A Mapping Language from Models to DI Diagrams

Marcus Alanen, Torbjorn Lundkvist and Ivan Porres

TUCS Turku Centre for Computer Science
Department of Information Technologies,
Abo Akademi University
Lemminkiisenkatu 14, FIN-20520 Turku, Finland
e-mail:{marcus.alanen, torbjorn.lundkvist, ivan.porres}@abo. fi

Abstract. The OMG MOF 2.0 standard is used to define the abstract syntax of
software modeling languages while the UML 2.0 Diagram Interchange (DI) de-
scribes the concrete syntax of models. However, very few tools support the DI
standard, leading to interoperability problems. The primary reason for this is the
lack of a formal way to describe the relationship between the abstract metamodel
and its corresponding diagrams. In this article, we present a language to describe
mappings between modeling languages and diagrams, some example mappings
and our experience in using them. Better and correct support for DI would ease
interchange of visual models and hasten the adoption of model-driven develop-
ment.

Keywords: Visual languages, Diagram Interchange, XMI[DI], MOF, UML

1 Introduction

In this paper, we study the definition of visual languages based on metamodeling and
the modeling standards maintained by the Object Management Group (OMG), such as
the Unified Modeling Language (UML) [22].

The UML has become the de facto standard for software modeling in the industry.
However, its definition is still vague and incomplete, even at the syntactic level. A rigor-
ous and complete definition of modeling languages is necessary to enable the automatic
generation of tools supporting these languages, in the same way that the rigorous def-
inition of textual languages has yielded automated generation of tools such as lexical
analyzers, parsers and compiler toolkits [13].

Several authors have proposed the using of graph grammars to define visual lan-
guages [18] and there exist diagram editor generators for languages defined using graph
grammars such as GenGed [3], AToM [7], Tiger [9] and DiaGen [14]. One of the main
differences between the technical space [4] defined by the OMG modeling standards
and previous approaches is that the abstract syntax and concrete syntax of a modeling
language are two independently defined and maintained artifacts.

In a modeling language, the definition of its abstract syntax includes the definition
of all model elements that can be used in a language, their properties and relationships
with other elements. It can also include additional constraints, also know as well-formed
rules. The definition of its concrete syntax includes the visual appearance of model
elements and layout constraints. The complete definition of a visual modeling language

should include the mapping between the abstract and its concrete syntax, that is, the
mapping between models and diagrams. This is necessary to create new diagrams from
existing models or to parse a diagram into a model.

In the context of the OMG standards, the abstract syntax of a language can be de-
fined using the Meta Object Facility (MOF) [20] and the UML 2.0 Infrastructure [21].
These standards are actually modeling languages that are used to define other model-
ing languages. Therefore, a model in these languages is often called a metamodel. The
MOF and UML 2.0 Infrastructure are rich and complex metamodeling languages that
can be used to define modeling languages as large and complex as the UML 2.0 Super-
structure. They can also be used to define domain specific languages and extensions or
profiles to the UML.

The OMG has a standard for two-dimensional diagrams called the UML 2.0 Dia-
gram Interchange [23] (DI). DI is a modeling language that has been defined following
the same metamodeling approach as the UML. While DI has been developed to satisfy
the need for diagram interchange for UML diagrams, it is not strictly restricted to UML
in any way. That is, DI can be used to represent diagrams for other modeling languages
as well. As a consequence, DI is a key standard to exchange models between tools that
need to represent, create or transform diagrams. Examples of these tools range from a
simple diagram viewer to a full-featured interactive model editor or model transforma-
tion tool.

However, we should note that DI is a language to express concrete diagrams. It
does not address the issue of defining the concrete syntax of modeling languages. That
is, while DI can be used to represent and interchange diagrams for a model, it cannot be
used to determine if a given diagram is valid for a given model, it cannot enumerate all
the possible valid diagrams for a particular modeling language, and neither does it con-
tain the necessary information to create a new diagram from an existing model. While
Appendix A and C of the DI specification attempt to address this issue by providing an
informal mapping from UML to DI, these mappings still lack the details required for
determining precisely when a specific diagram is valid.

Considering this, we argue that the OMG standards cannot completely specify the
concrete syntax of a visual modeling language. We can see an example of this in the
definition of UML 2.0. In this language, there are a group of model elements in the in-
teraction packages that can be represented in at least three different diagrams: sequence,
interaction overview and communication diagrams. That is, the same concepts from the
UML abstract syntax can be represented in three completely different ways in a dia-
gram. Although these diagrams are explained informally in the UML standard, neither
the UML nor the DI specification contains the information required to construct se-
quence, interaction and communication diagrams using the DI language. This has also
been noticed by Dr. Guus Ramackers, who has notified the OMG about it [25].

