
Difference and Union of Models

Marcus Alanen and Ivan Porres

TUCS Turku Centre for Computer Science
Department of Computer Science,

Åbo Akademi University
Lemminkäisenkatu 14, FIN-20520 Turku, Finland
e-mail:{marcus.alanen,ivan.porres}@abo.fi

Abstract This paper discusses the difference and union of models in the context
of a version control system. We show three metamodel-independent algorithms
that calculate the difference between two models, merge a model with the dif-
ference of two models and calculate the union of two models. We show how to
detect union conflicts and how they can be resolved either automatically or man-
ually. We present an application of these algorithms in a version control system
for MOF-based models.
Keywords: Metamodelling, Delta Calculation, Revision Control, UML

1 Introduction

Asset, version and configuration management is an important activity in any large soft-
ware development project. This is still true if we use models as the main description
for our software. Sooner or later, we will have not one but several related models de-
scribing the same software. These models may represent different designs of the same
subsystem, different subsystems created in parallel by several designers, or a combina-
tion of both cases. If the models are large, we need special tools to compare and merge
several different models into a new one that contains all the changes proposed by all the
developers.

We may illustrate this problem as follows. Let us assume that the original model
shown at the top of Figure 1 is edited simultaneously by two developers. One developer
has focused his work on the classes A and B and decided that the subclass B is no longer
necessary in the model. Simultaneously, the other developer has decided that class C
should have a subclass D. The problem is to combine the work of both developers into
a single model. This is the model shown at the bottom of Fig. 1.

In this article we study how to perform this operation in a generic way. The problem
is not trivial. In the example, if we would just perform the union of the models, i.e., take
all elements that appear in the two versions of the model, we would obtain a model that
does not contain the changes proposed by the first developer. The solution is based on
calculating the final model based on the differences from the original model. Figure 2
shows an example of the difference of two models, in this case the difference between
the models edited by the developers and the original model. The result of the differ-
ence is not always a model, in a similar way that the difference between two natural
numbers is not a natural number but a negative one. An example of this is shown in the

B

CA

Original Model

CA

Designer 1

B

CA

D

Designer 2

CA

D

Final Model

Figure1. Example of the Union of Two Versions of a Model

B

CA

D

−

B

CA

=

D

CA

−

B

CA

=
B

-

-

Figure2. Example of the Difference of Models

bottom part of Fig. 2. In this case, the difference of the models contains negative model
elements, i.e., elements that should be removed from a model.

In the article we show two algorithms to calculate the difference between two mod-
els and to merge a model with a difference. Given two models M1 and M2 defined in
UML or another modelling language based on the Meta Object Facility (MOF) [6], we
define the following operations:

Difference of two models M2
� M1

� ∆
Merge of a model and a difference M1

� ∆ � M2

Once we know how to operate with differences between two models, we can solve
our original problem by computing the union of two versions of a model as follows:

Mfinal
� Moriginal

���
M1
� Moriginal � ��� M2

� Moriginal �
Figure 3 shows this operation intuitively. In practise, the implementation of this

operation is complicated by the fact that the two developers may have changed the

same subset of the model. This situation can lead to conflicts and it may not be possible
to apply all changes into the final model.

B

CA

+

D

+

B

-

-

=
CA

D

Figure3. Example of the Union Based on Differences

The presented algorithms are implemented in a generic way, i.e., the algorithms are
not defined in terms of a specific modelling language but can be applied in any MOF-
based modelling language. However, these algorithms crucially rely on the existence of
a universally unique identifier for each model element.

These basic operations are useful in many problems that appear in model manage-
ment, especially in a distributed setting. An obvious application is a version control
system with optimistic locking that allows many developers to work on a model simul-
taneously. Also, a model repository that stores different revisions of a model may store
the difference between revisions instead of complete models, saving storage space. Sim-
ilarly, two computers connected by a slow link may interchange a difference between
models, saving bandwidth and communication time.

