
Communicative P Systems with Minimal

Cooperation

Artiom Alhazov1,2, Maurice Margenstern3, Vladimir Rogozhin4, Yurii
Rogozhin1, and Sergey Verlan3

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
{artiom,rogozhin}@math.md

2 Research Group on Mathematical Linguistics
Rovira i Virgili University, Tarragona, Spain

artiome.alhazov@estudiants.urv.es
3 LITA, Université de Metz, France

{margens,verlan}@sciences.univ-metz.fr
4 State University of Moldova

rv@math.md

Abstract. We proved that two classes of Communicative P systems
with 3 membranes and with minimal cooperation, namely P systems
with symport/antiport rules of size 1 and and P systems with symport
rules of size 2 are computationally complete: they generate all recur-
sively enumerable sets of vectors of nonnegative integers. The result of
computation is obtained in the elementary membrane.

1 Introduction

P systems were introduced by Gheorghe Păun in [11] as distributed parallel com-
puting devices of biochemical inspiration. The original definition is quite general
and many different variants of P systems were proposed, see [15] for a compre-
hensive bibliography. One of these variants, P systems with symport/antiport,
was introduced in [12]. This variant uses one of the most important features of
membrane systems: the communication. This operations is so powerful, that it
suffices by itself for a big computational power. These systems have two types
of rules: symport rules, when several objects go together from one membrane
to another, and antiport rules, when several objects from two membranes are
exchanged. In spite of a simple definition, we can compute all Turing computable
sets of numbers [12]. This result was improved with respect to the number of
used membranes and/or the size of symport/antiport rules ([4], [6], [9], [13], [2],
[8], [14]).

Rather unexpectedly, minimal symport/antiport P systems (membrane sys-
tems), i.e., systems where symport rules move only one object and antiport rules
move only two objects across the same membrane in different directions, are uni-
versal. The proof of this result may be found in [1] and the corresponding system
has 9 membranes.

This result was improved first by reducing the number of membranes to
six [7], five [2], four [5, 8] and at last G.Vaszil [14] showed that three membranes
are sufficient to generate all recursively enumerable sets of numbers (but his
proof had one disadvantage: the output membrane contains 5 additional sym-
bols). In this paper we give another proof of the last result which was obtained
independently. We also remark that in our proof the output membrane does not
contain superfluous symbols.

Minimally cooperative symport P systems (membrane systems), i.e., P sys-
tems only having symport rules and only moving one or two objects, are universal
with four membranes [6]. In this paper we improve that result down to three
membranes.

Our proofs of both results are based on a simulation of counter automata (or
register machines [10]), see also [3], which was also used in [1], [4], [7] and [2].

The question about universality of P systems with minimal symport/antiport
(symport) rules with 1 and 2 membranes is still open.

2 Basic notions

A non-deterministic counter automaton is the 5-tuple M = (Q, q0, qf , C, P),
where

– Q is a finite set of states,

– q0 ∈ Q is the initial state,

– qf ∈ Q is the final state,

– C is a finite set of counters,

– P is a finite set of instructions of the following form:

1. (qi → ql, ck+), with qi, ql ∈ Q, qi 6= qf , ck ∈ C “increment” instruction).
This instruction increments counter ck by 1 and changes the state of the
system from qi to ql.

2. (qi → ql, ck−), with qi, ql ∈ Q, qi 6= qf , ck ∈ C “decrement” instruc-
tion). If the value of counter ck is greater than zero, then this instruction
decrements it by 1 and changes the state of the system from qi to ql.
Otherwise (when the value of ck is zero) the computation is blocked in
state qi.

3. (qi → ql, ck = 0), with qi, ql ∈ Q, qi 6= qf , ck ∈ C (“zero test” instruc-
tion). If the value of counter ck is zero, then this instruction changes the
state of the system from qi to ql. Otherwise (the value of ck is greater
than zero) the computation is blocked in state qi.

4. Stop. This instruction stops the computation of the counter automaton
and it can be assigned only to the final state qf .

A transition of the counter automaton consists in updating/checking the
value of a counter according to an instruction of one of types above and by
changing the current state to another one. The computation starts in state q0

and with all counters equal to zero. A result of the computation of a counter au-
tomaton is the set of all values of the first counter c1 ∈ C when the computation
halts in state qf ∈ Q.

It is known that non-deterministic counter automata generate all recursively
enumerable sets of non-negative natural numbers starting from empty counters.

A P system with symport/antiport (symport) is a construct

Π = (O,µ,w1, . . . , wk, E,R1, . . . , Rk, i0),

where:

1. O is a finite alphabet of symbols called objects,
2. µ is a membrane structure consisting of m membranes that are labelled in a

one-to-one manner by 1, 2, . . . , k.
3. wi ∈ O∗, for each 1 ≤ i ≤ k is a finite multiset (i.e. multiset where elements

are present in finite number of copies) of objects associated with the region
i (delimited by membrane i),

4. E ⊆ O is the set of objects that appear in the environment in infinite num-
bers of copies,

5. Ri, for each 1 ≤ i ≤ k, is a finite set of symport/antiport rules associ-
ated with the region i and which have the following form (x, in), (y, out),
(y, out;x, in), where x, y ∈ O∗ (for symport P systems Ri consists rules of
the form (x, in), (y, out) only),

6. i0 is the label of an elementary membrane of µ that identifies the correspond-
ing output region.

