
Model Driven Engineering: A Position Paper

Marcus Alanen, Johan Lilius, Ivan Porres and Dragos Truscan
Software Construction and Embedded Systems

Laboratories
Turku Centre for Computer Science

Lemminkäisenkatu 14, FIN-20520 Turku, Finland

Abstract

The Model Driven Approach (MDA) as supported by the Object Man-
agement Group (OMG) describes the structural requirementsof an engi-
neering discipline where models, instead of source code, comprise the
primary artifact. Model Driven Engineering (MDE), as outlined by Stuart
Kent, brings forth the dynamic aspects of engineering, where process ad-
herence and rigorous commitment to analysis are equally important. As
such, MDE has a broader scope than MDA. We discuss our position on
MDE and its requirements on tools and technology, especially consider-
ing the dynamics of a model-based software development method. We
demonstrate our approach with an example of the specification of an IPv6
router targeted to a customized processing architecture.

1 Introduction

Model Driven Engineering (MDE) tackles the elusive problemof system de-
velopment by promoting the usage of models as the primary artifact to be con-
structed and maintained. The term was first proposed by Kent in [1] and is prob-
ably derived from the OMG’s Model Driven Architecture (MDA)initiative [2].
OMG’s MDA is based on the idea of platform independent models(PIM) and
platform description models (PDM) that can be realized using a variety of mid-
dleware and programming languages into platform specific models (PSM). We
understand MDE as a broader term that includes all models andmodeling tasks
needed to carry out a software project from beginning to end.

We consider that OMG’s vision of MDA, although valid, is justone of the
possible scenarios in an MDE process. A PIM to PSM transformation may be
a necessary task in an MDE context, but also PIM to PIM transformations, e.g.
how a PIM representing some customer requirements can be transformed into
another PIM that realizes those requirements. In our understanding, the main
key concept behind MDE is that all artifacts generated during software devel-
opment are represented using common modeling languages. Asa consequence,

1



software development can be seen as the process of transforming a model into
another until it can be executed outside its development environment. If we only
study PIM to PSM transformations as described in the MDA approach instead
of a more general framework, we may miss important issues andbe unable to
provide a general solution to a broader problem. This scenario occurs if we con-
sider the OMG standards as an authoritative description of the way that we build
software instead of as an authoritative description of the way that we represent
our software.

The current OMG standards present a static and structural view of models.
They define several standard modeling languages, e.g. what is a valid model in
a given language using OCL constraints and how to store a model in a file using
XMI [3]. However, they do not discuss how models are created or how mod-
els evolve. This may be explained by reviewing the origins ofUML: it was
developed as a method-independent notation to document software artifacts.
UML can be used in combination with practically any softwaredevelopment
method and, as a consequence, the OMG standards do not contain any refer-
ence or support for software development. We believe that the OMG standards
should also consider the dynamic aspects of model development. This ranges
from the basics of model evolution using algorithms for model transformation
to more sophisticated reasoning about why a model transformation meets new
requirements. We may consider that the Software Process Engineering Meta-
model standard (SPEM) [4] addresses this issue. However, SPEM tells us how
to document a process, while “planning and executing a project using a process
described with SPEM is not in the scope [of the standard]”.

In this position paper we summarize our approach to defining Model Driven
Engineering methods. We discuss the basic collection of concepts, methods
and tools needed to support such methods. The ideas presented here have been
implemented both in the SMW toolkit, and the newer Coral toolkit. We have
verified the validity of these ideas by developing an instance of a MDE Method
for developing protocol processing applications. The method has been applied
to the specification and implementation of an IPv6 router both on a software
platform, using the Java programming language, and on a hardware platform,
using the TACO [5] protocol processing architecture.

2 Model-Driven Software Development Methods

We define a model-driven software development method as a software construc-
tion method where all the relevant information in the project is stored in some
kind of abstract model. Model development is then carried out as a sequence of
model transformations.

Model driven engineering is the result of the recent development on com-
puter languages, awareness of the need of software development methodologies

2



and the constant need to tackle larger and more complex development projects.
These forces are not new. Indeed, we could use the same namingpattern to
create terms such as punched card driven development, to describe the devel-
opment methods used when compiler time was a luxury, or source code driven
development, to describe the methods used in Extreme Programming and many
open source projects, where source code is the key artifact.However, we believe
that MDE opens a window for new development methods and toolsthat are not
available or are too expensive to implement in other approaches such as source
code driven development. These tools and methods can take profit of the fact
that the artifacts describing our software are stored in a standardized way and
are, to a certain extend, independent of the implementationtechnology.

The description of a model driven engineering method shouldcontain all
the elements that are usually present in any software development method. It
should describe which final deliverables and intermediate milestones should be
produced, which language should be used to create the previous artifacts and
which tasks we should perform, and in which sequence, so thatwe can effec-
tively create the required artifacts. However, we considerthat there exists two
main differences in a model driven engineering method with respect to a tra-
ditional development method. First, all artifacts are represented using a well-
defined modeling language. Secondly, and as a consequence, we can create tools
that process and transform all the artifacts in our projects. Therefore, we will
require that all tasks in a model driven engineering method should be performed
with the assistance of specialized tools. In this context, aclear understanding of
model dynamics is a prerequisite to define any MDE method.

