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Abstract. The Meta Object Facility 2.0 and Unified Modeling Languade 8-
frastructure standards present novel metamodeling amtstralled subset and
union properties. However, they do not provide a completinidien of these
constructs. This definition is necessary to construct nmogdébols and to ensure
their interoperability. In this article, we present the ibawodel operations over
models containing subset and union properties. These tigresaare formalized
using pre- and postconditions using substitutability @&srttain criterion for lan-
guage specialization.

Keywords: subset and derived properties, metamodeling, MOF, UML

1 Introduction

The purpose of the Unified Modeling Language (UML) 2.0 Infirasture [16] is to
define the Meta Object Facility (MOF) 2.0 [15] and the UML 2.@p8rstructure [14].
It introduces several new concepts not present in MOF 1.xMt U.x, mainly: sub-
setpropertiesderived uniorproperties and propertgdefinitions These concepts are
useful to define a new modeling language as an extension ofisting one. Unfortu-
nately, very little is told in [15, 16] about the actual maagiof these new constructs.
This is a critical omission since these concepts are heasgiy in the definition of the
UML 2.0 Superstructure and are necessary to enable inteabiliey between software
modeling tools, including model editors and model transfation tools.

In this article, we discuss the basic operations to edit Hsodentaining subsets
and union properties and formalize them using pre- and pasiitions. These basic
operations are the elemental building blocks for a modedsépry supporting interac-
tive model editors for UML and model transformation engif@slanguages such as
QVT [13]. Although this article only presents a theoretib@mework, we believe it
contains important implications for the practical implertagion of model repositories
for UML 2.0.

We proceed as follows. Section 2 briefly presents a set-gtiediormalization of
a metamodeling language that supports the new subset piegpef MOF 2.0 and the
UML 2.0 Infrastructure. The main contribution of the aréidk in Section 3, where
the basic edit operations are discussed in detail. Finakydiscuss related work in
Section 4 while Section 5 contains some concluding remarks.



2 A Simple Metamodeling Language

The main concepts used in metamodeling are classes andiespA class represents a
conceptin a modeling language such as a UML Use Case or aifloans a Statechart,
while a property represents a feature of such a concept sutttedact that a Use Case
has a name or a Transition has an event trigger.

As an example, the left part of Figure 1 shows a metamodel fpaph. This dia-
gram shows two classegertexandEdge and four propertiegrom, to, outgoingandin-
coming Each property has another property as its opposite. Tegdtby define an as-
sociation that is represented as a single line. In the exam have th&om-outgoing
and theto-incomingassociations. At the model layer, this bidirectionalityans that
when aVertex vhas anEdge ein its outgoingslot, theEdge ewill have Vertex vin its
fromslot. The right side of Figure 1 shows an example model regmtes as an object
diagram where each object is an instance of a class in themoelizl.

outgoing
from

1 from outgoing * incoming

Vertex Edge V1:Vertex
1 to incoming *

from outgoing

E2:Edge

Fig. 1. (Left) Metamodel for a Graph; (Right) Example Model

incoming

MOF 2.0 also provides three main extension mechanisms feamaels: class
specialization, property subsets and unions, and propedsfinitions. Class special-
ization is identical to class inheritance in object-orehlanguages. A specialized class
inherits all the properties of its base classes and can &fednew properties. Subset
and union properties are a mechanism to define the relaijpbsiween the properties
in a specialized class and its base classes. Finally, propeetefinition allows us to re-
place a property with another “compatible” one; howevempatibility is not precisely
defined.

We can use specialization and subset properties to creae anetamodel in Fig-
ure 2 for a bipartite graph for our running example. The da®lue VertexandRed
Vertexwill now be specializations o¥ertex Also, thefromRedandtoBlueproperties
will become subsets of tifeom andto properties, and similarly for the other properties.
An example model is also shown in the figure. This metamodesed on an example
presented in [18]. The reader can find many complex examptag aise of subset and
union properties in the UML 2.0 standards.

