
The Coral Modelling Framework

Marcus Alanen, Ivan Porres
TUCS Turku Centre for Computer Science

Department of Computer Science,
Åbo Akademi University

Lemminkäisenkatu 14, FIN-20520 Turku, Finland
e-mail:{marcus.alanen,ivan.porres}@abo.fi

Abstract

The technology to fully support model-based software development ap-
proaches such as OMG’s model driven architecture is still in its infancy.
There is still a lot to be learned about how a modelling framework should
be constructed and used to enable using models as the only description of
a software under construction and model transformation as the basic step in
software development. In this short paper, we describe Coral, our own im-
plementation of a modelling tool and some discoveries related to modelling
and metamodelling that we have found.

Keywords: Modelling Frameworks, Model Driven Engineering, Meta-
modelling, Modelling

1 Introduction

The advance of modelling techniques both in academia and industry has lead to
the development of several commercial modelling tools. In this paper, we present
our work on Coral, a generic open source tool for modelling, and how we have
been able to experiment with novel ideas in modelling. The research area of mod-
elling tools is important as solid frameworks are required to empower software
developers to actually use the benefits of a model driven architecture.

In the next section, we go through the more important features of Coral, and
how it manages to create a flexible approach to querying and manipulating mod-
els. We finally conclude with some remarks on what features we consider impor-
tant in a modelling framework.

2 Coral Features

Todays de facto modelling environment adhere to the specifications defined by the
Object Management Group (OMG) more or less closely simply because of prac-
ticality; they have the broadest audience. OMG defines a modelling environment

1



in four layers which are, from highest to lowest, the metametamodel, the meta-
model, the model and the runtime layers. Each layer serves as a description of
what can be accomplished in the layer immediately below it, akin to class defini-
tions providing which objects can be created in an object-oriented language. The
metametamodel is fixed to the Meta Object Facility (MOF) [6]. The most widely
known metamodel is the Unified Modelling Language (UML) [3].

While UML has created useful ways to describe software systems in a visual
language, the semantic preciseness of metamodelling and modelling constructs
has been lacking. Unfortunately the various specifications do not help. Coral is
an attempt to seek practical and theoretical issues in metamodelling and modelling
standards and outside standards and provide working solutions. In the next sub-
sections various aspects of Coral are brought forward that show how it fits as a
researcher’s tool.

2.1 A Dynamic Metamodelling and Modelling Tool

The Coral framework is based on few but important principles. The most funda-
mental is the notion of being metamodel-independent, i.e., Coral positions itself
at the top of OMG’s layers creating a metametamodel interface. Using it, meta-
models and models can be created at runtime. In several other modelling tools,
there is only one or a few static metamodels to choose from; in Coral, metamodels
are first-class citizens. Large parts of Coral try to be as ignorant of the underly-
ing metamodel as possible, and several interesting algorithms and problems arise
from this. The Coral metametamodelling layer is static, which has the implication
that users cannot experiment with new metametamodelling techniques. While the
OMG standards are self-referencing and self-defining, this is usually not possible
to do in a software program, so there is a limitation to the level of flexibility that
can be constructed.

Even though Coral can create any metamodel at runtime, there are still some
fixed metamodel elements (metaelements) for primitive datatypes such as inte-
gers, strings and floating-point values. To represent diagrams, the XMI-DI [7]
metamodel is supported.

As the de facto serialisation format for models is the XML Metadata Inter-
change (XMI) [5], no metamodels (as defined in Coral) per se can be loaded or
saved. Trivially this is rectified by noting that every metamodel can be interpreted
as a model which therefore must have a metamodel. This metamodel is called the
Simple Metamodel Description language (SMD) in Coral, and then metamodels
can be represented as SMD models. SMD can be seen as analogous to MOF. The
SMD metamodel is used to load models, from which metamodels can be created
using a special routine, model2metamodel. This arrangement can be seen in Fig-
ure 1. Similarly, the metamodel can be transformed back to a model (which has
SMD as its metamodel) using metamodel2model. This is portrayed in Figure 2.

Naturally this arrangement creates a chicken-and-egg problem in practice with
respect to the SMD language. This is circumvented by bootstrapping Coral with

2



Model of UML 1.4

UML 1.4

User Model

SMD

Instance of Instance of
model2metamodel

Figure 1: Lifting a model to the metamodel layer. The Simple Metamodel De-
scription language (SMD) is statically linked into Coral. Using it, other meta-
models can be loaded as models and then transformed into metamodels.

