Model Driven Engineering: A Position Paper

Marcus Alanen, Johan Lilius, lvan Porres and Dragos Truscan
Software Construction and Embedded Systems
Laboratories
Turku Centre for Computer Science
Lemminkaisenkatu 14, FIN-20520 Turku, Finland

Abstract

The Model Driven Approach (MDA) as supported by the ObjecthMa
agement Group (OMG) describes the structural requirentérate engi-
neering discipline where models, instead of source codmpcge the
primary artifact. Model Driven Engineering (MDE), as on#d by Stuart
Kent, brings forth the dynamic aspects of engineering, @ipeocess ad-
herence and rigorous commitment to analysis are equallpitapt. As
such, MDE has a broader scope than MDA. We discuss our positio
MDE and its requirements on tools and technology, espgaialhsider-
ing the dynamics of a model-based software developmentadetlive
demonstrate our approach with an example of the specificafian IPv6
router targeted to a customized processing architecture.

1 Introduction

Model Driven Engineering (MDE) tackles the elusive problefrsystem de-
velopment by promoting the usage of models as the primaifaetrto be con-
structed and maintained. The term was first proposed by IKdtt and is prob-
ably derived from the OMG’s Model Driven Architecture (MDAjitiative [2].
OMG's MDA is based on the idea of platform independent mo¢iel) and
platform description models (PDM) that can be realized gisivariety of mid-
dleware and programming languages into platform specifidetso(PSM). We
understand MDE as a broader term that includes all modelsrauttling tasks
needed to carry out a software project from beginning to end.

We consider that OMG's vision of MDA, although valid, is juste of the
possible scenarios in an MDE process. A PIM to PSM transfoomanay be
a necessary task in an MDE context, but also PIM to PIM transftions, e.g.
how a PIM representing some customer requirements can f&fdrened into
another PIM that realizes those requirements. In our utali@isg, the main
key concept behind MDE is that all artifacts generated dusoftware devel-
opment are represented using common modeling languagescdtsequence,



software development can be seen as the process of trairsfoanmodel into

another until it can be executed outside its developmerit@mwent. If we only

study PIM to PSM transformations as described in the MDA aagh instead
of a more general framework, we may miss important issueshanthable to

provide a general solution to a broader problem. This sé@pacurs if we con-

sider the OMG standards as an authoritative descriptiomeofty that we build

software instead of as an authoritative description of thg that we represent
our software.

The current OMG standards present a static and structueal @f models.
They define several standard modeling languages, e.g. whatdlid model in
a given language using OCL constraints and how to store alnmoddile using
XMI [3]. However, they do not discuss how models are createdoov mod-
els evolve. This may be explained by reviewing the origingJMiL: it was
developed as a method-independent notation to documetvtasef artifacts.
UML can be used in combination with practically any softwadeelopment
method and, as a consequence, the OMG standards do nothcantarefer-
ence or support for software development. We believe tleaOiWlG standards
should also consider the dynamic aspects of model develapnidis ranges
from the basics of model evolution using algorithms for mddensformation
to more sophisticated reasoning about why a model transfiimm meets new
requirements. We may consider that the Software Processméarng Meta-
model standard (SPEM) [4] addresses this issue. Howevé&iMSBlls us how
to document a process, while “planning and executing a projging a process
described with SPEM is not in the scope [of the standard]”.

In this position paper we summarize our approach to defining@iDriven
Engineering methods. We discuss the basic collection ofejas, methods
and tools needed to support such methods. The ideas preésemtehave been
implemented both in the SMW toolkit, and the newer CoralkitolWe have
verified the validity of these ideas by developing an instamica MDE Method
for developing protocol processing applications. The methas been applied
to the specification and implementation of an IPv6 routehlmt a software
platform, using the Java programming language, and on aMaaedplatform,
using the TACO [5] protocol processing architecture.

2 Model-Driven Software Development M ethods

We define a model-driven software development method aswasef construc-
tion method where all the relevant information in the projecstored in some
kind of abstract model. Model development is then carrigdhsla sequence of
model transformations.

Model driven engineering is the result of the recent devaleqmt on com-
puter languages, awareness of the need of software devetapnethodologies



and the constant need to tackle larger and more complexajeweht projects.
These forces are not new. Indeed, we could use the same npatilggn to
create terms such as punched card driven development, ¢alethe devel-
opment methods used when compiler time was a luxury, or sorode driven
development, to describe the methods used in Extreme Pnogireg and many
open source projects, where source code is the key artifiagtever, we believe
that MDE opens a window for new development methods and tbatsare not
available or are too expensive to implement in other apgressuch as source
code driven development. These tools and methods can takie girthe fact
that the artifacts describing our software are stored iraadstrdized way and
are, to a certain extend, independent of the implementéicimology.

The description of a model driven engineering method shoolatain all
the elements that are usually present in any software dawvelot method. It
should describe which final deliverables and intermedidtestones should be
produced, which language should be used to create the peewitifacts and
which tasks we should perform, and in which sequence, sonbatan effec-
tively create the required artifacts. However, we consttat there exists two
main differences in a model driven engineering method wégpect to a tra-
ditional development method. First, all artifacts are espnted using a well-
defined modeling language. Secondly, and as a consequescanwreate tools
that process and transform all the artifacts in our projectserefore, we will
require that all tasks in a model driven engineering metthodilsl be performed
with the assistance of specialized tools. In this contegtear understanding of
model dynamics is a prerequisite to define any MDE method.

