
Data Mining in Maintenance of Electronic
Component Libraries

Esa Alhoniemi∗, Timo Knuutila∗, Mika Johnsson†, Juha R̈oyhkiö† and Olli S. Nevalainen∗
∗University of Turku

Department of Information Technology
Lemmink̈aisenkatu 14 A
FI-20520 Turku, Finland

†Valor Computerized Systems (Finland) Oy
Ruukinkatu 2

FI-20540 Turku, Finland

Abstract— In this study1, adding data of new components
to an existing electronic component library in considered. The
suggested approach uses a particular data mining algorithm
to support interactive input of the data. The basic idea is to
compute association rules between the attributes of the existing
components in the library. The rules can then be used to ease the
input of the attributes of a new component. The scheme is general
in the sense that the same approach can be easily used in other
similar applications as well. We first introduce the necessary
basic concepts of the association rules and then illustrate the
application of the suggested approach using a fraction of a real
component library.

I. I NTRODUCTION

Successful operation of a printed circuit board (PCB) as-
sembly robot requires three things: a numerical control (NC)
program, an electronic component library, and the configura-
tion data of the machine. In the assembly of a new product
using a PCB robot, generation of a new NC program is usually
quite straightforward. The machine configuration data needs
to be changed seldom and is therefore often not a problem.
A laborious task in the assembly of a new product is the
maintenance of the electronic component library, which is
considered in this article.

In the library, each component is characterized by dozens
or even hundreds of attributes, such as the dimensions of the
component, nozzles, vision data, handling speeds, polarity, and
feeders. There exist both machine independent and dependent
attributes. The machine independent attributes can be directly
obtained from some external source like a CAD library or
Valor parts library2. In the machine dependent data, there are
several attributes the values of which depend on the type of a
particular machine and some even on a specific machine. The
reason for this is that the values of some attributes are may
depend e.g. on the physical environment, like the lighting con-
ditions of the machine. Generation of the machine-specific data
turns out to be the most laborious task when the assembly of
a new product is initiated on a certain machine. Traditionally,

1This work was partially supported by the Academy of Finland, Grant
104795.

2The library contains data of about 30–40 millions of components, see
www.valor.com for more details.

experience of the human operators, manual browsing through
the specification documents, and testing by the machine using
trial and error is required. The novel approach suggested in
this paper – which utilizes the information in the existing
component libraries – does not eliminate all the manual
work, but provides a faster semiautomated procedure for the
generation of the data.

Even though the component library data has a very complex
logical structure, it is possible to ignore without loss of
generality the details concerning the structure of the data.
From now on, the data of the component library is seen as
a table, the rows of which correspond to the components and
the columns to the different component attributes. Each time a
previously unused component type is included in the assembly
by a machine, its attributes have to be fed into the library
which requires a large amount of manual checking. This means
adding a new row in the data table, which may amount up to
100 rows.

The main contribution of this study is a novel data min-
ing [1] approach to support a human operator to fill in or
check the correctness of the attributes for a new component
attributed to some component placement machine.The basic
idea is to use the existing component libraries to construct a
set of so-called association rules, which describe dependencies
between values of different attributes. The rules can then be
used either to predict the value of an unknown attribute based
on the so far recorded ones, or to detect potentially erroneous
user input. This is possible due to the fact that the component
attributes are not completely independent of each other, but the
library contains much redundant information. The redundancy
could be removed by clever data structures and by adding
dependencies to the library. However, these kind of solutions
do not work due to the highly dynamic nature and complex
rules of the component attributes.

The goal of this study is todemonstrate the use of the
suggested data mining approach and to preliminarily evaluate
its feasibility using real data. Determination of the so-called
large (or frequent) itemsets (see for example [1, pp. 429–
433]) – which is an essential part of the computation of the
association rules – is carried out using the well-known data



mining algorithm Apriori [2]. In the experiments, a small
fraction of a component library with 317 components, each
characterized by 174 attributes, was used. When analyzing
the data, we observed that a large proportion of the attributes
were constant (or almost constant) and some of them had a
one-to-one correspondence with some other attribute. Further,
the values of many other attributes could be predicted by
some other attributes using rules with good support and high
confidence. To summarize, in the light of the obtained results,
the approach suggested in this paper seems to be promising
and deserves to be studied in the future in more depth using
full-scale component libraries.