A symport/antiport (symport) P system is defined as a computational device
consisting of a set of k hierarchically nested membranes that identify k distinct
regions (the membrane structure µ), where to each region i there are assigned a
multiset of objects wi and a finite set of symport/antiport (symport) rules Ri,
1 ≤ i ≤ k. A rule (x, in) ∈ Ri permits to objects specified by x to be moved
into region i from the immediately outer region. Notice that for P systems with
symport the rules in the skin membrane of the form (x, in), where x ∈ E∗, are
forbidden. A rule (x, out) ∈ Ri permits to the multiset x to be moved from region
i into the outer region. A rule (y, out;x, in) permits to multisets y and x, which
are situated in region i and the outer region of i respectively, to be exchanged.
It is clear that a rule can be applied if and only if the multisets involved by this
rules are present in the corresponding regions.

As usual, a computation in a symport/antiport (symport) P system is ob-
tained by applying the rules in a non-deterministic maximally parallel manner.
Specifically, in this variant, a computation is restricted to moving objects through
membranes, since symport/antiport (symport) rules do not allow the system to
modify the objects placed inside the regions. Initially, each region i contains the
corresponding finite multiset wi; whereas the environment contains only objects
from E that appear in infinitely many copies.

A computation is successful if starting from the initial configuration it reaches
a configuration where no rule can be applied. The result of a successful compu-
tation is a natural number that is obtained by counting the objects that are
presented in region i0. Given a P system Π, the set of natural numbers com-
puted in this way by Π is denoted by N(Π). If the multiplicity of each object
is counted separately, then a vector of natural numbers is obtained, denoted by
PsΠ, see [13].

We denote by NOPm(symr, antit) (NOPm(symr)) the family of sets of nat-
ural numbers that are generated by a P system with symport/antiport (sym-
port) having at most m > 0 membranes, symport rules of size at most r ≥ 0,
and antiport rules of size at most t ≥ 0. The size of a symport rule (x, in) or
(x, out) is given by |x| , while the size of an antiport rule (y, out;x, in) is given
by max{|x|, |y|}. We denote by NRE the family of recursively enumerable sets
of natural numbers. If we replace numbers by vectors, then in the 3 notations of
this paragraph N is replaced by Ps.

3 Main Results

Theorem 1. NOP3(sym1, anti1) = NRE.

Proof. We prove this result in the following way. We shall simulate a non-
deterministic counter automaton M = (Q, q0, qf , C, P) which starts with empty
counters. We also suppose that all instructions from P are labelled in a one-
to-one manner with {1, . . . , n} = I. Denote by I+ (I+ ⊆ I) a set of labels of
”increment” instructions, by I− (I− ⊆ I) a set of labels of ”decrement” instruc-
tions and by I=0 (I=0 ⊆ I) is a set of labels of ”zero test” instructions.

We construct a P system Π with the following membrane structure:

[
1

[
2

[
3

]
3

]
2

]
1

The functioning of this system may be split in three stages:

1. Preparation of the system for the computation.
2. The simulation of instructions of the counter automaton.
3. Terminating the computation.

We code the counter automaton as follows. At each moment (after stage
one) region 1 holds the current state of the automaton, represented by a symbol
qi ∈ Q, region 2 keeps the value of all counters, represented by the number of
occurrences of symbols ck ∈ C. We simulate the instructions of the counter au-
tomaton and we use for this simulation the symbols ck ∈ C, aj , bj , dj , ej , j ∈ I.
During the first stage we bring from the environment an arbitrary number of
symbols bj into region 3, symbols dj into region 2 and symbols ck into region 1.
We suppose that we have enough symbols in the corresponding membranes to
perform the computation. We also use the following idea: we bring from the envi-
ronment symbols ck into region 1 all time during the computation. This process

may be stopped only if all stages finish correctly. Otherwise, the computation
will never stop.

We split our proof in several parts which depend on the logical separation of
the behavior of the system. We will present rules and initial symbols for each
part, but we remark that the system that we present is the union of all these
parts.

We construct the P system Π as follows:

Π = (O, [
1

[
2

[
3

]
3

]
2

]
1
, w1, w2, w3, E,R1, R2, R3, 3),

O = E ∪ {fj | j ∈ I} ∪ {m1 | 1 ≤ i ≤ 5}

∪ {l7, l8, g1, g2, g3, Ia, I1, I2, I3, Ic, Ob, O2, i, t,#0,#1,#2},

E = {aj , bj , dj , ej | j ∈ I} ∪ {ck | ck ∈ C}

∪ {qi | qi ∈ Q} ∪ {li | 1 ≤ i ≤ 6},

w1 = I1I2I3O2g2il7l8#1#2,

w2 = Ictm1m2#0,

w3 = IaObg1g3m3m4m5

∏

j∈I

fj ,

Ri = Ri,s ∪ Ri,r ∪ Ri,f ∪ Ri,a, 1 ≤ i ≤ 3.

The rules are given by phases: START (stage 1), RUN (stage 2), FIN (stage 3)
and AUX.

AUX.