The intuition behind the metamodel is as follows: an elenoériype Red Vertex
has four slots that correspond to propertizgégoing incoming outgoingRBand in-
comingBR Elements of typdedgecan be inserted into theutgoingor incomingslot
and elements of typRedBlue Edgean also be inserted intmutgoingRB At any mo-



1 from outgoing *

Vertex Edge

1t incoming *

Red Vertex

toRed 1 1

subsets to } fromRed
incomingBR { subsets from } outgoingRB

BlueRed Edge RedBlue Edge

{ subsets incoming } { subsets outgoing }

* outgoingBR 1 1 incomingRB
{ subsets outgoing } fromBlue

Blue Vertex toBlue { subsets incoming }

{ subsets from } { subsets to }

I 1 toBe

outgoing

from E1:RedBlug| V2:Blue
outgoingRB
fromRed Edge [ icoming Vertex
V1:Red
Vertex
from outgoing E2:RedBlue; V3:Blue
fromRed ougoingRB Edge incoming Vertex

| _ T
toBlue

Fig. 2. (Top) Metamodel for a Bipartite Graph as an Extension of tretdvhodel for a General
Graph. (Bottom) Example Model for the Graph Metamodel

ment, the contents of the sloutgoingRBshould be a subset of the contents of the
slotoutgoing

The benefit of subsets in the running example is that grapiersal algorithms
which worked on the initial metamodel in Fig. 1 should stilbrk for bipartite graphs
when using the metamodel in Fig. 2, and that if we only use efgsifrom the bipartite
graph metamodel, we can also be certain that the model desaibipartite graph.

Our metamodeling language should support multiple inaedeé since it is used ex-
tensively in MOF, as has been noticed by e.g. Anneke Klepple Multiple inheritance
forms very complicated inheritance hierarchies, amongthiee diamond inheritance
structure. This leads to a possibility where property stibggalso has a diamond (or
even more complicated) structure.

Union properties are the last extension mechanism preséntdOF 2.0 which we
will discuss in this paper. If a property is subsetted by ofiteperties, we say that it is
a union property. It is not necessary to declare a property @sion, since a designer
of a metamodel cannot know in advance if a new subset propélitpe defined in
the future. The UML 2.0 Infrastructure also introduced tlom@ept of derived union.
According to page 126 of [16], a derived union property caséen as the strict union
of its subsets. A slot with a property that is a derived unianrt contain elements that
do not appear in any of its subsets. Another way to define egmontent is to create
an arbitrary query operation. This has been done in the &lijodeling Framework
using so calledolatile attributes as explained in [7]. This way, the contents ofoa sl
are defined by evaluating the associated query. The drawibabkt there is no strict



mathematical relationship between the derived propertiyany other properties. The
benefit is that it does not restrict the metamodel creatonjynveay.

2.1 Metamodels

Based on the previous discussion, we can now present a singtéenodeling language
that contains the core concepts of MOF and UML 2.0. We des@aibmetamodels as
the tupleMM = (C, P,generalizationgropertiescharacteristicy, whereC is a set of
classesP a set of properties andN P = 0. We define the generalizations of a class
with the functiongeneralizations C — ?(C). We ignore classes that represent prim-
itive datatypes such as integers, strings and enumerasiies without loss of gen-
erality. We denote by the extended generalization between classes that is defined
as the reflexive transitive closure of the generalizatidatien: C, & (c1,C2) -2 €
generalization&; ) }*. Itis a partially ordered set under the assumption that #reg
alization graph is acyclic.

The properties of a class is given by the functwoperties C — P(P). Every value
of the functionpropertiesis a disjoint subset d?. Thus, we can definewner: P — C
which denotes the unique owneof a propertyp wherep € propertiegc). The effective
properties of a class are those defined by the class itselfranditively by any of its
generalizations.

Finally, the characteristics of a property represent qainstis for the elements that
can be contained in a slot of that property. We detinaracteristics® (lower, upper
oppositeordered compositederived supersets as a tuple of functions detailing the
properties further. The multiplicity constraints is definkey lower : P — Z%* \ « and
upper: P — Z™. Each property has an opposite property representegppygsite P —

P that is a bijective function. The opposite of a property aarbe itself but every prop-
erty is the opposite of its opposite. The functiomlered: P — B is true if a property

is ordered. For example the parameters in an operation ghmubrdered. The func-
tion composite P — B is true if a property is composite. For example, the property
that represents the contents of a package is a composite, &ipackage owns its con-
tents. Finally, there are two characteristics that repretfee new property mechanism:
derived: P — B is true if a property is a derived union whilipersets P — P(P)
represents the set of properties of which a property is aegubbe graph representing
the property superset relatigR, { (p1, p2) - p2 € superset§pi)}) must be acyclic.