This article has been organized as follows. The content of
the component library is described in Section II. In order
to keep the study self-contained, the basic ideas of the data
mining techniques used are briefly discussed in Section III. Ex-
perimental results using the association rule algorithm Apriori
are shown in Section IV. Section V contains conclusions and
lists some topics for the future work.

II. COMPONENT LIBRARY

A component library is a 2-dimensional data table, the
columns of which are component attributes and the rows
correspond to the components, correspondingly. In the general
case, the scale of an attribute may be nominal, ordinal, interval,
or ratio [3, pp. 12–14]. For simplicity, in this work we assume
that the attributes are nominal (even though this is not actually
true for all attributes), which means that all one can say about
two values of an attribute whether they are equal or not.
However, in the data mining literature there exist approaches
to deal with interval scale attributes as well. In practice,
such approaches often discretize the data and use clustering
algorithms or some other underlying inference mechanisms for
the generation of rules [4]–[8]. Use of such an algorithm is
straightforward in our application.

Table I contains a simple synthetic example of a component
library which is used through the representation for illustration
purposes.

TABLE I

A SYNTHETIC COMPONENT LIBRARY WITH FIVE COMPONENTS AND FIVE

ATTRIBUTES.

component attribute
1 2 3 4 5

1 A A A A A
2 A A B A B
3 B A B B C
4 B A B C D
5 B A B B E

A. Data transformation

Before the component library can be used in the mining of
association rules, the data table needs to be transformed into
a set oftransactionseach of which consists of a set ofitems.
In our application an item is a specificvalue, say A, of an
attribute i (i = 1, . . . , 5). Such an item, denoted byAi, can

thus be seen as an attribute-value pair. Hence, a transaction in
this context stands for the set of all the attribute-value pairs
of a component. Such a coding is required, because a single
value (likeA) may occur as a value of more than one attribute,
but the two items (Aj and Ai, j 6= i) are different and they
must thus be distinguished from each other in the coding.

Also note that the data mining algorithms used in this study
allow the number of items to vary in the transactions (i.e., the
rows of the table may have a different number of columns), but
every row of our data contains a constant number of columns.
Table II shows the data of the Table I converted into five
transactions, each corresponding to a component of the library.

TABLE II

DATA OF TABLE I CONVERTED INTO TRANSACTIONS.

transaction items
1 A1 A2 A3 A4 A5

2 A1 A2 B3 A4 B5

3 B1 A2 B3 B4 C5

4 B1 A2 B3 C4 D5

5 B1 A2 B3 B4 E5

B. Removal of certain attributes

Before the computation of the association rules, it is sensible
to make computation of the association rules lighter by remov-
ing some attributes from the database. Roughly speaking, such
attributes include the ones which would either be part of every
rule or would never be part of any rule.

• Attributes which have aconstant valuefor every com-
ponent may be removed. The best prediction for such
an attribute is naturally the constant value which is
independent of the values of any other attributes and thus
needs not to be predicted.

• Attributes which havedifferent values for (almost) every
componentmay be removed, because computation of the
association rules requires that two attributes have multiple
instances of one value. In other words, no rules for
attributes with a large number of different values can ever
be found.

• Attributes which have aone-to-one dependencywith each
other can all be removed except for one such an attribute.
A value of an attribute with one-to-one dependency with
some other attribute can easily be predicted once the
dependency is known.

One possible heuristic criterion for removal of the attributes
of the first two types in the list above is the use ofentropy.3

The entropy is close to zero for attributes with almost constant
values whereas for attributes with a large number of different
values it is high. This suggests that there should be a lower as
well as an upper limit for the entropy of the attributes which
are considered further.

3Use of entropy is only one possible heuristics among many that can be
used for this purpose.