R1,a = {1a1 : (Ic, in), 1a2 : (I1, in)} ∪ {1a3 : (Ic, out; ck, in) | ck ∈ C}

∪ {1a4 : (I1, out; bj , in) | j ∈ I} ∪ {1a5 : (I1, out; dj , in) | j ∈ I=0}

∪ {1a6 : (#0, in), 1a7 : (#0, out)},

R2,a = {2a1 : (Ob, out), 2a2 : (Ia, in), 2a3 : (I2, in)}

∪ {2a4 : (bj , out;Ob, in) | j ∈ I−} ∪ {2a5 : (Ia, out; aj , in) | j ∈ I+}

∪ {2a6 : (I2, out; bj , in) | j ∈ I} ∪ {2a7 : (I2, out; dj , in) | j ∈ I=0},

R3,a = {3a1 : (O2, out), 3a2 : (I3, in), 3a3 : (I3, out; c1, in)}

∪ {3a4 : (x, out;O2, in) | x ∈ {I1, I2, g2, l1, l2, l3, l7}}

∪ {3a5 : (aj , out;O2, in) | j ∈ I}

∪ {3a6 : (#i, in), 3a7 : (#i, out) | 1 ≤ i ≤ 2}.

Symbols Ia, I1, I2, I3, Ic bring symbols inside some membrane and return.
Symbols O1, Ob take symbols outside some membrane and return. Symbols
#0,#1,#2 check for “invalid” computation.

START.

R1,s = {1s1 : (g3, out; q0, in)},

R2,s = {2s1 : (I2, out;#1, in), 2s2 : (t, out; I1, in), 2s3 : (I2, out; t, in)}

∪ {2s4 : (g1, out; g2, in), 2s5 : (Ic, out; g1, in), 2s6 : (g3, out; i, in)},

R3,s = {3s1 : (bj , in) | j ∈ I} ∪ {3s2 : (g1, out; I1, in), 3s3 : (g3, out; g2, in)}

∪ {3s4 : (I1, out; I2, in), 3s5 : (Ob, out; I1, in), 3s6 : (Ia, out; i, in)}.

Symbols I1, I2 bring from environment “sufficiently many” symbols dj in region
2 and a “correct number of” symbols bj in region 3 for the computation (rules
1a4,2a3,1a2,2a6,1a5,3s1,2a7). We illustrate this process by Figure 1.

The figures in this paper describe different stages of evolution of the P system
given in the corresponding theorem. For simplicity, we focus on explaining a
particular stage and omit the objects that do not participate in the evolution at
that time. Each rectangle represents a membrane, each variable represents a copy
of object in a corresponding membrane (symbols outside of the rectangle are in
the environment). In each step, the symbols that will evolve (will be moved)
are written in boldface. The labels of the applied rules are written above the ⇒
symbol.

bj1dj2bj3dj4 I1I2#1 ⇒1a4,2a3 dj2bj3dj4I1 #1bj1 I2 ⇒1a2,2a6

dj2bj3dj4 I1I2#1 bj1 ⇒1a5,2a3,3s1 bj3dj4I1 #1dj2 I2 bj1 ⇒1a2,2a7

bj3dj4 I1I2#1 dj2 bj1 ⇒1a4,2a3 · · ·

Fig. 1. Bringing objects bj , dj .

Notice that I2 cannot be idle, as it immediately leads to infinite computation
(rules 2s1,3a6,3a7), so dj and bj in region 1 must be moved to region 2 by I2

(rules 2a6 and 2a7).

At some point, I1 stops bringing symbols dj ,bj . I1 and I2 are removed from
their “pumping” positions, Ic is placed in region 1, where it can “pump” symbols
ck into the skin membrane, and q0 is brought into region 1 to start the simulation
of the register machine. In the meantime Ia reaches region 2 and Ob reaches
region 1. Notice that both (g1, out; I1, in) and (Ob, out; I1, in) from R3,s are
applied, in either order (Figure 2).

ck1
ck2

q0 I1I2g2i tIc g1g3IaOb ⇒2s2,2a3 ck1
ck2

q0 tg2i I1I2Ic g1g3IaOb

⇒2s3,3s2 ck1
ck2

q0 I2g2i tg1Ic I1g3IaOb ⇒2a3,2s4

ck1
ck2

q0 g1i I2tg2Ic I1g3IaOb ⇒2s5,3s4,3s3 ck1
ck2

q0 Ici I1tg3g1 I2g2IaOb

⇒1a3,2s6,3s5 Icq0ck2
ck1

g3 tg1iOb I1I2g2Ia ⇒1a1,1s1,2a1,3s6

g3ck2
Icck1

q0Ob tg1Ia I1I2g2i ⇒ · · ·

Fig. 2. Ending of the initialization (stage 1).

RUN.

R1,r = {1r1 : (qi, out; aj , in), 1r2 : (bj , out; ql, in)

| (j : qi → ql, ckγ) ∈ P, γ ∈ {+,−,= 0}}

∪ {1r3 : (dj , out; ej , in) | (j : qi → ql, ck = 0) ∈ P},

R2,r = {2r1 : (bj , out; ck, in) | (j : qi → ql, ck+) ∈ P}}

∪ {2r2 : (ck, out; aj , in) | (j : qi → ql, ck−) ∈ P}

∪ {2r3 : (dj , out; aj , in), 2r4 : (ck, out; ej , in),

2r5 : (bj , out; ej , in) | (j : qi → ql, ck = 0) ∈ P},

R3,r = {3r1 : (bj , out; aj , in) | (j : qi → ql, ck+) ∈ P}

∪ {3r2 : (bj , out; aj , in) | (j : qi → ql, ck−) ∈ P}

∪ {3r3 : (fj , out; aj , in), 3r4 : (bj , out; fj , in)

| (j : qi → ql, ck = 0) ∈ P}.