The paper is structured as follows: Section 2 states the minimum requirements of the
metamodel and the model elements in our modelling language. In Section 3, we explain
the algorithm for calculating the difference between two models and for applying said
difference to one model, producing the other. These algorithms alone can be used for
saving transmission time or storage space. Section 4 explains how these algorithms are
used to create the union algorithm between two models and their base model. Conflict
situations in such cases are a fact, and a closer look of what kinds of conflicts can be
avoided are studied. We conclude in Section 5 by stating what problems are solved, and
how to build further on this work.

2 Models and Metamodels

This section describes what requirements are set for the algorithms to work. In particu-
lar, we note that these requirements are supported by the UML standard as proposed by
the Object Management Group (OMG) [5].

2.1 The Metamodel Layer

A model consists of a set of linked elements. Each element in a model conforms to a
type, called a metaclass, while each link between two model elements conforms to a
meta-association. The meta-association is further divided into two association ends or
metafeatures.

In the UML standard, the metamodel is defined using classes, that may contain
attributes of a given type, generalisations between classes and associations between
the classes. There is a special kind of association called composition that represent a
whole/part relationship between the model elements.

Attributes and associations in the metamodel have two other properties: multiplicity
and order. The multiplicity describes a constraint on the number of values that can be
stored in the attribute or association end. Additionally, these elements may be ordered.
An example of an ordered feature is the sequence of parameters in a method.

The complete definition of the metaclasses and meta-associations allowed in a mod-
elling language is called the metamodel.

We assume that each basic data type used in a metamodel has a default value, called
the “zero” of the metafeature. The default value of an integer is the value 0, the default
value of a string is the empty string, and the default value of an enumeration is its first
value. The default value of unordered and ordered associations are the empty set and
empty sequence, respectively.

Although attributes are unidirectional features, it is of utmost importance to keep
the bidirectionality of associations; if an element A has an association to B, then B
must have an association back to A. For example, as a UML 1.4 Parameter element
has a type association to a Classifier element, then also that Classifier element has a
typedParameter association back to the Parameter element. Any operation on a model
must preserve the association in a consistent state. The metafeature from A to B is said
to have an opposite metafeature from B to A. An ordered metafeature can also have an
unordered metafeature as its opposite metafeature; therefore, the actual contents of the
ordered metafeature comprise a set, not a bag.

2.2 Unique Element Identifiers

Some parts of the algorithms are greatly simplified by requiring that each element has
a universally unique identifier (UUID). In practise, several other operations on models
also use such an identifier, so it is sound to take advantage of it. The textual encod-
ing of a model using XML Metadata Interchange (XMI) [7] is a prime example of an
OMG standard which uses unique identifiers. An XMI identifier is usually generated
as defined by the OMG, and is of the form namespace:uuid. An example of an identi-
fier in the DCE [1] namespace is “DCE:2fac1234-31f8-11b4-a222-08002b34c003”. It
is assumed that the UUID of an element does not change after it has been set, and the
uniqueness of the generator’s UUIDs is not questioned.

3 Model Difference and Merge

This section describes how to calculate the difference between two models, Mold and
Mnew. We represent the result of this operation as a ∆. It contains a sequence of trans-
formations that when applied to model Mold, yields model Mnew.

Mnew
� Mold = ∆

Mold
� ∆ = Mnew

3.1 Description of a Delta

We have shown informally in the introduction that the result of the difference between
two models may contain negative elements, i.e. information that should be removed
from a model. We consider that it is more intuitive to represent a ∆ in operational terms;
not as a set of elements and negative elements but as a sequence of transformations that
add or remove elements from a model.

We have identified seven elementary transformations in a model that will be used
as the basis for defining a ∆. We assume that it is not possible to change the type of a
model element, e.g., a UML Class cannot become a Package, and an element cannot
change its UUID. The operations in a ∆ are:

– Element creation and deletion.� new
�
e � t � : Create a new element of type t with the UUID of e. By default, a

new element has all its features set to their default values.� del
�
e � t � : Delete an element of type t with the UUID of e. An element may only

be deleted if all its features are set to their default values.
– Modification of a feature.