The entropy of theith attribute is computed using the
formula

Hi = −
Mi∑
j=1

Pj log Pj , (1)

whereMi is the number of values of attributei, andPj is the
probability of thejth value to be present in the data; it can
be estimated from the database as the inverse of the number
of occurrences of thejth value.

For example, consider the first column (attribute) of Table II.
It contains two different values (A1 andB1), and henceM1 =
2. The probability estimate of the first value isP1 = P (A1) =
2/5 = 0.4, and the probability estimate of the second value
is P2 = P (B1) = 3/5 = 0.6. Hence, the entropy of that
attribute is H1 ≈ 0.673. Correspondingly, the entropies of
the other three attributes are0, 0.500, 1.055, and 1.609. The
maximum entropyH ≈ 1.609 is obtained when all the values
are different as is the case for attribute 5.

Hence, it might be sensible to remove the second and the
fifth attribute from all the transactions in the case of the
synthetic data.

TABLE III

DATA OF TABLE II WITH TWO ATTRIBUTES REMOVED.

transaction items
1 A1 A3 A4

2 A1 B3 A4

3 B1 B3 B4

4 B1 B3 C4

5 B1 B3 B4

The one-to-one dependencies are simply computed by pass-
ing through the whole database and checking whether certain
items always occur in pairs or not. In the example data there
are no such dependencies. However, if the fourth attribute of
the component 4 wasB4, attributes 1 and 4 would have a
one-to-one dependency.

III. M INING OF ASSOCIATION RULES

In this section, we recall the basic terminology of the
mining of association rules. A reader who is familiar with the
subject may skip to Section IV, where the application itself is
described.

Data mining is defined as “analysis of (often large) ob-
servational data sets to find unsuspected relationships and to
summarize the data in novel ways that are both understandable
and useful to the data owner” [1, p. 1]. Here, the data
consists of the attribute values of components which are stored
in a component library. The relationships to be found are
dependencies between different combinations of the attribute
values. These dependencies are calledassociation rules. Using
the synthetic data of Table III, one possible association rule
would beB1 ∧ B3 ⇒ B4, which states that if the value of
the first attribute isB1 and the value of the third attribute
is B3, then the value of the fourth attribute isB4. In order
to construct this kind of rules, we first briefly consider two

essential concepts related to the association rules: support and
confidence.

Support. Support of an itemsetX indicates the num-
ber of transactions which contain all the items inX.
For example, support of itemset{B1, B3, B4}, denoted by
support(B1B3B4), is 2. It is clear from the definition, that
the support of a subset of an itemset is always greater or equal
to support of the original set. For examplesupport(B1B3) =
3 ≥ support(B1B3B4). In the computation of the association
rules, itemsets with support greater than or equal to some
predefined limit are computed. These itemsets are called
large itemsets. If the limit is set to 2, the large itemsets of
our example are{B1, B3}, {B1, B3, B4} and{A1, A4}. The
supports of these large sets are 3, 2, and 2, correspondingly.

Confidence.Confidence of a rule indicates how often the
rule holds. It is defined as the ratio between the support of all
items in the rule and support of all items in the left-hand side
of the rule. For example, the confidence of our example rule
B1 ∧B3 ⇒ B4 is given by

conf =
support(B1B3B4)
support(B1B3)

=
2
3
≈ 67%.

A. Computation of association rules

The computation of the association rules consists of two
separate subtasks. They are the computation of the large
itemsets, and finding the rules using the large itemsets. Before
the computation, two parameters have to be fixed:the minimal
support (minsup)andthe minimal confidence (minconf)of the
rules. The number of rules strongly depends on these two
parameters.

Large itemsets. As stated earlier, a large itemset is an
itemset with support greater than or equal to a given minimum
support. In this work, the large itemsets are computed using the
well-known Apriori algorithm [2], which is described below
in Algorithm 1. A large itemset withk items (k-itemset) is
denoted byLk. A potentially large (candidate) itemset with
k items isCk, respectively. The data collection (component
library) is denoted byD.

Algorithm 1 Algorithm Apriori.