In this article, we tackle this problem and study how to define a mapping between
the abstract syntax of a modeling language described using the MOF or the UML 2.0
Infrastructure and its concrete syntax described using the DI standard. In the context
of UML 2.0, such language is necessary to complete the definition of UML and to
construct modeling and transformation tools that can create, transform and exchange
UML model diagrams. In a broader context of Model Driven Engineering, this mapping

can be used to build generic modeling tools that can create and transform visual models
and diagrams in domain specific modeling languages.

We proceed as follows. In Section 2 we present the basis of DI and define the need
of and use for a mapping language from models to diagrams in more detail. Section 3
contains our proposal for such a mapping language and explains its semantics. We dis-
cuss how we have validated our approach in Section 4. We finally take a look at related
work and conclude in Section 5, where we also consider future directions.

2 A Mapping Language from Models to Diagrams

In this section we describe basic concepts behind the UML and DI standards and we
describe the idea behind a mapping language between these languages.

In order to ensure interoperability between modeling tools, we consider that the
mapping between the abstract and concrete syntax of a modeling language should be
defined precisely. This is necessary in order to fully support DI diagrams for both new
and existing modeling languages. This mapping can be defined using a mapping lan-
guage, which we call DIML, from a modeling language to DI. An overview of this
mapping can be seen in Figure 1. In this setting, we assume that this mapping language
is defined using the OMG MOF standard. The actual mappings are described using a
model in this mapping language. Each of these models maps an element in the modeling
language to a set of elements in the DI language. This information can then be used by
an application of this mapping language that interprets the mappings and applies them
to actual model data.

MOF
A
UML DIML DI
A X A
UML Model DIML Model DI Diagram

Application of DIML

Fig. 1. Overview of the mapping between models and diagrams.

There are three main applications of this mapping language:

Definition of UML and other languages: It can be used simply as documentation
to complement the existing UML standards. We consider that the current UML 2.0 stan-
dard should be extended to include precise definitions of the valid UML 2.0 diagrams
using the DI standard.

Creation of new DI diagrams: Another obvious application of the language is
to generate new DI diagrams based on abstract models. This step may be necessary
e.g. after reverse engineering source code into a UML model or converting models
from one modeling language to another. Existing modeling tools may use a different
language than DI to represent diagrams internally. However, these tools may need to
create diagrams into DI in order to interoperate with other modeling tools using the
OMG standards.

Reconciliation of diagram and models: The most ambitious application of the
mappings is to reconcile changes in an abstract model into an existing diagram. In
this case, the mappings should be applied incrementally, preserving existing diagram
information such as layout and colors when possible. This application is also the most
demanding since it needs to be fast enough to be used in interactive model editors.

2.1 The UML 2.0 Diagram Interchange

We assume that a model is organized as an object graph that is an instance of a meta-
model. Each node in this graph is an instance of a metaclass and each edge is an instance
of a meta-association as defined in a metamodel. The UML metamodel contains more
than 150 metaclasses such as Actor, Class, Association or State which describe the con-
cepts that are familiar to UML practitioners. On the other hand, DI is a rather small
language with only 22 metaclasses; a relevant subset of them is shown in Figure 2.
There are basically three main concepts in DI: GraphNode, GraphEdge and Seman-
ticModelBridge. A GraphNode represents a rectangular shape in a diagram, such as a
UML Class or an Actor, while a GraphEdge represents an edge between two other ele-
ments such as two nodes in a UML Association or a node and another edge such as in a
UML AssociationClass. A SemanticModelBridge is used to establish a link between the
semantic or abstract model and the diagrammatic model. For example, a GraphNode
representing a UML Class is connected to that class using a SemanticModelBridge.
There are two types of bridges. A UmlilSemanticModelBridge uses a directed link to
an element , while a SimpleSemanticModelElement contains a string named typelnfo.
These concepts are explained in more detail in the DI standard.

Figure 3 shows an example of a fragment of a UML model and its diagrammatic
representation using DI. The top part of the figure is a simple UML statemachine model
with two states and one transition, presented as a UML object diagram. From this object
diagram we can see that this DI model contains elements necessary for displaying and
layouting information retrieved from the UML model. To simplify the Figure, we have
omitted some UML and DI elements. Especially, we do not show the Uml1Semantic-
ModelBridge elements but merely a directed link between DI graph elements and the
UML elements. We should also note that we show the links that correspond to compo-
sition associations using a black diamond. Although this notation is not defined in the
UML standard it is useful for the purposes of this article.