Modification of a feature of type f of an element e with UUID u. Where necessary,
there is another element et with UUID ut . Depending on the type of the feature, this
might mean one of the following modifications:� set

�
e � f � vo � vn � : Set the value of e � f from vo to vn, for an attribute of primitive

type.� insert
�
e � f � et � : Add a link from e � f to et , for an unordered feature.� remove
�
e � f � et � : Remove a link from e � f to et , for an unordered feature.� insertAt
�
e � f � et � i � : Add a link from e � f to et , at index i, for an ordered feature.� removeAt
�
e � f � et � i � : Remove a link from e � f to et , which is at index i, for an

ordered feature.
It should be noted that none of the operations try to maintain bidirectionality of
associations. It is maintained at a higher level in the actual difference algorithm.
Also, for transferring operations over the network, the UUID of an element must
be used instead of the actual element.

These operations have three properties. First, the positive operations (new, set, insert
and insertAt) are complete in the sense that they can be used to represent any model.
Also, each operation has a dual operation with the opposite effect. The map between
operations and their dual operations is given in Table 1. This is needed to calculate the
inverse of a ∆. Finally, the new and del operations do not contain references to other
elements, which will simplify the construction of algorithms that work with a ∆.

For the remainder of this paper, we use the notation
�
a � b � c ������� � for sequences, and�

a � b � c �������	� for sets. The ∆ is partitioned into three separate sequences, ∆ � �
C � F � D �

such that all new
�
e � t � operations are in C, all del

�
e � t � operations are in D, and the rest

are in F.
An example of a difference between two models is given in Figure 4, in which the

old model is on the left and the new model is on the right. In the ∆, two new elements
u2 and u3 are created. They are connected to the root Model element u0 (not shown)
via their namespace association, and the Model connects them to its ownedElement

Operation O Dual operation Õ

new � e � t � del � e � t �
del � e � t � new � e � t �
set � e � f � vo � vn � set � e � f � vn � vo �
insert � e � f � et � remove � e � f � et �
remove � e � f � et � insert � e � f � et �
insertAt � e � f � et � i � removeAt � e � f � et � i �
removeAt � e � f � et � i � insertAt � e � f � et � i �

Table1. The Map Between Operations and Dual Operations.

AClass

∆ ����� new � Class � u2 ���
new � Generalization � u3 �	�
�

� insert � u3 � namespace � u0 ���
insert � u3 � parent � u1 ���
insert � u3 � child � u2 ���
insert � u1 � specialization � u3 ���
insert � u0 � ownedElement � u2 ���
insert � u0 � ownedElement � u3 ���
insert � u2 � namespace � u0 ���
insert � u2 � generalization � u3 ���
set � u2 � name � “” � “Sub” �
�	�

���
�

AClass

Sub

Figure4. Difference Between Two Simple Models.

composition, due to bidirectionality constraints. The new class u2 is connected to the
old class u1 via the Generalization element, using its specialization and generalization
features. Since all features start with their respective “zero” value, the name feature of
the new class is also set by the difference.

XMI has facilities for representing arbitrary differences between two models, us-
ing an XML element called XMI.difference. The positive operations new, insert and
insertAt can be described in a XMI document using the XMI.add element, while the
negative operations del, remove and removeAt can be specified using the XMI.delete
element. The set operation can be represented using the XMI.replace element. XMI
also specifies that differences must be applied in the order defined, which is also a re-
quirement of the algorithms in this paper.

3.2 Difference Algorithm

Once we know how to represent the difference between two models, we can describe an
algorithm to calculate it. The proposed difference algorithm has four steps, as discussed
in [2]. The objective is first to create an unambiguous mapping between the elements in

Mold and in Mnew and then calculate an exact sequence of operations that can transform
each element in Mold to the corresponding one in Mnew.

Map This phase creates a mapping between elements in Mold and Mnew. In our case,
the UUIDs of the elements serve as the map. From this, we create Eold

�
u � � e such that

u is the UUID of e � Mold and Enew
�
u � � e such that u is the UUID of e � Mnew. It is

possible to create such a mapping without relying on the UUIDs, but it would be a lot
harder and resource-intensive. However, it could yield a smaller ∆.