1: L1= {large 1-itemsets};
2: for (k = 2; Lk−1 6= 0; k++) do
3: Ck = apriori gen(Lk−1);
4: for all candidatesc ∈ Ck do
5: c.count = 0;
6: end for
7: for all transactionst ∈ D do
8: Ct = {Ck | Ck ⊂ t};
9: for all candidatesc ∈ Ct do

10: c.count + +;
11: end for
12: Lk = {c ∈ Ck | c.count ≥ minsup};
13: end for
14: end for
15: return

⋃
k Lk;



SetL1 contains the large itemsets of one attribute. These can
be trivially found by starting with the first possible value of
the first attribute and by counting the number of rows in which
it appears. If this number is greater thanminsupthe value is
accepted and included inL1. Then the same is repeated for
the second possible value of the first attribute and so on. This
counting operation is repeated for all the attributes.

The Apriori algorithm uses functionapriori gen which
takes all the large(k− 1)-itemsets as argument and computes
out of them the potentially large itemsets withk items.
The function has two steps:join and prune. The join step
(Algorithm 2) first generates a set of candidatek-itemsets.

Algorithm 2 Join step ofapriori gen .

1: Ck = ∅;
2: for all large (k − 1)-itemsetsp, q ∈ Lk−1 do
3: Ck = Ck

⋃
{p.item1, p.item2, . . . , p.itemk−1,

q.itemk−1 | p 6= q, p.itemk−1 < q.itemk−1};
4: end for
5: returnCk;

The prune step (Algorithm 3) removes some of the can-
didate itemsets. The removal is based on the monotonicity
property of large sets, which states that ak-itemset cannot be
large if all of its (k − 1)-subsets are not large.

Algorithm 3 Prune step of apriorigen.
1: for all itemsetsc ∈ Ck do
2: for all (k − 1)-subsetss of c do
3: if (s /∈ Lk−1) then
4: Ck = Ck \ c;
5: end if
6: end for
7: end for
8: returnCk;

To summarize, the join step produces the candidate itemsets,
that is, the set of potentially largek-itemsets using the known
large(k− 1)-itemsets. The prune step removes some of them
based on the monotonicity of large sets without counting any
itemsets from the data. For the remaining candidates, the
supports of the remaining candidates need to be computed
from the data in order to determine the actual largek-itemsets.

Association rules.When the large sets have been computed
using the Apriori algorithm, they are used in the computation
of rules. From each large set, all the possible rules are
formed so that all possible variable combinations are present
on the left-hand and right-hand side of the rule. The rules
which have smaller confidence than the predefined minimum
(minconf) are deleted whereas all the other rules are retained,
see Algorithm 4 for pseudo code.

Algorithm 4 describes generation of the rules in the general
case. In this work we are looking for rules with a single item
on the right hand side of the rule and ignoring all the others,
because we are interested in prediction of one attribute at a

Algorithm 4 Proceduregenrules .
for all large itemsetslk, k ≤ 2 do

A = {(m− 1)-itemsetsam−1|am−1 ⊂ am};
for all am−1 ∈ A do

conf = support(lk)/support(am−1);
if (conf ≥ minconf ) then

Output the ruleam−1 ⇒ (lk − am−1) with confi-
dence =conf andsupport = support(lk);

end if
if (m− 1 > 1) then

genrules (lk, am−1)
end if

end for
end for

time, only. This restriction is made in order to keep the update
operations simple enough to be managed by a human operator.

B. An illustration on the use of the suggested scheme

Before we consider the experimental results, let us first
look at a concrete illustration to see how to use the predictive
scheme using another synthetic example shown in Figure 1. It
shows how adding 8 attributes of a component to a component
library can be supported by the scheme suggested in this
article.

Fig. 1. A fictional example of typing in attributes for one component. If
there exist some recommended values for some attributes, they can be also
shown to the user who then either accepts or rejects them.

IV. EXPERIMENTS

A fraction of a real-world component library with 317
components and 174 attributes was used in this experiment.
In a full-scale library the number of components is naturally



much larger, but the number of attributes is realistic in our
example.