Finally, the bottom part of the figure shows the same DI model rendered as an image,
in this particular case as Encapsulated Postscript. This image was created by a tool
based on the information contained in the UML model, such as the name of the states,
the DI model, such as the layout of the states, and built-in knowledge about the UML
notation for state machines, such as the fact that a state is represented as a rectangle with

m GraphElement DiagramElement
e 0.1 contained
%
graphElement 1 ZF container *

* | achorage l ‘

GraphConnector| anchor * |GraphEdge GraphNode
2 graphEdge

semanticModel %
icModelBridg owner 0.1 Diagram
1 m name : String

element MOF::Class|

t| |umi1Semanti Bridge| *

typelnfo : String 1

Fig. 2. A subset of the DI metamodel.

rounded corners. Nothing prevents us from rendering the diagram to another graphical
format such as SVG.

2.2 DIML: From Models to Diagrams

We have seen in the previous example that the DI provides us with the basic metaclasses
that can be combined to create diagrams. However, neither the UML standard nor DI
tell us what metaclasses we should use to create a specific diagram to represent a spe-
cific model. As we have seen in the example, this task is not trivial since each UML
model element is represented using many DI elements and the mapping between the
model element and its diagram representation is arbitrary. This in turn complicates the
interchange of DI diagrams between modeling tools, as diagrams created by one tool
may not be compatible with the diagrams the other tool creates. Full compatibility can
be ensured only if the tools use the same definitions for creating the diagrams.

To address this issue, we have created a language called the Diagram Interchange
Mapping Language (DIML). Its purpose is to define mappings between metaclasses
in MOF-based modeling languages, such as UML, and corresponding elements in the
DI language. We can see three example DIML models for UML StateMachines, Sim-
pleStates and Transitions shown in Figures 4, 5 and 6 respectively. It must be noted that
we have simplified the structure of StateMachines for the purposes of this article. In the
figures, an abstract element on the left is mapped to a hierarchy of diagram elements as
DIML Parts. Each Part, shown as rectangles, maps to a GraphNode, GraphEdge or Dia-
gram in DI. The directed arrow corresponds to the mapping concept, whereas the edges
with black diamonds correspond to parameterized element ownership based on guard
and selection statements. The hierarchy forms a skeleton which when transformed into
DI elements give us the intended result.

An example of the application of these three mappings was seen in Figure 3. The
topmost part of the figure (colored gray) shows a StateMachine with two SimpleStates
and one Transition. When the mapping for UML StateMachines (Figure 4) is applied

: Transition

D

StateDiagram : Diagram

: GraphNode

: GraphNode

GraphConnector

: GraphConnector

* ¢
Compar hNode TransitionDescription : lode | | Name: CompartmentSeparator : GraphNode
NameC e InternalTransitionG : ‘ NameG: : ‘ InternalTransitionC:
Name : GraphNode Name : GraphNode
S1 S2
Transition

Fig. 3. (Top) UML model in gray with two SimpleStates and a Transition and its diagram repre-
sentation in DI. (Bottom) DI diagram rendered using the UML concrete syntax.

UML14::StateMachine

DiagramPart

self.subvertexT

diagramType : ="StateDiagram"

Tself.transit\on

Delegation

Delegation

Fig. 4. The DI mapping rule of StateMachines.

to the StateMachine, a DI Diagram will be created. When the mapping for UML Sim-
pleStates (Figure 5) is applied to the SimpleStates and the mapping for UML Transitions
(Figure 6) is applied to the Transition, DI elements will be created for these UML ele-
ments. Finally, these DI elements will be connected to the Diagram. As a result, the DI
model shown in the middle of the figure is obtained. By comparing the DIML models
to the actual diagram, we see that not all DIML Parts are represented in the resulting
diagram. For example, there is no StereotypeCompartment for the SimpleStates. This is
an example of the parameterization; since the SimpleStates had no abstract Stereotype
elements, the guard “self.stereotype—>notEmpty()” in the DIML model failed and thus
no StereotypeCompartment was created.

UML14::SimpleState acceptsConnector := true GraphNodePart
GraphNodePart GraphNodePart GraphNodePart
typelnfo : =NameCompartment typelnfo : = CompartmentSeparator typelnfo : = InternalTransitionCompartment
[self.stereotype->notEmpty() I T self.entry—>asSet()T Tself.exibasSet()
GraphNodePart GraphNodePart Delegation Delegation
typelnfo : = StereotypeCompartment typelnfo: =Name

self.doActivity->asSet()

Delegation

Fig. 5. The DI mapping rule of SimpleState.