Create The ∆ should contain an operation to create each element in Mnew that does not
exist in Mold. Given our mapping between elements in Mold and Mnew, we define the
sequence C of elements that need to be created as follows:

C : � �
new
�
e � t � ��� e � t : e � Enew

�
dom
�
Enew ��� dom

�
Eold � ��� t � typeof

�
e � �

Delete Similarly, the ∆ should contain an operation to delete each element in Mold that
does not exist in Mnew. Again, the sequence D of elements that need to be deleted is
easy to define:

D : � �
del
�
e � t � ��� e � t : e � Eold

�
dom
�
Eold ��� dom

�
Enew � ��� t � typeof

�
e � �

After defining the sequences C and D, it is necessary to update the map between
Mold and Mnew to be bijective. This is accomplished by updating Eold and Enew to have
the same domain, by adding new elements into Eold which are in Enew but not in Eold,
and vice versa. The created elements have default values for all their features. Now
there exists a set P of tuples

�
eo � en � such that for each element eo � range

�
Eold � there

exists an element en � range
�
Enew � with the same UUID as eo.

Change In this phase we match the features for each pair of elements
�
eo � en � � P, both

with the UUID u. This is done by creating a sequence of operations for each kind of
feature f , which are all added to a sequence F . Applying the operations modifies eo � f
into en � f .

Elements eo and en have the same type, and thus the same set of features. Then, for
each metafeature f in the type of eo, create operations based on the following:

– For an attribute feature of primitive type, if the values of eo � f and en � f differ, create
an operation set

�
e � f � eo � f � en � f � .

– For an unordered feature, create the following operations:�
insert

�
e � f � et � ��� et : et � en � f � eo � f � remove

�
e � f � et � ��� et : et � eo � f � en � f � .

– For an ordered feature, the element order must be preserved. The smallest sequence
of changes that transform one sequence into another is equivalent with the Longest
Common Subsequence problem, to which there exists efficient solutions, e.g., by
Myers [4]. The result is a sequence of insertAt and removeAt operations which,
when applied to eo � f , transforms it into en � f at minimal size cost. The sequence
has length N

�
M � 2L, where N and M are the lengths of the features, and L is

the length of the longest common subsequence of N and M. The operations in the
sequence should be added to F .

A complete ∆ between two models is then specified by a sequence of all operations
as created by the above algorithm. This is a sequence of element creations, feature
modifications and element deletions, in that order, and so ∆ � �

C � F � D � . Such a ∆ should
guarantee two properties:

– For each delete operation in D, there are a set of operations in F that reset the
features of the elements to be deleted to their default value.

– The complete set of operations in F maintains the associations in a consistent
state. The individual operations in F only update one association end. However,
we should ensure that for each operation in F that updates an association end, there
is a corresponding operation that updates the opposite end.

The algorithm proposed in this section satisfies these properties.

3.3 Merge Algorithm

To merge a difference to a model is to apply the transformations contained in a ∆ to
a model. Given a model Mold and a difference ∆, we denote the merge operation as
Mold

� ∆ or ∆ � Mold � .
Given a ∆ � �

C � F � D � , the merge algorithm has three steps that should be performed
in this order:

1.
�

new
�
e � t � � C: Create an element of type t with the UUID of e.

2.
�

o � F : Make the feature change o.
3.

�
del
�
e � t � � D: Delete the element of type t with the UUID of e.

The actual implementation of these transformations depends on the action language
used to transform the models. A requirement of a metamodel is that we have a reflection
interface for determining and querying the metafeatures of all metaclasses, and a facility
for modifying the features of model elements.

3.4 Inverse of a Delta

Given two models Mold and Mnew and a difference ∆ � �
C � F � D � such that Mold

� ∆ �
Mnew, we can calculate the inverse of a difference ∆̃ such that Mnew

� ∆̃ � Mold.
Calculating the inverse of a difference is a simple process that only requires to

reverse the sequences in ∆ and replace each operation with its dual.

∆̃ � �
C̃ � F̃ � D̃ �

C̃ � �
c̃0 ����� c̃#D � 1 � c̃i

� dual
�
d#D � i � 1 � �

F̃ � �
f̃0 ����� f̃#F � 1 � f̃i

� dual
�
f#F � i � 1 � �

D̃ � �
d̃0 ����� d̃#C � 1 � d̃i

� dual
�
c#C � i � 1 � �

Once we have calculated the inverse of a ∆, it can be applied as described in the
merge algorithm.