A. Preprocessing of the data

The data table was transformed into transactions as de-
scribed above and the entropy was computed for every attribute
using Equation 1. The attributes, entropy of which was below
10% or above 80% of maximum entropy, were discarded.
The entropies of the 174 attributes are shown in Figure 2.
The two dashed lines depict the lower and the upper entropy
bounds for the attributes which were used in the computation
of the association rules. This action decreased the number of
attributes to 48. Next, among the remaining attributes the ones
with one-to-one correspondence with some other attribute were
to be removed. However, such attributes were not found in the
remaining data. (Originally there were 37 such attributes in the
data, but they were already discarded based on their entropies.)

Fig. 2. The attributes of the sample data set ordered in an ascending order
according to the entropy.

B. Computation of the rules

Large itemsets. After the preprocessing, there were 48
attributes left which were used to compute the association
rules. These attributes were used to compute the large sets
for different supports (159, 174, 190, 206, 222, 238, 254, 269,
285), which correspond to 50, 55, . . . , 90 % proportion of 317,
the total number of components. The number of resulting large
sets for each support is shown in Figure 3. Also, the size of the
largest itemset is shown for each support level. For example,
there are 16 large itemsets with minimum support of 206 (65
% of maximum). This means that there are 16 different sets of
attribute-value pairs such that the pairs of every set are present
at least for 206 components, and the size (i.e., the number of
pairs) of the largest set is 4.

As can be observed, the number of large sets grows rapidly
as the minimum support decreases. Also note that if the
minimum support is set to a too small value, the computation
of large sets may become computationally infeasible.

Association rules.Next, rules with only one item on the
right-hand side of the rule were computed for each large
itemset using minimum confidences of 50, 55, . . . , 95 %.
The number of obtained rules is shown for each confidence

Fig. 3. The number of large sets as a function of minimum support. The
number above every point denotes the number of items (i.e., attribute-value
pairs) in the largest itemset for the corresponding support.

level and support in Figure 4. The number of rules for each
support level is naturally greater than the number of large sets,
because it is possible to obtain multiple rules from the items
of a large set. For example, if a large itemset is{B1, B3, B4},
it is possible to obtain nine rules:B1 ⇒ B3, B1 ⇒ B4,
B3 ⇒ B1, B3 ⇒ B4, B4 ⇒ B1, B4 ⇒ B3, B1 ⇒ B3B4,
B3 ⇒ B1B4, andB4 ⇒ B1B3.

Fig. 4. The number of rules as a function of the support for different
confidence levels 50, 55, . . . , 95% (curves from top to bottom).

C. Characterization of the obtained rules

The illustration of the number of rules is only one charac-
terization of the obtained rules. An important quantity is also
the number of rules with different predictions, that is, different
items on the right-hand side of the rule. The number of the
different predictions for different support and confidence levels
is shown in Figure 5.

Finally, in Figure 6 there are some of the 302 rules which
were obtained when the minimum support was set to 55 % of
the maximum and minimum confidence to 50 %.

V. CONCLUSIONS AND FUTURE WORK

In this article, we presented a new concept for the main-
tenance of large electronic component libraries or any other
similar database which is based on mining association rules
from an existing database. We also demonstrated the use of
such an approach and showed that at least the small randomly



Fig. 5. The number of different predictions (right-hand side items in the
rules) as a function of support and confidence.

#167=0⇒ #33=Normal (57 %, 100 %)
#170=0⇒ #31=0.00 (56 %, 100 %)
#40=NORMAL CHK⇒ #36=1 (56 %, 77 %)
#38=20 AND #39=60⇒ #80=0 (56 %, 89 %)
#59=1⇒ #40=NORMAL CHK (56 %, 79 %)
#59=1 AND #104=0 AND #163=100⇒ #58=1 (56 %, 99 %)
#58=1 AND #59=1 AND #104=0⇒ #163=100 (56 %, 88 %)
#104=0⇒ #47=5 (58 %, 65 %)
#38=20⇒ #39=60 (63 %, 96 %)