For convenience, we define the functeubsets P — P(P) as the inverse of super-
sets. We denote subsetting between properties by theelation, i.e.,.Cp, = {(p,q) -

q € superset&) }*. We definea C b= a C bAa= b for both Cc andCp. Finally, we
denote bys<t thatsis a direct subset df i.e.,s<t ®sCctA—(3u-sc uct). The
expressiors||t is defined as:(sCt)A—(t C s), i.e., there is no order defined betwesen
andt.

The notable omission is that we cannot describe nonunigsdne., bags) with the
above definitions. This characteristics exists in UML/MQE bur current formaliza-
tion cannot cope with it. With some modifications, our franoekvcould understand
unordered bags, but ordered bags would still be an issue.



2.2 Models

We defineM = {M - M = (E, type slots S, property, elements} as the infinite set of all
models in our frameworkvl comprises all the models in a system at some specific time.
E is a finite set of elements ar®ls a finite set of slots. Each elementirhas a type de-
fined by a class in a metamodslpe: E — C, and a set of slots defined by the function
slots: E — 2(S). Every value of the functioslotsis a disjoint subset db. Thus, we can
defineslotowner. S— E which denotes the unique owreof a slotswheres € slotge).
Each slot corresponds to a property as defined by the funptigmerty: S— P. Slots
consist of element references and the funcétements S— (E, <) returns a total or-
dered set of elements of its argument Sdf orderedproperty(s)) is true, otherwise
elements S— P(E) returns an unordered set of elements. A slot thus descrifees t
connection from its owner element to the elements in the 3loére is no actual or-
dering defined between the elements in an ordered slot; tlegglynhave an assigned
position in it. An element cannot occur twice in a slot.

For convenience, we define the size of a slot to be the amouwrieofents in that
slot: (Vs€ S- #s £ #elementts) ). For the elements of an ordered set, we syto
denote the element at the zero-based indexhe ordered set

Models are hierarchical structures based on compositiopgties. We define the
functionparent: E — P(E) to return a set consisting of the parent element of the argu-
ment, if any, otherwise the empty set:

parentfe) £ {x-x € EA(3s€ S- sc slotgx) A compositéproperty(s))

Aee€ elementss))}

The slot subsetting relation iS5 = {(s,t) - slotownefs) = slotowneft)A
property(s) Cp property(t)}*. A slots (transitively) subsetting another skois denoted
byscst.

By definition, if slots is subsetting slot, then the contents of must be a subset
of the contents of. Also, MOF [15] tells us on page 56 th&fhe slot's values are
a subset of those for each slot it subseEdt ordered slots, we also wish to preserve
order, i.e., when elements occur in a specific ordes; ifney should occur in the same
order int, althought might contain more elements in between. We derotg b if
elementa precedes elemebtin a specific ordered slot

There are several constraints that must hold for any modets) as strong typing
and at most one parent element for each element. We referttrested reader to [1] for
a more in-depth description of the constraints, but striessetnovel constraints due to
subsets and unions. The constraints also serve as an imvwatiech must be maintained
by any operation on models.

— The contents of a derived slot is the union of the contenttscfuibset slotgvp €
P - derived p) = (Vt € S- property(t) = p=-element&) \ U{elementfs) - s<t} =
0)

— The contents of any unordered slot must also exist in theecwsof any superset
slots:(Vs,t € S- sC t A—orderedt) = elements) C elementé))

— Similarly to unordered slots, the contents of any ordered siust also exist in
the contents of any superset slots. Additionally, the el@menust occur in the
same order(Vx,y € E,;st € S- sCgst AX € element&s) Ay € elements) A X <s
yAorderedt) = x € element&) Ay € element&) AX <t Y)



These three constraints are specific to derived slots anddodered and ordered
slots with respect to property subsetting. We call themitherent subsetting rulesr
ISR.