4 Union of Models Based on Model Differences

An interesting problem emerges when two differences, ∆1 and ∆2, should be applied
onto the same model. This occurs frequently in a distributed development environment,
or with a repository where elements under development cannot be locked before modi-
fication.

The objective is to apply ∆1 first, then apply ∆2. It should be noted that the result
ought to be the same no matter how the actual differences are applied,

M � � ∆1
� ∆2
�
Mbase � � � ∆2

� ∆1
�
Mbase � �

However, since the differences are calculated relative to Mbase, applying one ∆ first
would create a model which is different from the base model, and the other ∆ could not
be applied as such. To see why this is true, consider an ordered feature with elements�
B � C � and differences insertAt

�
A � 0 � and insertAt

�
D � 2 � . Applying the differences would

create either the correct
�
A � B � C � D � or the incorrect

�
A � B � D � C � , depending on the order

in which the differences were applied.
Another example is a set

�
A � B � and differences insert

�
C � and insert

�
C � . The second

operation is spurious, since the first difference already accomplishes the task: adding C
to the set. Removing the other operation shortens ∆.

Thus, we need a reliable method to modify a ∆ according to another ∆, and a shorter
∆ is naturally preferred. The modification is necessary to avoid errors. We define the
difference minimisation operator � :

∆ �2 � � � ∆2 � ∆1 � � ∆ �1 � � � ∆1 � ∆2 �
Now the equation becomes:

M � � ∆ �1 � ∆2
�
Mbase � � � ∆ �2 � ∆1

�
Mbase � �

This principle is also illustrated in Figure 5. Without loss of generality, this paper
discusses only the calculation of ∆ �2 � � � �C2 � F2 � D2 � �

�
C1 � F1 � D1 � � .

M �
� � ��� ��� �

M1 M2

� � ������ �

Mbase

∆2∆1

∆ 	1∆ 	2

Figure5. The principle of calculating the union of two models, given their base model. Either
difference is modified according to the other one, and then applied.

4.1 Difference Minimisation

The calculation of
�
C �2 � F �2 � D �2 � � � � �C2 � F2 � D2 � �

�
C1 � F1 � D1 � � has several different cases:

element creation and deletion, changes to the attributes, unordered features and ordered
features. Given our method of modifying each feature of each element with a small
sequence of operations, the calculation of F �2 also happens one feature at a time. The
difference minimisation methods of the various kinds of operations, and which conflicts
can occur, are presented in the following subsections. A common resolution is to ignore
an operation o � F2 instead of adding it to F �2. This also implies that for bidirectional
features, the operation for the opposite feature must have the same resolution as o,
properly ignored or added to F �2.

Element Creation and Deletion The set of elements created in ∆2 are unaffected by
any operations in ∆1. Due to the UUID generator’s uniqueness, the operations in ∆1

cannot refer to the new elements in ∆2. Therefore, all new
�
e � t � operations in ∆2 are

valid.
Element deletion can be a source of conflicts. For each del

�
e � t � operation in ∆2,

if ∆1 also has the same operation, we can remove it from ∆2, since ∆1 will already
delete the element. The worst case occurs when one ∆ modifies e without deleting it,
and the other ∆ has an operation for deleting it. One solution would be to ignore the
modifications and delete the element. However, it is questionable if this is the correct
behaviour and has the intended effect every time, so manual resolution might be the
only viable choice.

C �2 � C2

D �2 � �
o
�
o � D2 � o �� D1 � �

in general �

Setting Attributes Difference minimisation calculations for attributes is straightfor-
ward. There is a conflict if both differences try to change the same attribute feature
of primitive type with operations set

�
e � f � vo � vn1 � � F1 and set

�
e � f � vo � vn2 � � F2 and

vn1 �� vn2 . Then, either the operation is not added to F �2, or it takes precedence as
set
�
e � f � vn1 � vn2 � , as requested by the user. If vn1

� vn2 , the operation does not have
to be added to F �2, since the operation in F1 already does it.

For operations set
�
e � f � vo � vn1 � � F2 where set

�
e � f � vo � vn1 � �� F1, the operation can

be added as such to F �2. Since attribute features are unidirectional, there is no opposite
feature that must be updated as well.