UML14::Transition GraphEdgePart

connectors : =Sequence { self.source, self.target }

! !

GraphNodePart ‘ GraphNodePart

typelnfo : = TransitionDescription typelnfo: =Name

seIfAtrigger->asSel()T T[self.guard->notEmpty() I[self.effect->notEmpty()] Tselt.eﬁect->as$et()

Delegation GraphNodePart GraphNodePart Delegation
typelnfo : =GuardEnd typelnfo : =EffectStart
[self.guard->notEmpty()] self.guard->asSet()
GraphNodePart Delegation

typelnfo : =GuardStart

Fig. 6. The DI mapping rule of Transition.

3 Metamodel and Semantics

This section discusses the concepts we have used in creating DIML and the semantics
of the language metaclasses. It is important to notice the separation between the DIML
language itself and the various applications of the DIML language. While the main use
of DIML is to define diagrams using the OMG standards, DIML does not define or en-
force any particular method for applying these mappings on model data. Assuming that
a DIML mapping is correct, any tool is still allowed to maintain the abstract model and
concrete models in any way it wants as long as the end result is correct, i.e., as if it had
used DIML. This as if rule is well-known from for example C compiler technology and
gives implementations the greatest leeway while still retaining compatibility between
implementations.

This separation enables us to concentrate on acquiring a usable mapping language
and its semantics, while leaving the actual applications of DIML as a separate concern
for modeling tools. In our opinion this separation works favorably for both standardiza-
tion as well as enabling competing implementations.

3.1 The Basics of the Metamodel

The metamodel for the DIML mapping language is shown in Figure 7. In the figure,
MOF::Class represents the type of any metaclass, not just UML metaclasses. The
OCL::OclExpression refers to any OCL expression. OCL is a language for creating
arbitrary queries on models. It can be used to collect some elements from models or to
assert that certain properties hold in a model.

The MappingModel is a simple container metaclass to collect all the mappings as
children under instances of it. Every DIML model must have one MappingModel as
its root element. An ElementToDIMapping element m is a description of mapping one
abstract element of type m.element to corresponding DI elements. Thereby the three
mappings for StateMachine, SimpleState and Transition from Figures 4, 5 and 6 have
been used to create several DI tree fragments as shown by triangles in Figure 8, yielding
the final DI diagram in Figure 3.

Every mapping is considered in the specific context of xparent, which is the parent
element in the DI model. It is guaranteed to exist for any GraphNode or GraphEdge
except for Diagram, which has no DI parent.

In Figures 4, 5 and 6, the ElementToDIMapping elements are denoted by directed
arrows and the Contained elements are the composition links. There can be two different
text strings next to those links; a text in brackets is a guard expression, and a text
without brackets is a selection expression. We will explain these and the contextGuard,
acceptsConnector and validln properties later.

3.2 DIML Tree

A DIML tree consists of an InitialPart as its root, and a hierarchy of Contained and
GraphElementPart (and its subclasses) elements. Leaves in the tree are either of type
Delegation or have no children Contained elements. The purpose of a DIML tree is to

describe a parameterized skeleton which can be used to compute a resulting DI tree. Pa-
rameterization here means that the occurrence and recurrence of child GraphElement-
Parts is determined by the slot values in Contained.guard and Contained.selection.

MappingModel
0.1 0..

child

. parent
Contained % GraphElementPart

0.1 1

separator

0.1 guard : OCL::OclExpression
selection : OCL::OclExpression

children

{ordered}
* | mappings 0..1 | parent

ElementToDIMapping

InitialPart
contextGuard : OCL::OclExpression root

acceptsConnector : OCL::OclExpression 1

ConcretePart Delegation

typelnfo : String

1/ element Z% Z%
MOF::Class

DiagramPart GraphEdgePart GraphNodePart

validin * | diagramType : String connector : OCL::OclExpression

Fig.7. The DIML metamodel.

DI Diagram tree
for the StateMachine

DI tree for DI tree for DI tree for
SimpleState Transition SimpleState

Fig. 8. DI fragments created by the DIML mappings are combined into the final DI diagram.

The DIML tree can be computed in the context of an InitialPart i, its current abstract
elements a and its xparent. For every Contained element c in the children slot of the
InitialPart, we must do the following:

— Evaluate c.guard in the context of @ and with xparent as its parameter. If it does not
hold, we must proceed to the next Contained element.