Instance of Instance of

SMDUML 1.4

Model of UML 1.4User Model

metamodel2model

Figure 2: Lowering a metamodel to the model layer, the opposite operation of
Figure 1.

a hand-written SMD metamodel which is statically linked into Coral.
At the moment, there is no explicit support for the lowest layer in Coral. How-

ever, this is not a problem, since a user can transform (parts of) their model into
an SMD model, which can in turn be transformed into a metamodel M. Thus, ob-
jects in the runtime layer can be simulated by a model with a suitable metamodel.
Having generic support for two layers (the model and the metamodel) seems to be
enough, although we do not have the empirical evidence to support this argument
yet.

An interesting feature of the dynamic nature of the metamodelling layer is the
concept of importing the contents of one metamodel into the namespace of the
current metamodel. This allows us to form hierarchies of metamodels. For exam-
ple, a tool vendor uses its own namespace for the combination of UML 1.4 and
XMI-DI 2.0. In Coral, this compatibility is achieved by creating the metamodels
separately and then importing their contents into a third metamodel.

The modelling layer provides support for transactions by recording changes
to models. Each transaction consists of an ordered list of commands. Trivially,
a transaction can be undoed and redoed by traversing the list backwards unexe-
cuting the commands or by traversing the list forwards executing the commands.
Independent transaction observers can be attached (in a subject-observer design
pattern). The graphical subsystem uses the transaction facility to automatically

3



update the graphics when the model is changed by e.g. a script.

2.2 Mutually Independent Property Characteristics

In our opinion, the expressive power of metamodels does not come from the actual
metaelements, but rather from the different characteristics of the interconnections
between metaelements. An element’s possible connections (slots) are described
by its metaelement’s properties. Two properties can be connected together to form
a bidirectional meta-association.

In Coral, a property consists of several characteristics and describes the re-
strictions for each slot. Using a combination of characteristics several common
constructs can be modelled, as well as more esoteric ones. It is important to notice
that this part is static in Coral, i.e. users cannot change what characteristics are
available, but are free to combine them in arbitrary ways. The various character-
istics are described below.

• a name for convenience

• a multiplicity range [l,u] defining how many connections to instances of
the target the slot (instantiated property) should have to be well-formed.
Common values are [0..1] for an optional element, [1..1] for exactly one,
[0..∗] for any amount and [1..∗] for at least one element

• a target, telling what the type (metaelement) of every element in the slot
must be

• a boolean ordered telling if the order of the elements in the slots is important
and must be kept

• a boolean flag bag telling if the same element can occur several times in a
slot

• a boolean flag anonymous telling if the property is anonymous (described
later)

• a boolean flag unserialisable telling if corresponding slots should not be
serialised when saving a model

• an optional opposite, giving the opposite property for bidirectional connec-
tions

• an link type enumeration value {association, composition } describing an
ordinary connection or describing ownership, respectively.

The characteristics unserialisable and anonymous need more careful explana-
tion. An unserialisable property means that the contents of the corresponding slots
are not saved to an output stream. This is useful when elements in file A reference

4



elements in file B, but without the elements in B having to know anything about
file A. This occurs when creating models that resemble “plugins”; we are not sure
what plugins are available and we do not want to change the main file every time
something is added or removed. Instead, the available plugins are loaded at run-
time and bidirectional connections are created, even though they are not serialised
at both ends. Arguably the usefulness of the characteristic in this case is specific
to the way current filesystems work using files as independent streams of bytes.
A filesystem acting more like a database would not share the benefits from the
unserialisable characteric.

Anonymous properties provide fully bidirectional meta-associations between
any metaelements even though the meta-association was unidirectional at first.
This is useful in cases where a metamodel was not designed to be used together
with another metamodel. An example is a project management metamodel (PMM)
keeping track of developers, bugs, timelines and several UML models. Since
UML models do not know about PMM, only unidirectional connections from
PMM to UML would be feasible, thus rendering any navigation from UML mod-
els to PMM models impossible. But Coral automatically creates an anonymous
property (with a private, nonconflicting name) at runtime from UML models to
PMM models, and thus it is indeed possible to navigate from any UML model to
the corresponding PMM model(s). The UML models can then be saved in one
file, and the PMM models in another; the XMI standard for model interchange
contains facilities for linking across files. Anonymous properties are necessarily
also unserialised, since otherwise ordinary UML tools would not be able to read
the UML model file with nonstandard slots.

Most notably, the list is currently missing new characteristics from MOF 2.0,
property subsetting and derived unions. These are important characteristics but
have not been added to Coral yet. Otherwise, it is worth noting that the character-
istics aim to be as mutually independent as possible. This has the benefit that very
complex definitions can be modelled.