2.3 Example

Based on the previous definitions, we can describe a partguir&i2 in a little more
detail in Figure 3. We explicitly show slots as filled blackobés, and the subsetting
relation as a solid line between the circles. We represelot isually higher up if it is
subsetted by the (connected) slots below it. In the figurejeyect only elementg1,V2
andE1l ElementV1 has two slots namegutgoingandoutgoingRBsuch thabutgoin-
gRBCs outgoing The contents obutgoingRBs the se{ E1}. As a consequence of the
ISR constraint, the contents ofitgoingalso includeEl. The slotsfrom andfromRed
are the opposite of outgoing amditgoingRBand, as a consequence, they ligk to
V1 In the figure, we see four different partially ordered setssgets) of slots as dashes
ellipses. The first and second poset are isomorphic to eaeh (@s well as the third and
fourth) when only considering the slots and the subsetgtation, disregarding the el-
ements they point to. This is always true, since propertgstgalways come in pairs of
two isomorphic posets. Drawing a poset in this way is knowa Bisisse diagram [10].

Partial Order 1 Partial Order 3

outgoing to

.
e e N
B outgoingRB SN e toBlue AR
K Sepd e
B B
vi g E1§ vz%
. g
™. Lt i ) Lt
LN from RN incoming g
. IR PR
. - .

fromRed incomingRB

Partial Order 2 Partial Order 4
Fig. 3. Part of Figure 2 in More Detall

Let us assume that we want to perform some simple model tremations. The
question is what elements should be created and removedtfrermodel and what
are the changes to the 8 slots depicted in the figure in ordezdomplish these model
transformations. We address this problem in the next sectio

3 Basic Edit Operations for Models

In this section we present the basic operations to creatdelpte elements from models
as well as to insert to or remove an element from a slot. Thesedperations are the



basic edit operations for models that are necessary to mgiéa model repository and
a model transformation system.

We should note that a valid model transformation usuallpives a sequence of
many basic operations. Also, one single basic edit operaidm invalidate a slot with
respect to the multiplicity constraints. Therefore, we sider a model transformation
as a sequence of basic edit operations. As an example, lesuma that we want to
create an associatighbetween two class&3l andC2in a model based on a simplified
UML with only classes and associations. This requires thessc operations: create
connectC1 with A and connec€2 with A. The associatio is invalid just after the
create operation since an association should connectsttiea classes. However, the
model should be well-formed after executing all the basierapions.

We define these operations using a pre- and postconditiasifispdion. We first
describe element creation and deletion. Then, we desdréease of insertion into or-
dered or unordered slots and finally the case of removingeatesfrom slots. The pre-
and postconditions are described as separate enumerategs! All of the clauses in
the precondition must hold for the operation to succeed adirttie clauses of the post-
condition must be guaranteed by an implementation. Foriscitess and understand-
ability of presentation, we only describe the semanticsrobperation in the context
of one poset. When modifying a slot, similar actions mustdiemn for the slots in the
opposite poset for bidirectionality to hold. This meand tha actual operations must,
where necessary, be augmented with an additional indexredea for the ordered slots
in the opposite poset.

In any pre- or postcondition, the old models are dendfed (E,type slots S,
property elements In postconditions, the new values of variables are deneitctick
marks. Thus, the new models are dendi¥d- (E’, typ€, slots, S, property, elementy.

3.1 Element Creation

The operation createM x C — M x E such thai{M’, e) = creatéM, c) creates a new
element of typec € C and has no preconditions. The new element will also be a root
element, i.e., it will not have any parent. The returned gatua tuple of the new mod-
els and the new element. The primary postcondition is theretimust be exactly one
new element in the set of elements. The various model conttnaean that the sets
and functions inM must be updated i’ to reflect this change; this leads to more
postconditions.