� � F1 � F2 � � �
o
�
o
�
e � f � vo � vn2 � � F2 � o

�
e � f � vo � vn1 � �� F1 � o is set �

Unordered Features Each remove
�
e � f � et � operation in F2 can be added to F �2 if it does

not exist in F1. Each insert
�
e � f � et � operation in F2 can be added to F �2 if it does not exist

in F1. For bidirectional features, it is important to only add these operations to F �2 if a
similar operation can be added to F �2 for the opposite feature, which can be unordered
or ordered.

If there are no multiplicity constraints on the feature, no conflicts are possible. In
particular, many features have a multiplicity constraint of “at most one element”. If both
differences add elements to such a feature, manual resolution must choose which one
of the operations should prevail, but otherwise the following suffices:

� � F1 � F2 � � �
o
�
o � F2 � o �� F1 � � o is remove � o is insert � �

Ordered Features The idea of difference minimisation for ordered features is to in-
terleave the insertAt and removeAt operations in ∆2 with the ones in ∆1. This is ac-
complished one feature at a time, so we work with insertAt and removeAt operations�
f0 ��������� fm � 1 � � fi � F2, and

�
g0 ������� � gn � 1 � � gi � F1. The original sequence of elements is

denoted Forig. It is not straightforward which operations in F2 should be added into F �2,
and as we have seen in previous examples in the introduction in section 4, the indices
of the individual fi operations might need to be modified.

Currently, this is accomplished by our algorithm in Figure 6. It takes as input param-
eters two sequences of operations F1 and F2 which contain operations insertAt

�
e � f � et � i �

and removeAt
�
e � f � et � i � for a fixed element e and feature f . The operations in each se-

quence come in index order, beginning from the smallest index, and with insertions
occurring before deletions. Because conflicts are inevitable, the output is a set of se-
quences, from which the user must choose one solution, whose operations will be added
to F �2. In the algorithm,

� � corresponds to sequence indexing, � to assignment, � to
comparison, and

�
s
�
to the length of sequence s.

� � F1 � F2 � � difference_minimisation_for_ordered_feature
�
F1 � F2 �

The algorithm works by scanning through F2 while keeping track of the changes in
F1. Most notably, it removes the operations in F2 which were already performed in F1,
and interleaves the other operations by modifying the indices, to form F �2.

Two integers s1 and s2 index into each sequence’s operations. Additionally, we keep
offset values a1 and a2 which track how many insertions and deletions have occurred
in the other sequence, from indices 0 (inclusive) to si (exclusive). An offset value tells
how much an index has to be adjusted to reveal its real position, its relative index, in
the unified sequence. As an example, an insertion with a low index in F1 will early
increase a2 by one, and therefore all operations in F2 will afterwards be adjusted one
index forward, to keep F2 in synchronisation with the operations in F1.

At every iteration, the current operations o1
� F1

�
s1 � and o2

� F2
�
s2 � are retrieved,

and their relative indices are compared (lines 4, 8 and 13). If o1 occurs before o2, the
offset a2 is modified according to the command in o1, and the next operation in F1

is taken (lines 5–7). If o2 occurs before o1, the offset a1 is modified according to the
command in o2, and the next operation in F2 is taken (lines 9–12).

When the current operations occur at the same index, a closer look at the actual
operations is taken. If both operations remove an element, it must be the same element
they are removing, so the operation can be removed from F2 (lines 14–17). If o1 removes
and o2 inserts an element, the insertion takes precedence and s2 advances to the next
operation, while the offset a1 is increased (lines 18–19). Similarly, if o1 inserts and o2

removes an element, s1 advances to the next element and a2 is increased (lines 35–36).