Fig. 6. A small fraction of the obtained rules, when minimum support was 55
% of the maximum and the minimum confidence was 50 %, correspondingly.
The numbers in the parentheses after each rule indicate the support (as
percentace of the maximum support) and the confidence of the rule.

chosen fraction of the commercial component library did
contain enough redundancy to form reliable rules with good
support and confidence. In the light of the results obtained it
seems that the association rule mining approach is capable of
finding useful dependencies in this data. Several issues to be
considered in the further research are listed below.
• The tests should be carried out using the entire database

to fully determine the usability of the approach. This
requires not only similar tests as described above, but also
development of a software prototype for the maintenance
of the library to verify that it is actually possible for a
human to fully benefit from the additional information
provided by the rules.

• In this application, data is in a table form and the rules
with only one item in the right-hand side of the rule
are of interest. Under these assumptions, it is possible
to make simplifications in the used algorithms to lighten
the computational burden of the computation of the rules.
These were not required in the experiments carried out in
this study, but this is necessary for full-scale real-world
applications.

• It is very common that a large database contains entries
which are significantly different from the majority of the
data. Such entries, outliers, in this particular application
are components which have an unusual combination of
attribute values. This may be due to the fact that there has
occurred a typing error during the input of the attributes
– or the component may actually be somehow different
from the others. Identification and removal of outliers
would lighten computation of the rules as well.

• In this study, the association rules were computed using a
batch run over the whole library. In reality, components
are gradually added into the component libraries. If an
incremental version of the rule mining algorithm existed,
it would naturally dramatically reduce the amount of
required computational resources when the rules are
updated. This is especially true for the item frequency
counters.

• In the computation of the association rules, it was as-
sumed that all the attributes were categorical. In reality,
in our data a small fraction of the attributes were numer-
ical. When large databases with numerical attributes are
considered, some strategy to deal with such an attributes
must be adopted, see [4]–[8].

• In addition to Apriori [2] algorithm used in this work,
there exist many other algorithms for mining association
rules, see for example [9], [10]. One important issue
in the future work is also to consider which algorithm
performs best for our data.

Acknowledgments

We wish to thank Dr. Bart Goethals, Basic Research Unit
at Helsinki University, Finland for the software4 used in the
experiments.

REFERENCES

[1] D. Hand, H. Mannila, and P. Smyth,Principles of Data Mining. MIT
Press, 2001.

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” in Proceedings of the 20th International Conference on Very
Large Databases, 1994.

[3] A. K. Jain and R. C. Dubes,Algorithms for Clustering Data. Prentice-
Hall, 1988.

[4] Y. Aumann and Y. Lindell, “A statistical theory for quantitative asso-
ciation rules,” inProceedings of the 5th ACM SIGKDD International
Conference on Data Mining (KDD ’99). ACM Press, 1999, pp. 261–
270.

[5] S. Brin, R. Ratogi, and K. Shim, “Mining optimized gain rules for nu-
meric attributes,” inProceedings of the 5th ACM SIGKDD International
Conference on Data Mining (KDD ’99). ACM Press, 1999, pp. 135–
144.

[6] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama, “Mining
optimized association rules for numeric attributes,” inProceedings of
the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database and Knowledgebase Systems (PODS ’96). ACM Press, 1996,
pp. 182–191.

[7] R. J. Miller and Y. Yang, “Association rules over interval data,” in
Proceedings of the 1997 ACM SIGMOD International Conference on
Management of Data. ACM Press, 1997, pp. 452–461.

[8] R. Srikant and R. Agrawal, “Mining quantitative association rules in
large relational tables,” inProceedings of the ACM SIGMOD Conference
on Management of Data (SIGMOD ’96). ACM Press, 1996, pp. 1–12.

[9] J. Hipp, U. G̈untzer, and G. Nakhaeizadeh, “Algorithms for association
rule mining – a general survey and comparison,”SIGKDD Explorations
Newsletter, vol. 2, no. 1, pp. 58–64, 2000.

[10] G. I. Webb, “Efficient search for association rules,” inProceedings of the
sixth ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM Press, 2000, pp. 99–107.

4http://www.cs.helsinki.fi/u/goethals/software/