While Ic is bringing symbols ck into the skin membrane (rules 1a1,1a3), instruc-
tions (j : qi → ql, ckγ), γ ∈ {+,−,= 0} of the register machine are simulated.

”Increment” instruction:

ajql qick Ia bj ⇒1r1 qiql ajck Ia bj ⇒2a5 qiql Iack aj bj ⇒2a2,3r1

qiql ck Iabj aj ⇒2r1 qiql bj Iack aj ⇒1r2 qibj ql Iack aj

Fig. 3. qi replaced by ql, ck moved into region 2.

”Decrement” instruction:

ajql qiOb ck bj ⇒1r1 qiql ajOb ck bj ⇒2r2 qiql ckOb aj bj ⇒3r1

qiql ckOb bj aj ⇒2a4 qiql ckbj Ob aj ⇒2a1,1r2 qibj qlckOb aj

Fig. 4. qi replaced by ql, ck removed from region 2.

Checking for zero. qi replaced by ql if there is no ck in region 2 (Figure 5),
otherwise ej exchanges with ck and bj remains in region 2 (Figure 6).

ajejql qi dj fjbj ⇒1r1 ejqiql aj dj fjbj ⇒2r3 ejqiql dj aj fjbj ⇒1r3,3r3

djqiql ej fj ajbj ⇒3r4 djqiql ej bj ajfj ⇒2r5 djqiql bj ej ajfj ⇒1r2

djqibj ql ej ajfj

Fig. 5. ”Zero test” instruction. There is no ck in region 2.

ajejql qi ckdj fjbj ⇒1r1 ejqiql aj ckdj fjbj ⇒2r3 ejqiql dj ckaj fjbj ⇒1r3,3r3

djqiql ej ckfj ajbj ⇒2r4,3r4 djqiql ck ejbj ajfj

Fig. 6. ”Zero test” instruction. There is ck in region 2.

FIN.

R1,f = {1f1 : (m1, out; l1, in), 1f2 : (#1, out;m1, in), 1f3 : (m2, out; l2, in)}

∪ {1f4 : (m3, out; l3, in), 1f5 : (m4, out; l4, in), 1f6 : (l4, out; l5, in)}

∪ {1f7 : (m5, out; l6, in)},

R2,f = {2f1 : (m1, out; qf , in), 2f2 : (qf , out; l7, in), 2f3 : (m2, out; l1, in)}

∪ {2f4 : (m3, out;O2, in), 2f5 : (m4, out; I3, in), 2f6 : (I3, out; l2, in)}

∪ {2f7 : (m5, out; l8, in), 2f8 : (l8, out; Ic, in), 2f9 : (c1, out; l6, in)}

∪ {2fa : (l6, out;#2, in), 2fb : (l3, in), 2fc : (#0, out, l5, in)}

∪ {2fd : (l3, out, l5, in)},

R3,f = {3f1 : (m3, out; l7, in), 3f2 : (m4, out; l1, in), 3f3 : (m5, out; l2, in)}

∪ {3f4 : (bj , out; l3, in) | j ∈ I}.

If a successful computation of the register machine is correctly simulated, then
qf will appear in region 1. #1 is removed from region 1, and a chain reaction
is started, during which symbols li move inside the membrane structure, and
symbols mi move outside the membrane structure (Figure 7).

l1l1l2 qf l7O2I3#1 m1m2 m3m4 ⇒2f1 l1l1l2 m1l7O2I3#1 qfm2 m3m4 ⇒1f1,2f2

m1l1l2 l1qfO2I3#1 l7m2 m3m4 ⇒1f2,2f3,3f1 #1l1l2 m2qfO2m1I3 m3l1 l7m4

⇒1f1,1f3,2f4,3f2 #1m1m2 l2qfm3l1I3 O2m4 l7l1 .

Fig. 7. Beginning of the termination (stage 3).

Now O2 will pump outside the elementary membrane any symbol which stays
there, except c1 (rules 3a1, 3a4, 3a5). m4 will exchange with I3 (rule 2f5), and
the latter will pump symbols c1 into the elementary membrane (rules 3a2, 3a3),
and eventually exchange with l2 (rule 2f6).

m3 comes to the environment in exchange for l3 (rule 1f4), which goes to
membrane 2 (rule 2fb), and stays there if there is no object bj in the elementary
membrane (otherwise l3 will exchange with bj by rule 3f4). m4 comes to the
environment in exchange for l4 (rule 1f5), which brings l5 in the skin. l5 then
exchanges with l3 by rule 2fd. Notice that presence of bj in region 3 will force
l5 to move #0 in region 1 (rule 2fc), leading to an infinite computation (rules
1a6, 1a7), as l3 will be situated in region 3.