(JlecE'-E'\ {e} =EAtypé(e) =c)

typ€ Ntype= type

#S =#S+#{p- pec PA(Jec E'\ EAtyp€(e) Ccownerp))}

SNS=S

slots = slotsu{e—s-ec E'\EAsc S\'S}

property = propertyJ{s — p-s€ S\SApe PA{Jlec E'\E - typé(e) C.
owner(p)}}

#Rangéproperty \ property) = #{p- pe PA(J'ec E'\EAtypé(e) Ccownerp))}
8. elements=elements) {s— {} - s€ S\ SA —orderedproperty(s))}

U{s—[] - s€ S\ SAorderedproperty(s))}

ok~ wnNE

~



The only relevant postcondition is the first one, the restilm@icit or informally
understandable from the various model constraints. Todatam much repetition, we
assume that the new values of any variables not mentiondeptéentical to their pre-
vious values and that only the necessary changes to fulilptdstconditions are made.
We will refrain from listing obvious postconditions and @amtrate on the important
ones.

3.2 Element Deletion

The operation deleteM x E — M deletes an element. We require the element being
deleted to have no connections to other elements via its loerefore the precondition
for deleting an elemergis:

1. (Vseslotqe) - #s =0)
The postcondition is that the element must no longer be is¢hef elements:
1. E'=E\{e}

3.3 Element Insertion into an Unordered Slot

Consider an operatiomsert: M x Sx E — M such thatinser{M, s e) inserts ele-
mente into slots. The intuition behind the insertion operation is that albstsets of

s must contain the new elemeafor the ISR constraints to hold. The clauses for the
precondition for element insertion into an unordered stetthus:

. ~derivedproperty(s))

. —orderedproperty(s))

. e elementts).

. typgle) C owneroppositéproperty(s)))

. (3t € S- sCst Acompositéproperty(t)) = paren{e) \ {slotowne(t)} = 0

abrhwWNE

The clauses state that (1) we are not modifying a derived-ogdyslot, (2) the slot is
unordered, (3) the element must not yet exist in the slotth@) we obey the rules of
strong typing and (5) we do not create a connection to a segarent fore.

The postcondition for element insertion is simple. We wildmeente to be found
in the slots and all its transitive supersets. All the model constragxsept for the
multiplicity constraints must also hold as a postcondition

1. (Vt €S- sCst = elementst) = element&)uU{e}) (NotesCs¥9)

An example of element insertion into an unordered slot casdsn in Figure 4.
Again, the Hasse diagram notation means that q Cs pAQq Csr At CsSCst. In
case (1) of the figure, we have a poset of unordered slots.d3eppe insert an element
into slotg. This requires an insertion afinto slotsp andr as well, to maintain the ISR,
with the end result shown in case (2). After this, insertingto slott also inserts it into
slots, again to maintain the ISR, resulting in case (3). Smtg andr are not modified
because already existed in those slots.

It can be noted that in our semantics, an insertion into argeer modifies any
subset of that slot.



p={b,a} r={ab} p={b,ac} r={a b} p={b,ac} r={acb}

s={a} s={a} s={ac}
g={a} g={ac} g={ac}

t={a} t={a} t={ca}

@ &) 3

Fig. 4. Example of Inserting an Element into Unordered Slots

3.4 Element Insertion into an Ordered Slot

Subsetting with ordered slots is more complicated than witbrdered slots, due to
the need to maintain an order between the elements in diffestets. We define the
operatiorinsert: M x Sx E x Z% — M such thainser{M, s e,i) inserts an elemerat
into a slots at indexi.

We assume there is a functigmdex: E x S— Z% which returns the zero-based
index of an element in the contents of an ordered slot. A fondower_index Z% x
Sx S— 70 is such thatower_indexi, x,y) returns the index ix wherey[i] should be
inserted to maintain the subsetsy. It is shown in Figure 5 and is used to calculate
which restrictions from supersets apply to subsets wheeriimg an element. As an
example, consider what the restriction given by elenteat index position 2) in the
supersefa,b,c,d] is to its subseta,d]. Thenlower_index2,[a,d],[a,b,c,d]) returns
1 sincec should be inserted betwearandd.

lower_indeXi,s,t) :=
if t[i] € sthen returrindext[i],s)
do
if t[i] € sthen returrindext(i],s) +1
else ifi =0 then return 0
elsei :=i—1
od

lift_interval(s,t,[v..w]) :=
if v> 0thenv :=indexsjv—1],t)+1
elsev :=0
if w= #s thenw = #
elsew :=indexsw],t)
return[v'..w'|