— Evaluate c.selection in the context of a and with xparent as its parameter. The ex-
pression must return an OCL collection s of abstract elements. For each element
e in s, the c.child GraphElementPart is accepted in the context of e as the abstract
element, and i as its xparent.

— If c.separator is non-empty, it denotes a DIML subtree with corresponding DI ele-
ments that must be placed between each accepted element. This enables us to easily
model the very common occurrence of having a simple separator between values,
such as a comma sign between the parameters in an operation in a UML class dia-
gram.

Here, accepting means that the same computation must be performed on the new child
DIML element if the child is a ConcretePart. Delegation elements on the other hand
arise from the need to decouple the representation and computation of individual DIML
trees. If the new child DIML elements is a Delegation, we must search for a new valid
mapping for the abstract element e. If several mappings are valid a nondeterministic
choice is made. If no mappings are valid, the element is ignored and cannot be mapped
to DI in the given context. Once a valid mapping is found, DIML tree creation can begin
in the context of a new current abstract element and xparent. The corresponding DI
elements of the parent DIML tree and the child DIML tree are then connected together
at the place of the Delegation element in the parent DIML tree.

The guard and selection expressions allow us to create a mapping to DI highly
context-dependent on the abstract model element and all the other abstract model ele-
ments as well as the sequence of parents in the DI model. They, together with instances
of ConcretePart and Delegation are the primary means to represent a collection of sim-
ilar DI fragments (modulo the parameterization) as one DIML tree.

3.3 Support for Diagrams

A mapping m of a diagram is such that m.root is a DiagramPart element r, with
r.diagramType denoting what diagram type is being considered (e.g. “ClassDiagram”).
The m.contextGuard is evaluated and must return true. It is an OCL expression which
receives the abstract element and xparent (which in this case is a null pointer/reference)
as its parameters. It can be used to limit whether or not it is allowed to create a diagram
for the given abstract element.

The m.validln slot is unused and must be empty. The m.acceptsConnector is unused.
Starting at r, the DIML tree can be described.

3.4 Support for GraphNodes and GraphEdges

The mapping m for GraphNodes or GraphEdges is otherwise similar to the mapping
for a Diagram, but with some small differences. The element m.root must either be a
GraphEdgePart or a GraphNodePart, with m.root.typelnfo being the empty string.

The m.contextGuard must still hold, but the xparent will now be a valid DI ele-
ment in the diagram. The set m.validln.diagramType denotes the valid diagram type set,
e.g. { “ClassDiagram”, “SequenceDiagram” }. This is the set of types of diagrams in
which the mapping can be applied. Although technically the validIn information could
be embedded in the contextGuard, it is more convenient to have a set of diagrams where
a mapping can be applied because a) it avoids unnecessarily long OCL expressions in
the contextGuard, and b) the information about suitable diagrams is easier to extract
from a slot made for that purpose rather than extract it by parsing an OCL expression.

We will explain m.acceptsConnector and GraphEdgePart.connector later. Again, start-
ing at m.root, the DIML tree can be described.

3.5 Correspondence of DIML Elements with DI

An instance p of DiagramPart, GraphEdgePart or GraphNodePart corresponds to an
instance of the DI elements Diagram, GraphEdge or GraphNode d, respectively.

A Diagram has a SimpleSemanticModelElement s in its semanticModel slot such
that p.diagramType = s.typelnfo, and a UmllSemanticModelBridge in its owner slot
which points to the abstract element for which the diagram was created for. A Graph-
Edge or GraphNode has either a UmllSemanticModelBridge or a SimpleSemantic-
ModelElement. If p.typelnfo is empty, d must have a Uml1SemanticModelBridge which
points to the abstract element. Otherwise, d must have a child element s of type Simple-
SemanticModelElement such that p.typelnfo = s.typelnfo.

3.6 Connecting Edges to GraphConnectors

The connector expression is evaluated in the context of the corresponding abstract el-
ement and receives the GraphEdge as an additional parameter. For an instance p of
GraphEdgePart, p.connector describes the expression that when evaluated results in a
sequence of abstract elements. For each element e in the sequence, a GraphConnector
is created (or must already exist) and anchored to the GraphEdge corresponding to p.
The owner of the GraphConnector must then be found in the set of all GraphElements
in the same diagram whose corresponding abstract element is e. This GraphElement
must correspond to a root ConcretePart in an ElementToDIMapping m mapping such
that m.acceptsConnector is satisfied. The acceptsConnector expression does not receive
any parameters.