Finally (after I3 returns to region 1 and l2 comes in region 2 by rule 2f6), l2
moves m5 into region 2 (rule 3f3), and the latter exchanges with l8 (rule 2f7)
and then with l6 (rule 1f7). At some point l8 moves Ic into region 2 (rule 2f8),

to finish pumping objects ck. As for l6 in membrane 1, it guarantees that no
more objects c1 remain in membrane 2 (otherwise it moves #2 in membrane 2
(rules 2f9, 2fa), leading to an infinite computation (rule 3a6, 3a7)).

If the computation halts, then the elementary membrane will only contain
objects c1, in the multiplicity of the value of the first register of the register
machine. Conversely, any computation of the register machine allows a correct
simulation (from the construction). Thus, the class of P systems with symport
and antiport of weight 1 generate exactly all recursively enumerable sets of non-
negative integers. 2

A “dual” class of systems OP (sym1, anty1) is the class OP (sym2) where two
objects are moved across the membrane in the same direction rather than in the
opposite ones. We now prove a similar result for the other class.

Theorem 2. NOP3(sym2) = NRE.

Proof. As in the proof of Theorem 1 we simulate a non-deterministic counter
automaton M = (Q, q0, qf , C, P) which starts with empty counters. Again we
suppose that all instructions from P are labelled in a one-to-one manner with
{1, . . . , n} = I, and I+ (I+ ⊆ I) is a set of labels of ”increment” instructions,
I− (I− ⊆ I) is a set of labels of ”decrement” instructions, and I=0 (I=0 ⊆ I) is
a set of labels of ”zero test” instructions.

We construct the P system Π2 as follows:

Π2 = (O,E, [
1

[
2

[
3

]
3

]
2

]
1
, w1, w2, w3, R1, R2, R3, 3),

O = E ∪ {dj , ej | j ∈ I} ∪ {ti | 0 ≤ i ≤ 10}

∪ {g1, g3, Ia, I1, I2, Ic, Ob,#1,#2}

∪ {qi | qi ∈ Q},

E = {aj , bj | j ∈ I} ∪ {ck | ck ∈ C} ∪ {li | 3 ≤ i ≤ 8} ∪ {g2},

w1 = t0t1t2t3t4I1I2Ial1l2#1

∏

j∈I

ej

∏

qi∈Q

qi,

w2 = t5t6t7t8t9t10Icg3s1m2#2

∏

j∈I

dj ,

w3 = g1Obs2m1,

Ri = Ri,s ∪ Ri,r ∪ Ri,m ∪ Ri,c ∪ Ri,f ∪ Ri,a, 1 ≤ i ≤ 3.

The functioning of this system may be split in three stages as it done in
Theorem 1.

We code the counter automaton as follows. At each moment (after stage
one) the environment holds the current state of the automaton, represented by
a symbol qi ∈ Q, the membrane 2 holds the value of all counters, represented
by the number of occurrences of symbols ck ∈ C. We simulate the instructions
of the counter automaton and we use for this simulation the symbols ck ∈ C,
aj , bj , dj , ej , j ∈ I. During the first stage we bring from environment in the mem-
brane 3 an arbitrary number of symbols bj . We suppose that we have enough

symbols bj in membrane 3 to perform the computation. We also use the following
idea: we bring from environment to membrane 1 the symbols ck all time dur-
ing the computation. This process may be stopped only if all stages completed
correctly. Otherwise, the computation will never stop.

We split our proof in several parts which depend on the logical separation of
the behavior of the system. We will present rules and initial symbols for each
part, but we remark that the system that we present is the union of all these
parts.

The rules Ri are given by phases: START (stage 1); RUN (stage 2); MOVE,
CLEANUP and FIN (stage 3), and AUX.

AUX.

R1,a = {1a1 : (Ic, out), 1a2 : (I1, out)} ∪ {1a3 : (Icck, in) | ck ∈ C}

∪ {1a4 : (I1bj , in) | j ∈ I} ∪ {1a5 : (#2, in), 1a6 : (#2, out)},

R2,a = {2a1 : (Ob, in), 2a2 : (Ia, out), 2a3 : (I2, out)}

∪ {2a4 : (Obbj , out) | j ∈ I+} ∪ {2a5 : (Iaaj , in) | j ∈ I−}

∪ {2a6 : (I2bj , in) | j ∈ I},

R3,a = {3a1 : (#1, in), 3a2 : (#1, out)}

∪ {3a3 : (si, in), 3a4 : (si, out) | 1 ≤ i ≤ 2}.

Symbol I1 brings symbols bj inside membrane 1 and returns to the envi-
ronment. Symbol Ic brings symbols ck inside membrane 1 and returns to the
environment. Symbol I2 brings symbols bj inside membrane 2 and returns to
membrane 1. Symbol Ia brings symbols aj inside membrane 2 and returns to
membrane 1. Symbol Ob takes symbols bj outside membrane 2 and returns. Sym-
bols #1,#2 check for “invalid” computations. Symbols s1, s2 remember whether
the derivation step is even or odd.

START.

R1,s = {1s1 : (g1t2, out), 1s2 : (t2g2, in), 1s3 : (g3q0, out)},

R2,s = {2s1 : (t0I2, in), 2s2 : (I2#1, in), 2s3 : (I1t1, in)}

∪ {2s4 : (g1Ic, out), 2s5 : (g2t3, in), 2s6 : (t3g3, out)},

R3,s = {3s1 : (bj , in) | j ∈ I} ∪ {3s2 : (I2t1, in), 3s3 : (I1t7, in)}

∪ {3s4 : (t7g1, out), 3s5 : (g2t10, in), 3s6 : (t10Ob, out)}.