Fig. 5. (Left) Thelower_indexunction . (Right) Théift_interval Function

A functionlift_interval : Sx Sx R— R, whereR denotes integer intervals is such
that lift_interval(s,t, [v..w]) “lifts” the interval [v..w] from s as superimposed on
(whens Cst). It is shown in Figure 5 and is used to calculate which restms from
subsets apply to supersets and works as the dualadr_index As an example, con-
sider the ordered se$s= [c] andt = [b,c]. If we were to insert elememtat index 0 in
s, the corresponding interval fawould be[0..0]. This interval is superimposed onto
t as the interval 0..1], meaning that the same element can be inserted either bmfore
afterb in t without violating the ISR. Thudift_interval(s,t,[0..0]) = [0..1].

The functionindices_ok P(S) x (S— R) — B returns true if when executing
indices_okKT,F) there is a possible way to insert an element into every sldt such



that the constraints i are satisfied. Herd; : S— R is a map from slots to inte-
ger intervalg v..w| such thatv < w wheree can be inserted. The function is shown in
Figure 6. Here, Do) returns the domain of functioR. Using thelift_interval and
lower_indexfunctions we restrict the possible intervals whe&n be inserted into the
slots.

indices_ok0,F) := (vt € Dom(F) - F(t) # 0)

indices_okT,F) :=
(GteT - (VueT- -tpu)
def

AR=nN{lift_interval(c,t,[v..w]) - (VC-sCsc<t AF(c) =[v.w])}
= indices_oKT \ {t},F[t — RNF(t)]))

Fig. 6. Theindices_ok~unction

The precondition of inserting into an ordered slot is otheendentical to the case
when inserting into an unordered slot, except for the checlah ordered slot and that
there exists an extra clause which calculates if the irmeitito the slot and its transitive
supersets is at all possible without violating the ISR.

. ~derivedproperty(s))
. orderedproperty(s))
. e¢ elementts)
. typgle) Cc owneoppositéproperty(s)))
. (3t € S- sCst Acompositéproperty(t)) = paren{e) \ {slotowne(t)} = 0
. indices_ok{t - sCst},
{S»—> [II]}
U{t — [lower_indexindexe,u),t,u)..lower_indeXindexe,u),t,u)] - sCst At Cg
uAec elementgu)}
U{t—[0,# ] -sCstA=(Ju-t Csunec elementfu))}

OO, WN P

The intuition behind the last clause in the precondition #rel definition of the
indices_okfunction is that we calculate the range restrictiongefhich exist in any
super- or subsets onto the other slots. Fhiinction is initially created by describing
constraints from supersets.is created from three different clauses. The fisst; [i..i],
constraine to be inserted at exactly indéxThe second does similarly for supersets
which have a superset that already lkeas/hereas the third initially allows all indices
to be candidates for insertion. This initialization makaesesthatF is restricted by the
the elementg that already exist in any supersetssofNote that any slob such that
0CstASCstAO|| sis outside of the transitive superset closurs ahd any restrictions
from it will already be visible it and thus it is not necessary to include F.

Then,indices_olcalculates the constraints from subsets and does setdntiens to
calculate whether an insertion is possible. The actualtfon¢akes all supersefsand
picks ona € T which is a bottom element, which must exist since the slotsane part



of a finite poset. It then imposes all intervals from subsetsst (such thats Cs c<t)
ontot, also including the initial constraint on It then recurses with a modifield
until T is empty. The notation for a modified functionfi§x — y] which returns a new
function f' such tha(vz # x - f'(z) = f(z)) andf'(x) =Y.

We claim, without proof, that if the final mappir€contains only nonempty inter-
vals, it is possible to successfully insefinto s at indexi. The postcondition is:

1. elementgs)[ij =e
2. (teS-sCstAed elementd) = elementst) \ {e} = element§)
e € elementst))

The current definitions do not tell us the exact index wheringerte into any
superslot of, only that a combination of indices exists; an indgfor a superslot of
smust exist somewhere in the range giverHyy).

