation to scale the method. The fast
leave-document-out cross-validation approach is very closely re-
lated to the computational shortcuts presented in [Pahikkala et al.
2009; Airola et al. 2011a], while reliable AUC-estimation requires
accounting for the issues considered in [Airola et al. 2011c].

The experimental results presented in [Airola et al. 2008] demon-
strated, that the method reached state-of-the-art performance com-
pared to methods that had been previously proposed. Since then
[Miwa et al. 2009] have proposed an improved solution to the same
problem, that incorporates the proposed graph kernel as one of its
main components. [Tikk et al. 2010] have further recently con-
ducted a large-scale benchmark study of different kernel-based ap-
proaches to PPI-extraction, and reported the graph kernel to be
among the most competitive approaches. As a further development,
Turku Event Extraction System [Björne et al. 2011] provides a so-
lution to the more challenging task of extracting complex structured
interactions, incorporating many of the same syntactic features as
used by the graph kernel.

5 Open source software

The importance of sharing open source implementations of pub-
lished methods has recently been advocated in the machine learn-
ing community [Sonnenburg et al. 2007]. Accordingly, we are
currently working on developing the RLScore machine learning
open source software framework, which is made publicly avail-
able2 under the MIT open source license. The package contains the
RankRLS algorithms, as well as a wide variety of other learning
methods. Further, the All-paths graph kernel -software package3

[Airola et al. 2008], as well as the TreeRankSVM package [Airola
et al. 2011b] are made publicly available under open source license.

6 Conclusion

In this article we have summarized the main contributions of the
thesis [Airola 2011]. One of the major themes of research in this
work was the development of computationally efficient algorithms
for training and cross-validation, especially through the use of ma-
trix algebra based techniques. In our related research, not included
in the thesis, similar ideas have been applied for example in or-
der to learn preference relations over relational graphs [Pahikkala
et al. 2010], extend feature selection methods to genome wide scale
[Pahikkala et al. 2012a], and for speeding up unsupervised and
semi-supervised RLS training [Gieseke et al. 2012]. Most of the
developed methods are or will be made freely available as part of
the RLScore open source software.

2http://tucs.fi/rlscore
3http://mars.cs.utu.fi/PPICorpora/GraphKernel.

html

http://tucs.fi/rlscore
http://mars.cs.utu.fi/PPICorpora/GraphKernel.html
http://mars.cs.utu.fi/PPICorpora/GraphKernel.html


Acknowledgements

I would like to thank the supervisors of my thesis, Adjunct Prof.
Tapio Pahikkala and Prof. Tapio Salakoski, and the other co-
authors. My thanks go also to the reviewers of the thesis, Prof. Eyke
Hüllermeier and Associate Prof. Juho Rousu as well as to my oppo-
nent Adjunct Prof. Timo Honkela, for their constructive criticisms
and encouragement. The thesis work was done at the department
of Information Technology at the University of Turku, as a member
of the graduate programme of Turku Centre for Computer Science.
I would further like to acknowledge the financial support provided
by the Academy of Finland, Nokia Foundation, Sofia and Wilhelm
Fagerholm Scholarship Fund and the Turku University Foundation
for the thesis work. Finally, I would like to thank the Pattern Recog-
nition Society of Finland for the dissertation award and the invita-
tion to present this work.

References

AIROLA, A., PYYSALO, S., BJÖRNE, J., PAHIKKALA, T., GIN-
TER, F., AND SALAKOSKI, T. 2008. All-paths graph kernel for
protein-protein interaction extraction with evaluation of cross-
corpus learning. BMC Bioinformatics 9 Suppl 11.

AIROLA, A., PAHIKKALA, T., AND SALAKOSKI, T. 2010. Large
scale training methods for linear RankRLS. In Proceedings of
the ECML/PKDD-Workshop on Preference Learning (PL-10),
E. Hüllermeier and J. Fürnkranz, Eds.

AIROLA, A., PAHIKKALA, T., AND SALAKOSKI, T. 2011. On
learning and cross-validation with decomposed Nyström approx-
imation of kernel matrix. Neural Processing Letters 33, 1, 17–
30.

AIROLA, A., PAHIKKALA, T., AND SALAKOSKI, T. 2011. Train-
ing linear ranking SVMs in linearithmic time using red-black
trees. Pattern Recognition Letters 32, 9, 1328–1336.

AIROLA, A., PAHIKKALA, T., WAEGEMAN, W., DE BAETS,
B., AND SALAKOSKI, T. 2011. An experimental comparison
of cross-validation techniques for estimating the area under the
ROC curve. Computational Statistics & Data Analysis 55, 4,
1828–1844.

AIROLA, A. 2011. Kernel-Based Ranking: Methods for Learn-
ing and Performance Estimation. PhD thesis, Turku Centre for
Computer Science.

BJÖRNE, J., HEIMONEN, J., GINTER, F., AIROLA, A.,
PAHIKKALA, T., AND SALAKOSKI, T. 2011. Extracting contex-
tualized complex biological events with rich graph-based feature
sets. Computational Intelligence 27, 4, 541–557.

BRADLEY, A. P. 1997. The use of the area under the ROC curve in
the evaluation of machine learning algorithms. Pattern Recogni-
tion 30, 7, 1145–1159.

CHAPELLE, O., AND KEERTHI, S. S. 2010. Efficient algorithms
for ranking with SVMs. Information Retrieval 13, 3, 201–215.

EVGENIOU, T., PONTIL, M., AND POGGIO, T. 2000. Regulariza-
tion networks and support vector machines. Advances in Com-
putational Mathematics 13, 1–50.

FORMAN, G., AND SCHOLZ, M. 2010. Apples-to-apples in cross-
validation studies: Pitfalls in classifier performance measure-
ment. SIGKDD Explorations 12, 1, 49–57.