Symbols I1, I2 bring from environment a “correct number of” symbols bj in
region 3 for the computation (rules 1a2, 1a4, 2a6, 2a3, 3s1) (see Figure 8).
Notice that I2 cannot be idle, as it immediately leads to infinite computation
(rules 2s2, 3a1, 3a2), so bj in region 1 must be moved by I2 by rule 2a6.

At some point, I1 stops bringing symbols bj . I1 and I2 are removed from their
“pumping” positions, Ic is placed in region 1, where it can “pump” symbols
ck into the skin membrane, and q0 is brought into the environment to start
the simulation of the register machine. In the meantime Ob reaches region 2
(Figure 9).

bj1bj2bj3 t0I1I2#1 ⇒1a2,2s1 bj1bj2bj3I1 #1 t0I2 ⇒1a4,2a3

bj1bj2 bj3I1I2#1 t0 ⇒1a2,2a6 bj1bj2I1 #1 bj3I2t0 ⇒1a4,2a3,3s1

bj1 bj2I1I2#1 t0 bj3 ⇒1a2,2a6 bj1I1 #1 bj2I2t0 bj3 ⇒· · ·

Fig. 8. Bringing objects bj .

g2ck1
ck2

ck3
I1I2bjt1t2t3q0 t7Icg3t10 g1Ob ⇒2a6,2s3

g2ck1
ck2

ck3
t2t3q0 I1I2bjt1t7Icg3t10 g1Ob ⇒3s3,3s2,3s1

g2ck1
ck2

ck3
t2t3q0 Icg3t10 I1I2bjt1t7g1Ob ⇒3s4

g2ck1
ck2

ck3
t2t3q0 t7g1Icg3t10 I1I2bjt1Ob ⇒2s4

g2ck1
ck2

ck3
g1Ict2t3q0 t7g3t10 I1I2bjt1Ob ⇒1a1,1s1

g1ck1
ck2

ck3
Ict2g2 t3q0 t7g3t10 I1I2bjt1Ob ⇒1a3,1s2

g1ck1
ck2

Icck3
t2g2t3q0 t7g3t10 I1I2bjt1Ob ⇒2s5,1a1

g1ck1
ck2

Ic ck3
t2q0 t7t3g3g2t10 I1I2bjt1Ob ⇒2s6,3s5,1a3

g1ck1
t3ck2

ck3
Ict2g3q0 t7 g2I1I2bjt1t10Ob ⇒1s3,1a1,3s5

g1g3ck3
q0Ic t3ck2

ck3
t2 t7t10Ob g2I1I2bjt1 ⇒ · · ·

Fig. 9. End of the initialization (stage 1).

RUN.

R1,r = {1r1 : (qiaj , in), 1r2 : (bjql, out)

| (j : qi → ql, ckγ) ∈ P, γ ∈ {+,−,= 0}}

R2,r = {2r1 : (ajck, in) | (j : qi → ql, ck+) ∈ P}

∪ {2r2 : (bjck, out) | (j : qi → ql, ck−) ∈ P}

∪ {2r3 : (ajej , in), 2r4 : (ejck, out),

2r5 : (ejbj , out) | (j : qi → ql, ck = 0) ∈ P},

R3,r = {3r1 : (ajdj , in), 3r2 : (djbj , out)

| (j : qi → ql, ckγ) ∈ P, γ ∈ {+,−,= 0}}.

While Ic is bringing symbols ck into the skin membrane (rules 1a1, 1a3),
instructions (j : qi → ql, ckγ), γ ∈ {+,−,= 0} of the register machine are
simulated.

”Increment” instruction:

qiaj ckql djOb bj ⇒1r1 qiajckql djOb bj ⇒2r1 qiql ajckdjOb bj ⇒3r1

qiql ckOb ajdjbj ⇒3r2 qiql djbjckOb aj ⇒2a4 bjObqiql djck aj ⇒2a1,1r2

bjql qi Obdjck aj

Fig. 10. qi replaced by ql, ck moved into region 2.

”Decrement” instruction:

qiaj Iaql djck bj ⇒1r1 qiajIaql djck bj ⇒2a5 qiql ajIadjck bj ⇒3r1,2a2

Iaqiql ck ajdjbj ⇒3r2 Iaqiql djbjck aj ⇒2r2 bjckIaqiql dj aj ⇒1r2

bjql ckIaqi dj aj

Fig. 11. qi replaced by ql, ck removed from region 2.

Checking for zero. qi replaced by ql if there is no ck in region 2 (Figure 12),
otherwise ej comes in region 1 with ck and bj remains in region 2 (Figure 13).

qiaj ejql dj bj ⇒1r1 qiajejql dj bj ⇒2r3 qiql ajejdj bj ⇒3r1

qiql ej ajdjbj ⇒3r2 qiql djbjej aj ⇒2r5 bjejqiql dj aj ⇒1r2

bjql ejqi dj aj

Fig. 12. ”Zero test” instruction. There is no ck in region 2.

qiaj ejql djck bj ⇒1r1 qiajejql djck bj ⇒2r3 qiql ajejdjck bj ⇒3r1,2r4

qiqlejck ajdjbj ⇒3r2 qiqlejck djbj aj

Fig. 13. ”Zero test” instruction. There is ck in region 2.