1 function worker(F1, F2, s1, s2, a1, a2):
2 while s1 < � F1 � and s2 < � F2 � :
3 o1, o2 � F1 � s1 � , F2 � s2 �
4 if o1.index + a1 < o2.index + a2:
5 if o1.command � removeAt: a2 � a2 - 1
6 if o1.command � insertAt: a2 � a2 + 1
7 s1 � s1 + 1
8 else if o1.index + a1 > o2.index + a2:
9 if o2.command � removeAt: a1 � a1 - 1

10 if o2.command � insertAt: a1 � a1 + 1
11 o2.index � o2.index + a2
12 s2 � s2 + 1
13 else:
14 if o1.command = removeAt:
15 if o2.command = removeAt:
16 F2.remove(s2)
17 s1 � s1 + 1
18 else if o2.command � insertAt:
19 a1, o2.index, s2 � a1 + 1, o2.index + a2, s2 + 1
20 else:
21 if o2.command = insertAt:
22 if o1.value = o2.value:
23 F2.remove(s2)
24 s1 � s1 + 1
25 else:
26 resultsa � worker(F1, F2, s1+1, s2, a1, a2+1)
27 F2 � s2 � .index � F2 � s2 � .index + a2
28 resultsb � worker(F1, F2, s1, s2+1, a1+1, a2)
29 if |resultsa[0] < |resultsb[0]|:
30 return resultsa

31 else if |resultsa[0]| > |resultsb[0]|:
32 return resultsb
33 else:
34 return resultsa � resultsb
35 else:
36 a2, s1 � a2 + 1, s1 + 1
37 while s2 < |F2 � :
38 F2 � s2 � .index � F2 � s2 � .index + a2
39 s2 � s2 + 1
40 return [F2]
41
42 function difference_minimisation_for_ordered_feature(F1 , F2):
43 return worker(F1, F2, 0, 0, 0, 0)

Figure6. Algorithm for modifying F2 of an ordered feature, given that F1 has already been ap-
plied.

If both operations insert an element, and it happens to be the same element, we can take
a small shortcut by removing the relevant operation from ∆2 (lines 22–24). Otherwise,
the only real conflict occurs when both o1 and o2 have insertion operations at the same
index: either o1 or o2 should take precedence, but we do not know which would create
a shorter modified ∆2. Thus, we recurse with both variants (lines 26–28) and choose
the difference which creates a shorter, modified ∆2 (lines 29–34). Finally, we make sure
that all operations in ∆2 have their indices modified by a2 (lines 37–39).

The most common conflict occurs when both differences insert different elements
at the same index. Of importance is also to remember that the resulting sequence
F �2 � F1

�
Forig � � cannot contain the same element twice. The algorithm does not check

for such possibilities when interleaving the operations, so the resulting sequence must
be inspected for such occurrences, and the user must choose which elements to remove,
before modifying the feature e � f .

Figure 7 shows an example of the algorithm for interleaving ordered features.

� A � C �
F1 � � insertAt � B � 1 �
��� � F2 ��� insertAt � D � 2 �
�

�A � B � C � � A � C � D �
F 	2 � � insertAt � D � 3 �	��� �

�A � B � C � D �

Figure7. Example of a merge of an ordered sequence. Note how the insertion of B at index 1
pushes the insertion of D from index 2 to index 3.

4.2 A Version Control System

Metamodels have, in addition to the constraints expressible by MOF, a set of well-
formed rules (WFR) which determine if a model is a valid instance of the metamodel.
On a metamodel-independent level, the WFRs of a metamodel cannot be kept. There-
fore, even a successful, conflict-free union can still be invalid in the rules of the meta-
model. In these cases manual resolution may seem like the only choice, but metamodel-
specific resolution may also automatically resolve some of the problems by analysing
the resulting (non-well-formed) model, and modifying it to a well-formed state.

One example of a metamodel-specific resolution mechanism presents itself with
merging diagram information. The diagram elements themselves do not have any se-
mantic meaning, so the features of the diagram elements are not nearly as correctness-
critical as the underlying model. For example, conflicting diagram element coordinates
on the diagram canvas can more or less be completely ignored by removing or mod-
ifying the relevant operations from ∆2. Clearly, there is a strong need for metamodel-
specific resolvers.

The schema in Figure 8 summarises a version control system for models. The dif-
ference under modification, ∆2, passes through several filters which modify it to better

fit ∆1
�
Mbase � . Obviously, all possible mechanic resolution mechanisms should be tried

before manual resolution is used. The algorithms described in this paper work as the
first, metamodel-independent filter.