2.3 Python Scripting Interface

An important feature of a modelling framework is its ability to query and mod-
ify models at runtime, preferably both interactively and using a script. In Coral,
this has been achieved by creating Python wrappers around the Coral C++ core.
Python is a highly dynamic expressive language which is easy to learn. Using
Python, the interface to query models is very close to OCL [2], but with several
methods added to also modify the model.

Notably, model transformations can be written as Python programs with sep-
arate phases for preconditions, query and modification and postconditions. Sup-
port for transactions as well as checking of well-formed rules means that an illegal
transformation can be rolled back, leaving the user with the original model. Ex-
amples of a rule-based model transformer can be found in [9].

Arbitrary scripts and well-formedness checks can be used to keep the design

5



and evolution of a system within a predefined process or methodology. A success
story is Dragos Truscan’s work [10] on relations between data flow diagrams and
object diagrams. It presents “an approach to combine both data-flow and object-
oriented computing paradigms to model embedded systems.” The work is fun-
damental for designing complex embedded systems since there is often a need to
switch between the two paradigms. The design relies on an SA/RT metamodel for
the data flow and the UML 1.4 metamodel for object and class diagrams. Python
scripts are heavily used for the transformations between the domains.

In the future, using models also as the primary artefact for transformations
using e.g. the upcoming OMG Query-View-Transform (QVT) [4] standard could
be possible.

The scripting interface provides a highly flexible environment for automatic
model generation, querying and transformation. SMD metamodels support pre-
defined operations on specific elements, and there is no need to explicitly compile
any scripts as they can be loaded on-the-fly from within Coral.

2.4 Miscellaneous

Coral supports XMI 1.x and XMI 2.0 input and XMI 1.2 and XMI 2.0 output
well. It also has support for more esoteric features such as interfile relationships
although these are not too heavily tested. In practice it has good support for read-
ing XMI generated by other common commercial tools.

Coral currently comes with the UML 1.1, UML 1.3, UML 1.4 and UML 1.5
metamodels, but interactive graphical support is lacking. How the presentation
(graphics) of a metamodel is defined and drawn has not been as thoroughly de-
veloped by OMG as the abstract metamodels, which unfortunately is reflected in
Coral as well; support for every diagram must be written explicitly, although there
is work-in-progress to use models to generate graphical interfaces.

Coral has support for difference calculation between two models, based on [1],
but this has not been integrated into the graphical environment.

Currently, Coral and its predecessor SMW [8] have been used as modelling
and metamodelling tools by two PhD students and several Master’s Theses have
been written on their plugins and subsystems.

3 Conclusions

We have presented the modelling tool Coral, its main features and primary prin-
ciples, as well as some novel concepts that it uses to address practical problems
in the creation of such a tool. Coral is still work-in-progress, but is used by other
members of our model driven engineering group more and more.

Coral works as a metamodel-independent tool. For this to be possible, meta-
models must be treated as first-class citizens that can be created at runtime. Fur-
thermore, we have made interesting progress on the characteristics of metaele-
ments’ properties in the form of anonymous properties, which greatly aid linking

6



together metamodels. Effort has been placed into making a Python-friendly inter-
face to facilitate easy scripting. However, there is a lot of on-going work with e.g.
the interactive part of Coral.

References

[1] Marcus Alanen and Ivan Porres. Difference and Union of Models. In Pro-
ceedings of the UML 2003 Conference, October 2003.

[2] OMG. Object Constraint Language Specification, version 1.1, September
1997. Available at http://www.omg.org/.

[3] OMG. OMG Unified Modeling Language Specification, version 1.4,
September 2001. Available at http://www.omg.org/.

[4] OMG. MOF 2.0 Query / Views / Transformations RFP. OMG Document
ad/02-04-10. Available at www.omg.org, 2002.

[5] OMG. XML Metadata Interchange, version 1.2, January 2002. Available at
http://www.omg.org/.

[6] OMG. Meta Object Facility, version 2.0, April 2003. Document ad/03-04-
07, available at http://www.omg.org/.

[7] OMG. Unified Modeling Language: Diagram Interchange version 2.0, July
2003. OMG document ptc/03-07-03. Available at http://www.omg.org.

[8] Ivan Porres. A Toolkit for Manipulating UML Models. Technical Report
441, Turku Centre for Computer Science, January 2002. Available at http:
//www.tucs.fi/.

[9] Ivan Porres. Model Refactorings as Rule-Based Update Transformations. In
Proceedings of the UML 2003 Conference, October 2003.

[10] Dragos Truscan, João Miguel Fernandes, and Johan Lilius. Tool Support
for DFD-UML Model-based Transformations. In Proceedings of the ECBS
2004 Conference, May 2004.

7