MOVE.

R1,m = {1m1 : (qf l3, in), 1m2 : (m1t4, out), 1m3 : (t4l4, in)},

R2,m = {2m1 : (l3l1, in), 2m2 : (m1t6, out), 2m3 : (t6l2, in), 2m4 : (l2#2, out)},

R3,m = {3m1 : (l1c1, in), 3m2 : (l1, out), 3m3 : (l3t5, in)}

∪ {3m4 : (t5m1, out), 3m5 : (l2t8, in)} ∪ {3m6 : (l2bj , out) | j ∈ I}.

If a successful computation of the register machine is correctly simulated, then qf

will appear in region 1. A chain reaction is started, during which symbols li move
inside the membrane structure, and symbols mi move outside the membrane
structure. Notice that qf brings l3 into region 1 (rule 1m1), then l3 brings l1 into
region 2 (rule 2m1), then l1 moves objects c1 from region 2 into region 3 by
rules 3m1 and 3m2. Also, the system verifies that no objects bj are present in
the inner region (otherwise l2 would bring #2 in region 1 (rules 3m6, 2m4) and
it immediately leads to infinite computation (rules 1a5,1a6)) and moves l4 into
the skin membrane, as shown below (Figure 14).

CLEANUP.

R1,c = {1c1 : (l4s1, out), 1c2 : (s1l5, in), 1c3 : (m2#1, out)}

∪ {1c4 : (l5s2, out), 1c5 : (s2l7, in), 1c6 : (l6s2, in)},

R2,c = {2c1 : (l4, in), 2c2 : (l4s1, out), 2c3 : (l5t9, in)}

∪ {2c4 : (t9m2, out), 2c5 : (l5s2, out)},

∪ {2c6 : (l4x, out) | x ∈ {t5, t7, t10} ∪ {dj | j ∈ I}},

R3,c = {3c1 : (l5, in), 3c2 : (l5s2, out)}

∪ {3c3 : (l5x, out) | x ∈ {I1, I2, g2, t8, l3} ∪ {aj | j ∈ I}}.

l4qf l3 t4l1l2 t5t6t8c1c1 m1 ⇒1m1 l4 qf l3l1t4l2 t5t6t8c1c1 m1 ⇒2m1

l4 t4l2 l3t5t6t8l1c1c1 m1 ⇒3m1,3m3 l4 t4l2 t6t8c1 l1c1l3t5m1 ⇒3m2,3m4

l4 t4l2 t5m1t6t8l1c1 c1l3 ⇒2m2,3m1 l4 m1t4t6l2 t5t8 l1c1c1l3

⇒1m2,2m3,3m2 m1t4l4 t6l2t5t8l1 c1c1l3 ⇒1m3,3m5 m1 t4l4 t6t5l1 l2t8c1c1l3

Fig. 14. Beginning of the termination (stage 3).

Objects dj , j ∈ I and t5, t7, t10 are removed from region 2, and then objects
aj , j ∈ I and I1, I2, g2, t8, l3 are removed from the inner region. Notice that
l4 only “meets” s1 (and l5 only “meets” s2) after the corresponding cleanup is
completed. Really, it is easily to see that object l4 will be in region 2 after odd
steps of computation. Symbol s1 after odd steps of computation will be located
in region 3 (rules 3a3,3a4). Thus we cannot apply rule 2c2 and can apply rule
2c6 only, until all symbols t5, t7, t10 and dj , j ∈ I will be removed to region 1.
After that symbol l4 waits one step and together with symbol s1 moves to region
1 and finally to the environment (rules 2c2 and 1c1).

So l4 will be in the environment after even steps of computation and object l5
will appear in region 3 after odd steps of computation (rules 1c2, 2c3 and 3c1).
Notice that symbol s2 can appear in region 3 after even steps of computation
(rules 3a4,3a3). Thus we cannot apply rule 3c2 and can apply rule 3c3 only,
until all symbols I1, I2, g2, t8, l3 and aj , j ∈ I will be removed to region 2.
After that object l5 moves to the environment together with symbol s2 (rules
3c2,2c5,1c4) and object l6 is brought in region 1 (rule 1c6). At that moment
in membrane 3 among symbols c1 there are only two ”undesirable” symbols: t1
and l2.

FIN.

R1,f = {1f1 : (l6t1, out), 1f2 : (t1l7, in), 1f3 : (l7l2, out), 1f4 : (l2l8, in)},

R2,f = {2f1 : (l6, in), 2f2 : (l6t1, out), 2f3 : (l7, in)}

∪ {2f4 : (l7l2, out), 2f5 : (l8Ic, in)},

R3,f = {3f1 : (l6, in), 3f2 : (l6t1, out), 3f3 : (l7, in), 3f4 : (l7l2, out)}.

Objects t1 and l2 are removed from the inner region, as shown below (Figure 15),
and then l8 moves Ic from region 1 into region 2 (rule 2f5) so that the compu-
tation can halt.