Although this scheme sounds complicated, it or similar functionality is required
since not all GraphElements may be connected to and the only distinguishing mark
is the context. In our work, this context is provided by the different ElementToDI-
Mappings.

3.7 Limitations

Having explained the semantics of DIML, we must also be concerned about its lim-
itations. The main idea of the DIML language can be stated in three assumptions or
limitations, depending on the point of view. First, that our diagrams can be built top-
down, i.e., starting from the DI Diagram element, child elements can be transitively
connected to form a complete diagram without any changes required in their parents
during diagram construction. This means that a parent DI element does not depend on
what child DI elements exist underneath it. This is emphasized by the Delegation ele-
ments in the DIML models; the decoupling they provide allows us to mix several kinds
of diagrams together. Although the various OCL expressions have access to the chain
of parents, they cannot modify them since OCL is a side-effect free query language,
and in our semantics of DIML they would nevertheless not be allowed to modify them.

Second, that an abstract element can be mapped into a DIML tree with a single
root element. The exact contents of this tree may depend on the context of the abstract
element as well as any transitive parent DI elements. In general, by using arbitrary
OCL expressions the tree can be dependent on any parts of the abstract model or any
DI parents. It must be emphasized that the Contained.selection allows us to navigate
the abstract model from the current abstract element via several associations to other
abstract model elements. Thus the mapping language is not limited to the structure of
the abstract model regardless of the metamodel of that abstract model empowering us
to create very versatile DI models.

Third, that there are rules describing how to connect these trees together to form the
final, complete DI tree. These rules have been described in this Section.

4 Validation of the DIML Language

We have built an experimental modeling tool called Coral that uses the DI and simplified
DIML mappings to represent and maintain model diagrams. We have implemented a
component for this tool that reconciles models and diagrams after executing model
transformations or performing editing operations [2, 17], based on the abstract model
and the DIML mappings.

The guards of the rules in the simplified DIML mapping language use a very re-
duced version of OCL. This is done for performance reasons. Instead of allowing
complete OCL queries that could require the traversal of the whole model, we allow
the checking of single property values in the Contained.guard and a subset (or subse-
quence) of a property value in the Contained.selection. This restriction has enabled us
to perform reconciliation of models and diagrams using linear algorithms with very few
exceptions, while still being able to support large and complex languages such as UML.
This ensures that diagram reconciliation is not an expensive operation, and hence it is
fast enough to be integrated with an interactive model editor; our implementation is of
sufficient speed for interactive editing. We consider that the simplified language serves
the purposes we have outlined in Section 2, but we acknowledge that the language pro-
posed in this paper is more general.

We have implemented mappings for the UML 1.4 class, statechart, object, use case
and deployment diagrams but we are confident that the DIML language can be used
to define mappings for other UML diagrams. The mappings we have used for UML
in the Coral tool are available in [17]. From these mappings we can see that by using
Delegation elements and DIML tree parameterization extensively, we have been able to
support all the above mentioned UML diagrams.

The Coral tool supports other user-defined modeling languages and profiles besides
UML. We have used DIML to define the concrete syntax of MICAS, a domain-specific
modeling language to define peripherals for mobile phones [16]. This example shows
that DIML is viable to define the concrete syntax of DSM languages that are different
from UML.

All the model figures in this article have been drawn using Coral. It is open source
and can be downloaded with the UML to DI mappings from http://mde.abo.fi/.

5 Related Work and Conclusions

In this paper we have studied a mapping language between the abstract syntax or se-
mantic representation of a modeling language and its concrete syntax as a diagram.
Beyond the scope of this paper is anything regarding diagrams that does not relate to
the creation or reconciliation of DI diagrams. This includes the layout of diagrams and
the rendering of a diagram to an output device.

We have validated our approach by constructing an experimental tool and exchang-
ing UML models and their diagrams with a commercial modeling tool that supports DI.
This allows us to conclude that the work presented in this article is a viable approach
to define the concrete syntax of visual modeling languages based on the OMG stan-
dards. At the moment, the OMG does not have a Request For Proposals for a general
mapping or transformation language from abstract models to DI diagrams. We consider
such a language important for interoperability reasons and hope that this article will
spur further discussion on the topic.