An example of element insertion can be seen in Figure 7. CHses the initial
configuration of the slotsv, X, y andz Let us assume an insertion of elemerihto
slotw at index position O occurs. The returned slot ranges whetgould be inserted
raises the possibilities in cases (2) to (5), depending aetheéic is inserted onto the left
or right side of eithea in sloty or bin slotz. Cases (2), (3) and (4) are correct solutions
and our postcondition does not prefer any particular one theeanother. Case (5) is
not legal, because slatcannot maintain the superset relationship as enforced thy bo
slotsy andz, as element should occur both befor@and aftetb in the ordered set. Itis
up to the implementation to choose one of the correct saistiperhaps with guidance
from the user.

x=[a, b,d] x=[ab,cd] x=[acb,d]

y=1[ad] =[b,d] y=I[acd] z=[b,cd] y=1I[acd] z=[cb,d]
w=[d] w=[cd] w=[cd]

®)

[cabd] x=[?a,b,?d]

y=I[cad] z=[cb,d] y=1[cad] z=[b,cd]
w=[cd] w=[cd]

Fig. 7. Example of Inserting an Element into Ordered Slots

3.5 Element Removal from a Slot

The operatiomremove M x Sx E — M is defined such thaemovéM, s, e) removes
the elemenéfrom sand all its subsets, as well as from those supersets whicldwot



acquiree via some other subset which is not comparabls. tBlement removal from
an ordered slot is identical to element removal from an uad slot since removing
a specific element from an ordered slot does not alter théwelposition of the other
elements in the slot.

The precondition requires that a derived slot is not beinglified and that the
element must exist in the slot:

1. —derivedproperty(s))
2. ec elementts)

The postcondition:

1. (Vr € S-r Css= element§) = elementsr) U {e} Ae ¢ elementgr))
2. (Mt eS-sCstA—-(ImMeS- mCstAm|| sAee elementm))
= element&) = elementst) U {e} A e ¢ elementst))

Both clauses in the postcondition are interesting. The diesise states that a removal
from a slot triggers a removal from any subset, so that thed&Rhold. This can be
contrasted with the insertion operation, which does notifg@hy subsets. The second
clause states that a removal from a slot triggers a conditimoval from any superset.
An interesting feature of the clause is shown in Figure 8.dflvave an initial setting as
in case (1) and remowefrom z, the clause requires thatis removed fronx as shown
in case (2), although this is not necessary to maintain moaiedistency. However, we
believe that this feature is the intended usage by the muglstandards. Inserting into
a subset triggers insertion in all supersets, and so duaiyn@val from a subset ought
to trigger a removal from all supersets. A similar chain aisening has been reported
by Markus Scheidgen [17].

x={ab,c} x={b,c}

y={b} z={a,c} y={b} z={c}

w={} w={}

1) @)

Fig. 8. Removinga from an Unordered Slat

As an example where the second clause is necessary, corgjdee 9 with the
initial setting as in case (1). Assume we wish to remafremy. An incorrect approach
is the removal ofa from supersets and subsets, which would leavéthout a, but z
with a intact, violating the ISR, as shown in case (2). A correciaptvould be to
removea also fromz, as shown in case (3), but our opinion is that this “snowlfégiot”
of removinga reduces the usefulness of subsets; glshould affect slo as little as
possible, since they are not comparable in the Hasse dia@ranpostcondition ensures
thata must be removed frorw andy, but not fromx, because still containsa; this is
seen in case (4).



x={a,b,c} x=1{b,c} x={b,c}

y={ab} z={a,c} y={b} z={a,c} y={b} z={c}

w={a} w={} w=1{}

@ @ 3
x={ab,c} x={b,c}
{ derived }
y=1{b} z={ac} y={b} z={c}
w={} w={}
4 ®)

Fig. 9. Different Scenarios for Removirgfrom an Unordered Slot

Another interesting case is the ISR rule for derived sldt&and only if) zis marked
as derived, we must remember that its elements must be fauhd union of its subsets.
In case (5)ais removed frony which leads to it being removed fromas well. Asz
is marked as derived must also be removed from it, singeloes not have any other
subset containing. This in turn leads t@ being removed fronx!