If the computation halts, then the elementary membrane will only contain
objects c1, in the multiplicity of the value of the first register of the register
machine. Conversely, any computation of the register machine allows a correct

l7l8 l6 t1l2 ⇒2f1 l7l8 l6 t1l2 ⇒3f1 l7l8 l6t1l2 ⇒3f2 l7l8 l6t1 l2 ⇒2f2

l7l8 l6t1 l2 ⇒1f1 l6t1l7l8 l2 ⇒1f2 l6l8 t1l7 l2 ⇒2f3 l6l8 t1 l7 l2 ⇒3f3

l6l8 t1 l7l2 ⇒3f4 l6l8 t1 l7l2 ⇒2f4 l6l8 l7l2t1 ⇒1f3 l7t8l6l8 t1 ⇒1f4

l7l6 l2l8t1

Fig. 15. End of the termination.

simulation (from the construction). Thus, the class of P systems with symport of
weight 2 generate exactly all recursively enumerable sets of nonnegative integers.

4 Final Remarks

Both constructions can be easily modified to show PsOP3(sym1, anti1) = PsRE

and PsOP3(sym2) = PsRE by moving all output symbols ck to the elementary
membrane, as it is done for symbol c1. In the proof of Theorem 1 we simply
change rule 3a3: (I3, out; c1, in) by rules 3a3: (I3, out; ck, in) for all ck ∈ C and
in the proof of Theorem 2 change rule 3m1: (l1c1, in) by rules 3m1: (l1ck, in) for
all ck ∈ C.

The questions what is the size of families of numbers computed by minimal
symport/antipot (symport) P systems rules with 1 and 2 membranes is still
open.

Program check

P systems in both theorems were checked for errors by the third author using a
modification of a program that simulates P systems, originally developed by the
first author.

Acknowledgements The first author is supported by the project TIC2002-04220-
C03-02 of the Research Group on Mathematical Linguistics, Tarragona. The all
authors acknowledge the project IST-2001-32008 ”MolCoNet” and the third and
the fourth authors acknowledge also the Moldovan Research and Development
Association (MRDA) and the U.S. Civilian Research and Development Foun-
dation (CRDF), Award No. MM2-3034 for providing a challenging and fruitful
framework for cooperation.

References

1. F.Bernardini, M.Gheorghe: On the Power of Minimal Symport/Antypot. In
A.Alhazov, C.Martin-Vide, Gh.Păun (eds.): Workshop on Membrane Computing,

WMC-2003, Tarragona, July 17–22, 2003, Technical Rewport N. 28/03, Research
Group on Mathematical Linguistics, Universitat Rovira i Virgili, Tarragona (2003)
72–83.

2. F.Bernardini, A.Păun: Universality of Minimal Symport/Antiport: Five Mem-
branes Suffice. C.Martin-Vide et al. (Eds.): WMC 2003, LNCS 2933 (2004) 43–45.

3. R.Freund, M.Oswald: GP systems with forbidding context. Fundamenta Informat-
icae, 49, vol.1-3, (2002) 81–102.

4. R.Freund, A.Păun: Membrane Systems with Symport/Antiport: Universality Re-
sults. LNCS 2597, (2003) 270–287.

5. P. Frisco: About P Systems with Symport/Antiport. In Gh. Păun, A. Riscos-
Núñez, A. Romero-Jiménez and F. Sancho-Caparrini (eds): Second Brainstorm-
ing Week on Membrane Computing. Technical report of University of Seville, TR
01/2004, (2004) 224–236.

6. P.Frisco, J.H.Hoogeboom: Simulating Counter Automata by P Systems with Sym-
port/Antypot. In: Gh.Păun, G.Rozenberg, A.Salomaa, C.Zandron (eds.): Mem-
brane Computing International Workshop, WMC-CdeA 02, Curtea de Arges, Ro-
mania, August 19–23, 2002. Revised Papers. LNCS 2597, (2003) 288–301.

7. L.Kari, C.Martin-Vide, A.Păun: On the universality of P systems with Minimal
Symport/Antiport Rules. LNCS 2950, (2004) 254–265.

8. M.Margenstern, V.Rogozhin, Y.Rogozhin, S.Verlan: About P systems with min-
imal symport/antiport rules and four membranes. In Pre-Proceedings of Fifth
Workshop on Membrane Computing (WMC5), (G.Mauri, G.Paun, C.Zandron,
Eds.), Universita di Milano-Bicocca, Italy, June 14 - 16, (2004) 283 - 294.

9. C.Martin-Vide, A.Păun, Gh.Păun: On the Power of P systems with Symport and
Antiport rules. Journal of Universal Computer Science 8, (2002) 295–305.

10. M.L.Minsky: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New
Jersey (1967).

11. Gh.Păun: Computing with Membranes. Journal of Computer and Systems Science
61, (2000) 108–143.

12. A.Păun, Gh.Păun: The Power of Communication: P systems with Sym-
port/Antiport. New Generation Computing 20, (2002) 295–305.

13. Gh.Păun: Membrane computing. An Introduction. Springer-Verlag (2002).
14. G.Vaszil: On the size of P systems with minimal symport/antiport. Pre-

Proceedings of Fifth Workshop on Membrane Computing (WMC5), (G.Mauri,
G.Paun, C.Zandron, Eds.), Universita di Milano-Bicocca, Italy, June 14 - 16, (2004)
422 - 431.

15. C. Zandron. The P systems web page. http://psystems.disco.unimib.it/.