We have identified a four-layer approach to model dynamicachHayer
depends on the functions provided by the layers beneathéryttayer empow-
ers the modeling environment with new dynamic aspects, wiiguld not be
possible by the lower layers alone.

e In our approach, layer 0 defines the basic model managemesibg
ties. This consists of creation and deletion of model elémenodifica-
tion of the various associations between elements, andvidaagion of
model constraints. In essence, the power at this first layéra power
given by the Meta Object Facility (MOF) [6]. A good overview lmasic
model manangement, and the use of Python as a scriptingdgador
e.g. model constraint evaluation is given in [7].

e Layer 1 acknowledges model evolution as a continuous temhpoocess.
Here, versioning is the key element, whereby tools can stippdo/redo
facilities, displaying and calculating differences betwanodels, merg-
ing of models from multiple collaborative sources and, finadroviding
full revision control of the development process. Sevefahese issues
are discussed in [8], [9] and [10].



e Layer 2 implements the desired behavior using interopertdsls with
editors, and transformation rules. This requires a coraget of model-
ing standards for the various activities that developensrely on.

1. Queriesare applied on a model expressed in one language and re-
turns a set of elements of the same model expressed in the same
language.

2. Model Transformationare applied on a model expressed in a given
language and either modifies the model in place, or createxialmn
possibly expressed in a different language. The upcoming QV
standard from OMG addresses this problem. Model transforma
tions conceive a plethora of new interesting questions apitg,
such as transformation taxonomy, correctness-preseitvimgfor-
mations, consistency checking and/or verification.

3. Code Generationalthough a form of transformation, is sufficiently
different from a model-to-model transformation to merg dwn
classification. The goal is to produce suitable input to a@séde
stage compilation or analysis tool. The target languageotsan
metamodel.

The main difference between queries and transformatichgishe queries
are free of side-effects, meaning that when applied on a htioelfedo not
change the model in any way. Many examples of queries andInrads-
formations are given in [11].

e Layer 3 includesntent in model development. It studies why changes
are made in a model, and when the method in alf®avs us to make
the change. Far too long has intent and process adherencectesid-
ered a second-class citizen in software engineering. WeddgDE as a
possible savior, by enabling us to describe process melibgide, prob-
lem analysis, estimations, and testing frameworks togetith an evolv-
ing platform description model, and with the consistent sveydescribe
models, metamodels, transformations and constraints iAMMe are
currently developing a MDE based flow which is targeted talsgsro-
tocol processor design. The basic philosophy behind the Hiasvbeen
discussed in [12]. The technical report [11] discussesrtidmentation
of the flow.

3 Conclusions
In this position paper we have discussed the main ideas thahin research

on Model Driven Engineering. More information on the cutrstatus of the
project can be found on the MDE web-si¢ t p: / / nde. abo. fi, where

4



you can also find both the SMW-tool (which is discontinued) Hre new Coral
toolkit.

Acknowledgments

Dragos Truscan gratefully acknowledges the financial suapfoo this work
from the HPY and TES research foundations.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Stuart Kent. Model Driven Engineering. kM 2002 volume 2335 of
LNCS Springer-Verlag, 2002.

OMG. OMG Model Driven Architecture. Document ormsc/2607-01,
available ahtt p: / / www. ong. or g/, July 2001.

OMG. OMG XML Metadata Interchange (XMI) Specification. Mt
Document formal/00-11-02. Available At t p: / / www. ong. or g/ .

OMG. Software Process Engineering Metamodel SpecifingiSPEM).
OMG Document formal/02-11-14. Available &itt p://wwv. ong.
org/.

Seppo Virtanen, Dragos Truscan, and Johan Lilius. TAG@6IRouter -
A Case Study in Protocol Processor Design. Technical R&2&t Turku
Centre for Computer Science, April 2003.

OMG. OMG Meta-Object Facility (MOF). OMG Document foriifaid -
11-02. Available aht t p: / / ww. ong. or g/ .

Ivan Porres. A toolkit for model manipulationSpringer International
Journal on Software and Systems Modelig@t), 2003.

Marcus Alanen and Ivan Porres. Difference and Union offels. InUML
2003 volume 2863 of. NCS Springer-Verlag.

Ivan Porres and Marcus Alanen. A generic deep copy algorfor MOF-
based models. Technical Report 486, TUCS - Turku Centre donfiiter
Science, Nov 2002.

Marcus Alanen and lvan Porres. Issues on the design of\o-based
configuration management system for model driven engingerTechni-
cal Report 567, TUCS, Nov 2003.

Marcus Alanen, Johan Lilius, Ivan Porres, and Dragasdan. Realizing
a model driven engineering process. Technical Report 56%;F, Nov
2003.



[12] Johan Lilius and Dragos Truscan. UML-driven TTA-basebtocol
Processor Design. [Iiforum on specification and Design Languages
(FDL'02), September 2002.