FÜRNKRANZ, J., AND HÜLLERMEIER, E. 2010. Preference learn-
ing. In Encyclopedia of Machine Learning. 789–795.

GÄRTNER, T., FLACH, P. A., AND WROBEL, S. 2003. On
graph kernels: Hardness results and efficient alternatives. In
Proceedings of the Sixteenth Annual Conference on Learning
Theory and Seventh Annual Workshop on Kernel Machines
(COLT/Kernel 2003), Springer, B. Schölkopf and M. K. War-
muth, Eds., vol. 2777 of Lecture Notes in Artificial Intelligence,
129–143.

GIESEKE, F., KRAMER, O., AIROLA, A., AND PAHIKKALA, T.
2012. Efficient recurrent local search strategies for semi- and un-
supervised regularized least-squares classification. Evolutionary
Intelligence, 1–17. Accepted for publication.

HERBRICH, R., GRAEPEL, T., AND OBERMAYER, K. 1999. Sup-
port vector learning for ordinal regression. In Proceedings of
the Ninth International Conference on Articial Neural Networks
(ICANN 1999), Institute of Electrical Engineers, London, 97–
102.

JOACHIMS, T. 2002. Optimizing search engines using click-
through data. In Proceedings of the 8th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining (KDD 2002),
ACM Press, New York, NY, USA, D. Hand, D. Keim, and R. Ng,
Eds., 133–142.

JOACHIMS, T. 2006. Training linear SVMs in linear time. In Pro-
ceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD 2006), ACM Press,
New York, NY, USA, T. Eliassi-Rad, L. H. Ungar, M. Craven,
and D. Gunopulos, Eds., 217–226.

LIU, T.-Y. 2009. Learning to rank for information retrieval. Foun-
dations and Trends in Information Retrieval 3, 3, 225–331.

MINKOV, E., CHARROW, B., LEDLIE, J., TELLER, S., AND
JAAKKOLA, T. 2010. Collaborative future event recommen-
dation. In Proceedings of the 19th ACM international confer-
ence on Information and knowledge management (CIKM 2010),
ACM, New York, NY, USA, J. Huang, N. Koudas, G. J. F. Jones,
X. Wu, K. Collins-Thompson, and A. An, Eds., 819–828.

MIWA, M., SÆTRE, R., MIYAO, Y., AND TSUJII, J. 2009.
Protein-protein interaction extraction by leveraging multiple ker-
nels and parsers. International Journal of Medical Informatics
78, e39–e46.

PAHIKKALA, T., TSIVTSIVADZE, E., BOBERG, J., AND
SALAKOSKI, T. 2006. Graph kernels versus graph represen-
tations: a case study in parse ranking. In Proceedings of the
ECML/PKDD 2006 workshop on Mining and Learning with
Graphs (MLG 2006), T. Gärtner, G. C. Garriga, and T. Meinl,
Eds.

PAHIKKALA, T., TSIVTSIVADZE, E., AIROLA, A., JÄRVINEN, J.,
AND BOBERG, J. 2009. An efficient algorithm for learning to
rank from preference graphs. Machine Learning 75, 1, 129–165.

PAHIKKALA, T., WAEGEMAN, W., AIROLA, A., SALAKOSKI,
T., AND DE BAETS, B. 2010. Conditional ranking on rela-
tional data. In Machine Learning and Knowledge Discovery
in Databases (ECML PKDD 2010), Springer, J. L. Balcázar,
F. Bonchi, A. Gionis, and M. Sebag, Eds., vol. 6322 of Lecture
Notes in Computer Science, 499–514.

PAHIKKALA, T., OKSER, S., AIROLA, A., SALAKOSKI, T., AND
AITTOKALLIO, T. 2012. Wrapper-based selection of genetic
features in genome-wide association studies through fast matrix
operations. Algorithms for Molecular Biology 7, 1, 11.



PAHIKKALA, T., SUOMINEN, H., AND BOBERG, J. 2012. Ef-
ficient cross-validation for kernelized least-squares regression
with sparse basis expansions. Machine Learning 87, 3, 381–407.

PARKER, B. J., GUNTER, S., AND BEDO, J. 2007. Stratification
bias in low signal microarray studies. BMC Bioinformatics 8,
326.

POGGIO, T., AND SMALE, S. 2003. The mathematics of learn-
ing: Dealing with data. Notices of the American Mathematical
Society (AMS) 50, 5, 537–544.

SCHÖLKOPF, B., AND SMOLA, A. J. 2002. Learning with kernels.
MIT Press, Cambridge, Massachusetts, USA.

SHAWE-TAYLOR, J., AND CRISTIANINI, N. 2004. Kernel Meth-
ods for Pattern Analysis. Cambridge University Press, Cam-
bridge.

SONNENBURG, S., BRAUN, M. L., ONG, C. S., BENGIO,
S., BOTTOU, L., HOLMES, G., LECUN, Y., MÜLLER,
K. R., PEREIRA, F., RASMUSSEN, C. E., RÄTSCH, G.,
SCHÖLKOPF, B., SMOLA, A., VINCENT, P., WESTON, J., AND
WILLIAMSON, R. 2007. The need for open source software
in machine learning. Journal of Machine Learning Research 8,
2443–2466.

TIKK, D., THOMAS, P., PALAGA, P., HAKENBERG, J., AND
LESER, U. 2010. A comprehensive benchmark of kernel meth-
ods to extract protein-protein interactions from literature. PLoS
Computational Biology 6, 7, e1000837+.

VAPNIK, V. N. 1995. The nature of statistical learning theory.
Springer-Verlag New York, Inc., New York, NY, USA.