We have identified a four-layer approach to model dynamics. Each layer
depends on the functions provided by the layers beneath it. Every layer empow-
ers the modeling environment with new dynamic aspects, which would not be
possible by the lower layers alone.

• In our approach, layer 0 defines the basic model management possibili-
ties. This consists of creation and deletion of model elements, modifica-
tion of the various associations between elements, and the evaluation of
model constraints. In essence, the power at this first layer is the power
given by the Meta Object Facility (MOF) [6]. A good overview of basic
model manangement, and the use of Python as a scripting language for
e.g. model constraint evaluation is given in [7].

• Layer 1 acknowledges model evolution as a continuous temporal process.
Here, versioning is the key element, whereby tools can support undo/redo
facilities, displaying and calculating differences between models, merg-
ing of models from multiple collaborative sources and, finally, providing
full revision control of the development process. Several of these issues
are discussed in [8], [9] and [10].

3



• Layer 2 implements the desired behavior using interoperable tools with
editors, and transformation rules. This requires a complete set of model-
ing standards for the various activities that developers can rely on.

1. Queriesare applied on a model expressed in one language and re-
turns a set of elements of the same model expressed in the same
language.

2. Model Transformationsare applied on a model expressed in a given
language and either modifies the model in place, or creates a model,
possibly expressed in a different language. The upcoming QVT
standard from OMG addresses this problem. Model transforma-
tions conceive a plethora of new interesting questions and topics,
such as transformation taxonomy, correctness-preservingtransfor-
mations, consistency checking and/or verification.

3. Code Generation, although a form of transformation, is sufficiently
different from a model-to-model transformation to merit its own
classification. The goal is to produce suitable input to a second-
stage compilation or analysis tool. The target language is not a
metamodel.

The main difference between queries and transformations isthat the queries
are free of side-effects, meaning that when applied on a model they do not
change the model in any way. Many examples of queries and model trans-
formations are given in [11].

• Layer 3 includesintent in model development. It studies why changes
are made in a model, and when the method in useallows us to make
the change. Far too long has intent and process adherence been consid-
ered a second-class citizen in software engineering. We regard MDE as a
possible savior, by enabling us to describe process methodologies, prob-
lem analysis, estimations, and testing frameworks together with an evolv-
ing platform description model, and with the consistent ways to describe
models, metamodels, transformations and constraints in MDA. We are
currently developing a MDE based flow which is targeted towards pro-
tocol processor design. The basic philosophy behind the flowhas been
discussed in [12]. The technical report [11] discusses the implementation
of the flow.

3 Conclusions

In this position paper we have discussed the main ideas behind our research
on Model Driven Engineering. More information on the current status of the
project can be found on the MDE web-sitehttp://mde.abo.fi, where

4



you can also find both the SMW-tool (which is discontinued) and the new Coral
toolkit.

Acknowledgments

Dragos Truscan gratefully acknowledges the financial support for this work
from the HPY and TES research foundations.

References

[1] Stuart Kent. Model Driven Engineering. InIFM 2002, volume 2335 of
LNCS. Springer-Verlag, 2002.

[2] OMG. OMG Model Driven Architecture. Document ormsc/2001-07-01,
available athttp://www.omg.org/, July 2001.

[3] OMG. OMG XML Metadata Interchange (XMI) Specification. OMG
Document formal/00-11-02. Available athttp://www.omg.org/.

[4] OMG. Software Process Engineering Metamodel Specification (SPEM).
OMG Document formal/02-11-14. Available athttp://www.omg.
org/.

[5] Seppo Virtanen, Dragos Truscan, and Johan Lilius. TACO IPv6 Router -
A Case Study in Protocol Processor Design. Technical Report528, Turku
Centre for Computer Science, April 2003.

[6] OMG. OMG Meta-Object Facility (MOF). OMG Document formal/01-
11-02. Available athttp://www.omg.org/.

[7] Ivan Porres. A toolkit for model manipulation.Springer International
Journal on Software and Systems Modeling, 2(4), 2003.

[8] Marcus Alanen and Ivan Porres. Difference and Union of Models. InUML
2003, volume 2863 ofLNCS. Springer-Verlag.

[9] Ivan Porres and Marcus Alanen. A generic deep copy algorithm for MOF-
based models. Technical Report 486, TUCS - Turku Centre for Computer
Science, Nov 2002.

[10] Marcus Alanen and Ivan Porres. Issues on the design of anXML-based
configuration management system for model driven engineering. Techni-
cal Report 567, TUCS, Nov 2003.

[11] Marcus Alanen, Johan Lilius, Ivan Porres, and Dragos Truscan. Realizing
a model driven engineering process. Technical Report 565, TUCS, Nov
2003.

5



[12] Johan Lilius and Dragos Truscan. UML-driven TTA-basedProtocol
Processor Design. InForum on specification and Design Languages
(FDL’02), September 2002.

6