Several authors have addressed the issue of defining the concrete syntax of model-
ing languages. The Penguins system by Sitt Sen Chok and Kim Marriot [6] is based
on the intelligent diagram metaphor and uses constraint multiset grammars to map
the concrete syntax of a diagram to the abstract syntax of a model. This differs from
DIML where we have a unidirectional mapping from the abstract to the concrete syn-
tax. While the authors show that their approach can be used to define the semantics
of a diagram, it is unclear whether a similar approach could be applied in the context
of DI. There are several reasons for this, the most important of which is that DI uses
Uml1SemanticModelBridges to relate to the abstract syntax and to determine how to
render the objects to an image. That is, using DI it is implicit that the abstract model
exists prior to a diagram, which is not the case in the Penguins system. Péter Domokos
and Déniel Varr6 [8] use model transformation rules for transforming the abstract syn-
tax into their own language for drawing primitives representing the concrete syntax
of models. This approach, however, involves several off-line transformations between
intermediate models, which in turn makes diagram reconciliation difficult to achieve.
The work by Frédéric Fondement and Thomas Baar [10] formalizes the relationship
between abstract and concrete syntaxes with OCL expressions using their own concrete
syntax. While the ideas presented are interesting, it does not yet have any tool support
and although diagram reconciliation is recognized as a problem, the authors do not offer
any solution. In fact, our work addresses some of their concerns on DI.

It can be argued that DIML is simply a specific-purpose model transformation lan-
guage and that the mapping between models and diagrams can be expressed using ex-
isting general-purpose model transformation languages. Many model transformation
languages have been developed and researched. Examples are the relational approach
by David Akehurst and Stuart Kent [1], and Octavian Patrascoiu’s YATL [24], both of
which use OCL for the declarative expressions. The relational approach is further in-
vestigated by Hausmann and Kent in [11]. There is also a special graph transformation
/ graph grammar system in VIATRA by Daniel Varr6 [26], which relies on graph gram-
mars instead of OCL and has operational semantics. Also the MOLA transformation
language [12] by Audris Kalnins, Janis Barzdins and Edgars Celms has a graphical im-
perative programming language with pattern-based transformation rules. Perhaps the

most important general-purpose transformation language is the Query-View-Transform
(QVT) [19] language from OMG. None of these technologies are (or should be) limited
in which transformations they can accomplish, which makes them more flexible but
perhaps harder to understand visually.

It must be noted that we are not proposing that DIML be used as a general-purpose
transformation language. There are several limitations in it, but nevertheless we find that
a domain-specific transformation language can still bring benefits. It might be easier for
users of the transformation language to understand and use, and it certainly is easier to
define the transformation rules, although it is clear that an implementation might wish to
use its underlying general-purpose transformation technology and display a simplified
version (i.e. the mappings shown here) to the user. We firmly believe that there should
and will be different transformation languages for models, just as there are different
transformation languages for text files, such as sed, awk and perl.

We have not found transformation technologies that specifically address transform-
ing between abstract and concrete models using the DI standard. This is unfortunate
because it also makes comparison more difficult as the differences between the diagram
languages themselves must be taken into account. Otherwise, in [5, 15], Audris Kalnins
et al. show a diagram definition facility which extends the presentational metamodel for
every concept that needs to be displayed from the abstract metamodel. This seems com-
plicated in light of the DI standard which is a static metamodel. Additionally there is no
explanation on how to declare restrictions on the mappings, which we have solved us-
ing OCL expressions, and abstract elements seem to simply map to exactly one concrete
element, which is not true for DI.

Acknowledgments

Marcus Alanen would like to acknowledge the financial support of the Nokia Founda-
tion.

References

1. D. H. Akehurst and S. Kent. A Relational Approach to Defining Transformations in a Meta-
model. In J.-M. Jézéquel, H. Hussmann, and S. Cook, editors, Proc. UML 2002 - The Unified
Modeling Language. Model Engineering, Languages, Concepts, and Tools. Sth International
Conference, Dresden, Germany, volume 2460 of LNCS, pages 243-258. Springer, 2002.

2. Marcus Alanen, Torbjorn Lundkvist, and Ivan Porres. Reconciling Diagrams After Executing
Model Transformations. In Proceedings of the 21st Annual ACM Symposium on Applied
Computing (SAC 2006), Dijon, France, April 2006.

3. R. Bardohl, H. Ehrig, J. de Lara, and G. Taentzer. Integrating Meta Modelling with Graph
Transformation for Efficient Visual Language Definition and Model Manipulation. In
Springer, editor, Proceedings of the Fundamental Aspects of Software Engineering, 7th Intl.
Conference, FASE 2004, pages 214-228, 2004.