∆2�

Metamodel-independent resolver
�

∆ 	2�

Metamodel-dependent resolver
�

∆ 	 	2�

Manual resolution
�

∆ 	 	 	2�

Apply ∆ 	 	 	2 � ∆1 � Mbase � �

Figure8. A complete merging system with three distinct resolution steps.

The algorithm in this section can be further extended. Given a base model Mbase and
n differences ∆1 � ∆2 ������� � ∆n, we notice that the amount of differences can be reduced by
taking the union M � ∆ �2 � ∆1

�
Mbase � � , and calculating a difference ∆1 �

� M � Mbase. Now
we have the same base model Mbase and n � 1 differences ∆1 � � ∆3 � ∆4 ������� � ∆n. Iterating
through this algorithm we have the final model M � . This is important in a repository of
a version control system for models, where several developers base their work on some
common base model, and later commit it back to the repository, merging their changes
with the work of others.

It remains to be investigated if the above mechanism is feasible, or if a merging
algorithm is required which would consider more differences in parallel [3] [8].

5 Conclusions and Related Work

This work is not specific to UML but to MOF. It has presented several metamodel-
independent algorithms regarding difference calculation between models. We have de-
scribed a difference calculation algorithm between two models and a merging algorithm
for applying the difference to the original model to produce the target model. Addition-
ally, we have shown how to make the dual operations. These algorithms work using
differences represented as a sequence of operations. The set of operations is minimal,
complete and each operation has a dual.

Furthermore, the difference calculation is extended to form a union algorithm, where
two separate modifications are made to a base model, and the union algorithm combines

both differences into one model by properly interleaving, where possible, the operations
in the latter difference with the former difference. At all parts of the difference calcu-
lations, distinguishing unordered metafeatures from ordered ones is important, since
difference calculation becomes much easier with unordered metafeatures. Ignoring the
order criteria leads to very fast change detection for hierarchical information [9], and
this has also been researched by [10].

Additionally, we have shown how to use these algorithms to create a version control
system. However, these basic algorithms should be extended to support metamodel-
specific resolution mechanisms.

There are several cases where merge conflicts are a fact and manual resolution is
required. Modifying the same attribute or the same ordered feature easily creates such
situations. For association features, the opposite feature must also be kept in synchroni-
sation. The extreme case of deleting an element even though another difference merely
modifies it slightly leads to a complex question; which difference should be prioritised?
Further work in this area is clearly required as automatic conflict resolution can be
considered important in a modelling framework.

Acknowledgements

We would like to thank the reviewers for their suggestions to this paper. Also, we would
like to acknowledge and thank Johan Lilius for his contribution to the work that has lead
us to this article, and Ion Petre for helpful advice.

References

1. CAE Specification. DCE 1.1: Remote Procedure Call, 1997. Available at http://www.
opengroup.org/onlinepubs/9629399/toc.htm.

2. Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer Widom.
Change Detection in Hierarchically Structured Information. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 493–504, 1996.

3. Tom Mens. A State-of-the-Art Survey on Software Merging. IEEE Transactions on Software
Engineering, 28(5):449–462, May 2002.

4. Eugene W. Myers. An O(ND) Difference Algorithm and Its Variations. Algorithmica,
1(2):251–266, 1986.

5. Object Management Group. http://www.omg.org/.
6. OMG. Meta Object Facility, version 1.4, April 2002. Document formal/2002-04-03, avail-

able at http://www.omg.org/.
7. OMG. XML Metadata Interchange, version 1.2, January 2002. Available at http://www.

omg.org/.
8. Dewayne E. Perry, Harvey P. Siy, and Lawrence G. Votta. Parallel Changes in Large Scale

Software Development: An Observational Case Study. In Proceedings of the International
Software Engineering Conference, April 1998.

9. Yuan Wang, David J. DeWitt, and Jin-Yi Cai. X-Diff: An Effective Change Detection
Algorithm for XML Documents. 2001. Submitted for publication. Available at http:
//citeseer.nj.nec.com/449452.html.

10. Albert Zündorf, Jörg P. Wadsack, and Ingo Rockel. Merging Graph-Like Object Structures.
In Proceedings of the Tenth International Workshop on Software Configuration Management,
2001.