3.6 Implementation of Edit Operations in a Modeling Toolkit

We do not discuss the actual implementation of the basicopditations in this article
due to space restrictions. However, we have implementechfitamodeling language
with the operations as described in this article in our mimgeiool Coral, with details
defined in [1]. We have tested the implementation extengaetl found no consistency
errors or omissions. Coral is open source and availabietat: / / nde. abo. fi/.

We know of no other tools that support subsets as extensagfyroposed in this
article, even with different semantics. At the time of wrdi the Eclipse EMF model
repository does not implement subsets, although the fe&ureing planned.

4 Related Work

Several others have studied the formalization of the metkairend model layers in the
past, for example [5, 3, 9]. Our contribution comes from teérdtions of property sub-
sets, which neither metamodeling nor traditional obje@&med language descriptions
explain.

Several authors use association inheritance without defiekact semantics, and
some say that it denotes covariance. An example of this @aspecialization [8] is
the multilevel metamodeling technique called VPM by Vamal &#ataricza [18], which
also limits itself to single inheritance. We argue that ndp subsetting is not the same
concept as covariant specialization, and requires diftesemantics.



Carsten Amelunxen, Tobias Rétschke and Andy Schiirr areesith the MOFLON
tool [4] inside the Fujaba framework [12]. MOFLON claims topport subsetting, but
no description of the formal semantics being used is inauttés not clear if their tool
works in the context of subsets between ordered slots, drdiéimond inheritance with
subsetting.

Markus Scheidgen presents an interesting discussion aiimantics of subsets in
the context of creating an implementation of MOF 2.0 in [IIg.our knowledge, this
has been so far the most thorough attempt to formalize spbsperties. The approach
is slightly different in that a slot modification createswgdate graptof slots, so that a
later modification at some other slot in the update graphadigtupdates all the associ-
ated slots. The actual operational semantics are unfadlynaot described in detail. In
comparison, we do not have to create or maintain any updafghgr Furthermore, our
contribution not only discusses but also defines pre- anttpoditions and implemen-
tations for the operations for ordered and unordered datsalso not clear if the work
by Scheidgen supports diamond subsets or ordered setspbatiich are used in the
UML 2.0.

The object-oriented and database research communitiedsareesearching a sim-
ilar topic, although it is called relationship or asso@atinheritance, or first-class rela-
tionships. In [6], Bierman and Wren present a simplified Janguage with first-class
relationships. In contrast with our work, they do not supmoultiple inheritance, bidi-
rectionality or ordered properties; all of these constsware common in modeling and
in the UML 2.0 specification. However, relationship linke @xplicitly represented as
instances, and they can have additional data fields (justtlie AssociationClass of
UML). As the authors have noticed, the semantics of linkiitigie and deletion is not
without problems. Albano, Ghelli and Orsini present in [2jedationship mechanism
for a strongly-typed object-oriented database progrargrfanguage. It also handles
links as relationship instances, but without additionahdelds. Multiple inheritance
is supported, but ordered slot contents are not.

5 Conclusions

MOF 2.0 provides new property characteristics: subsetsied) unions and redef-
initions. However, it does not describe these concepts taild@ot even informally,
and therefore they cannot be applied in practice. In thislartwe have first described a
simple formalization of metamodels and models and therepttesl pre- and postcondi-
tions for basic operations on element creation and delatiabslot modification, taking
into account subsets and derived unions. It must be stréisaedie do not cover several
important aspects of MOF 2.0, such as association end ohipeysnavigability. They
are not in the scope of this article.

We consider that the definition of these concepts is not asgtiforward as one
may think and it requires an extensive study. There is an imentineed in the model-
ing community to standardize on one formalization of subsetd derived unions, so
that tools implementing MOF 2.0 and UML 2.0 can be interopkraThe semantics
described in this article are one proposal and we hope itssfouther interest and dis-
cussion. We have avoided using OCL or any other modelinglstakin order to be able



to present a relatively small and self-contained desaniptif the core of these OMG
standards with respect to subsetting. Furthermore, thee aflsubsetting is intriguing,
since it is a new construct for modeling relationships betwelasses and objects, and
thereby brings a novel idea to the software modeling andobigjgented community.

The authors would like to thank Patrick Sibelius for insfghtliscussions. Marcus

Alanen would like to acknowledge the financial support of ukia Foundation.
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