4. J. Bézivin. On the Unification Power of Models. Springer Journal on Software and Systems
Modeling, 3(4), 2004.

5. Edgars Celms, Audris Kalnins, and Lelde Lace. Diagram Definition Facilities Based on
Metamodel Mappings, October 2003. Invited talk at the Third OOPSLA Workshop on
Domain-Specific Modeling.

10.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

. Sitt Sen Chok and Kim Marriott. Automatic Generation of Intelligent Diagram Editors. ACM

Transactions Computer-Human Interaction, 10(3):244-276, 2003.

. J. de Lara and H. Vangheluwe. Using Meta-Modelling and Graph Grammars to Process

GPSS Models. Electronic Notes in Theoretical Computer Science, 72(3), 2003.

. Péter Domokos and D4niel Varré. An Open Visualization Framework for Metamodel-Based

Modeling Languages. In Tom Mens, Andy Schiirr, and Gabriele Taentzer, editors, Proc.
GraBaTs 2002, International Workshop on Graph-Based Tools, volume 72 of ENTCS, pages
78-87, Barcelona, Spain, October 7-8 2002. Elsevier.

. Karsten Ehrig, Claudia Ermel, Stefan Hansgen, and Gabriele Taentzer. Towards Graph

Transformation Based Generation of Visual Editors Using Eclipse. Electronic Notes in The-
oretical Computer Science, 127(4):127-143, 2005.

Frédéric Fondement and Thomas Baar. Making Metamodels Aware of Concrete Syntax.
In European Conference on Model Driven Architecture (ECMDA), volume 3748 of LNCS,
pages 190 — 204, 2005.

. Jan Hendrik Hausmann and Stuart Kent. Visualizing model mappings in UML. In SoftVis

'03: Proceedings of the 2003 ACM symposium on Software visualization, pages 169-178,
New York, NY, USA, 2003. ACM Press.

Audris Kalnins, Janis Barzdins, and Edgars Celms. Basics of Model Transformation Lan-
guage MOLA. In Workshop on Model Transformation and Execution in the Context of MDA
(ECOOP 2004), June 2004.

Paul Klint, Ralf Laimmel, and Chris Verhoef. Towards an Engineering Discipline for Gram-
marware. ACM Transactions on Software Engineering Methodology, 14(3):331-380, 2005.

. Oliver Ké6th and Mark Minas. Structure, Abstraction, and Direct Manipulation in Diagram

Editors. LNCS, 2317:290-304, 2002.

Lelde Lace, Edgars Celms, and Audris Kalnins. Diagram Definition Facilities in a Generic
Modeling Tool. In International Conference on Modelling and Simulation of Business sys-
tems, pages 220-224, 2003.

Johan Lilius, Tomas Lillqvist, Torbjorn Lundkvist, Ian Oliver, Ivan Porres, Kim Sandstrom,
Glenn Sveholm, and Asim Pervez Zaka. An Architecture Exploration Environment for Sys-
tem on Chip Design. Nordic Journal of Computing, 2006. To appear.

Torbjorn Lundkvist. Diagram Reconciliation and Interchange in a Modeling Tool. Master’s
Thesis in Computer Science, Department of Computer Science, Abo Akademi University,
Turku, Finland, November 2005.

K. Marriot and B. Meyer. Visual Language Theory. Springer, 1998.

OMG. MOF 2.0 Query / Views / Transformations RFP. OMG Document ad/02-04-10.
Available at www.omg.org, 2002.

OMG. MOF 2.0 Core Final Adopted Specification, October 2003. Document ptc/03-10-04.
Available at http: //www.omg.org/.

OMG. UML 2.0 Infrastructure Specification, September 2003. Document ptc/03-09-15.
Available at http://www.omg.org/.

OMG. UML 2.0 Superstructure Specification, August 2003. Document ptc/03-08-02, avail-
able at http://www.omg.org/.

OMG. Unified Modeling Language: Diagram Interchange version 2.0, June 2005. OMG
document ptc/05-06-04. Available at http://www.omg.org.

Octavian Patrascoiu. YATL:Yet Another Transformation Language. In Proceedings of the
1st European MDA Workshop, MDA-IA, pages 83-90. University of Twente, the Nederlands,
January 2004.

Guus Ramackers. OMG issue 7663. http://www.omg.org/issues/issue7663.txt.
Daéniel Varré. Automatic Program Generation for and by Model Transformation Systems.
In Hans-Jorg Kreowski and Peter Knirsch, editors, Proc. AGT 2002: Workshop on Applied
Graph Transformation, pages 161-173, Grenoble, France, April 12-13 2002.

