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Abstract. The Meta Object Facility 2.0 and Unified Modeling Language 2.0 In-
frastructure standards present novel metamodeling constructs called subset and
union properties. However, they do not provide a complete definition of these
constructs. This definition is necessary to construct modeling tools and to ensure
their interoperability. In this article, we present the basic model operations over
models containing subset and union properties. These operations are formalized
using pre- and postconditions using substitutability as the main criterion for lan-
guage specialization.
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1 Introduction

The purpose of the Unified Modeling Language (UML) 2.0 Infrastructure [16] is to
define the Meta Object Facility (MOF) 2.0 [15] and the UML 2.0 Superstructure [14].
It introduces several new concepts not present in MOF 1.x or UML 1.x, mainly: sub-
setproperties,derived unionproperties and propertyredefinitions. These concepts are
useful to define a new modeling language as an extension of an existing one. Unfortu-
nately, very little is told in [15, 16] about the actual meaning of these new constructs.
This is a critical omission since these concepts are heavilyused in the definition of the
UML 2.0 Superstructure and are necessary to enable interoperability between software
modeling tools, including model editors and model transformation tools.

In this article, we discuss the basic operations to edit models containing subsets
and union properties and formalize them using pre- and postconditions. These basic
operations are the elemental building blocks for a model repository supporting interac-
tive model editors for UML and model transformation enginesfor languages such as
QVT [13]. Although this article only presents a theoreticalframework, we believe it
contains important implications for the practical implementation of model repositories
for UML 2.0.

We proceed as follows. Section 2 briefly presents a set-theoretic formalization of
a metamodeling language that supports the new subset properties of MOF 2.0 and the
UML 2.0 Infrastructure. The main contribution of the article is in Section 3, where
the basic edit operations are discussed in detail. Finally,we discuss related work in
Section 4 while Section 5 contains some concluding remarks.



2 A Simple Metamodeling Language

The main concepts used in metamodeling are classes and properties. A class represents a
concept in a modeling language such as a UML Use Case or a Transition in a Statechart,
while a property represents a feature of such a concept such as the fact that a Use Case
has a name or a Transition has an event trigger.

As an example, the left part of Figure 1 shows a metamodel for agraph. This dia-
gram shows two classes:VertexandEdge, and four properties:from, to, outgoingandin-
coming. Each property has another property as its opposite. Together they define an as-
sociation that is represented as a single line. In the example, we have thefrom-outgoing
and theto-incomingassociations. At the model layer, this bidirectionality means that
when aVertex vhas anEdge ein its outgoingslot, theEdge ewill have Vertex vin its
from slot. The right side of Figure 1 shows an example model represented as an object
diagram where each object is an instance of a class in the metamodel.
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Fig. 1. (Left) Metamodel for a Graph; (Right) Example Model

MOF 2.0 also provides three main extension mechanisms for metamodels: class
specialization, property subsets and unions, and propertyredefinitions. Class special-
ization is identical to class inheritance in object-oriented languages. A specialized class
inherits all the properties of its base classes and can also define new properties. Subset
and union properties are a mechanism to define the relationship between the properties
in a specialized class and its base classes. Finally, property redefinition allows us to re-
place a property with another “compatible” one; however, compatibility is not precisely
defined.

We can use specialization and subset properties to create a new metamodel in Fig-
ure 2 for a bipartite graph for our running example. The classesBlue VertexandRed
Vertexwill now be specializations ofVertex. Also, thefromRedandtoBlueproperties
will become subsets of thefromandto properties, and similarly for the other properties.
An example model is also shown in the figure. This metamodel isbased on an example
presented in [18]. The reader can find many complex examples of the use of subset and
union properties in the UML 2.0 standards.

The intuition behind the metamodel is as follows: an elementof type Red Vertex
has four slots that correspond to propertiesoutgoing, incoming, outgoingRBand in-
comingBR. Elements of typeEdgecan be inserted into theoutgoingor incomingslot
and elements of typeRedBlue Edgecan also be inserted intooutgoingRB. At any mo-
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Fig. 2. (Top) Metamodel for a Bipartite Graph as an Extension of the Metamodel for a General
Graph. (Bottom) Example Model for the Graph Metamodel

ment, the contents of the slotoutgoingRBshould be a subset of the contents of the
slot outgoing.

The benefit of subsets in the running example is that graph traversal algorithms
which worked on the initial metamodel in Fig. 1 should still work for bipartite graphs
when using the metamodel in Fig. 2, and that if we only use elements from the bipartite
graph metamodel, we can also be certain that the model describes a bipartite graph.

Our metamodeling language should support multiple inheritance since it is used ex-
tensively in MOF, as has been noticed by e.g. Anneke Kleppe [11]. Multiple inheritance
forms very complicated inheritance hierarchies, among them thediamond inheritance
structure. This leads to a possibility where property subsetting also has a diamond (or
even more complicated) structure.

Union properties are the last extension mechanism presented in MOF 2.0 which we
will discuss in this paper. If a property is subsetted by other properties, we say that it is
a union property. It is not necessary to declare a property asa union, since a designer
of a metamodel cannot know in advance if a new subset propertywill be defined in
the future. The UML 2.0 Infrastructure also introduced the concept of derived union.
According to page 126 of [16], a derived union property can beseen as the strict union
of its subsets. A slot with a property that is a derived union cannot contain elements that
do not appear in any of its subsets. Another way to define derived content is to create
an arbitrary query operation. This has been done in the Eclipse Modeling Framework
using so calledvolatile attributes as explained in [7]. This way, the contents of a slot
are defined by evaluating the associated query. The drawbackis that there is no strict



mathematical relationship between the derived property and any other properties. The
benefit is that it does not restrict the metamodel creator in any way.

2.1 Metamodels

Based on the previous discussion, we can now present a simplemetamodeling language
that contains the core concepts of MOF and UML 2.0. We describe all metamodels as
the tupleMM = (C,P,generalizations,properties,characteristics), whereC is a set of
classes,P a set of properties andC∩P = /0. We define the generalizations of a class
with the functiongeneralizations: C → P (C). We ignore classes that represent prim-
itive datatypes such as integers, strings and enumeration values without loss of gen-
erality. We denote by⊆c the extended generalization between classes that is defined
as the reflexive transitive closure of the generalization relation:⊆c

def= {(c1,c2) · c2 ∈
generalizations(c1)}

∗. It is a partially ordered set under the assumption that the gener-
alization graph is acyclic.

The properties of a class is given by the functionproperties:C→P (P). Every value
of the functionpropertiesis a disjoint subset ofP. Thus, we can defineowner: P→C
which denotes the unique ownercof a propertyp wherep∈ properties(c). The effective
properties of a class are those defined by the class itself andtransitively by any of its
generalizations.

Finally, the characteristics of a property represent constraints for the elements that
can be contained in a slot of that property. We definecharacteristicsdef

= (lower,upper,
opposite,ordered,composite,derived,supersets) as a tuple of functions detailing the
properties further. The multiplicity constraints is defined by lower : P→ Z

0+ \∞ and
upper: P→ Z

+. Each property has an opposite property represented byopposite: P→
P that is a bijective function. The opposite of a property cannot be itself but every prop-
erty is the opposite of its opposite. The functionordered: P→ B is true if a property
is ordered. For example the parameters in an operation should be ordered. The func-
tion composite: P → B is true if a property is composite. For example, the property
that represents the contents of a package is a composite, since a package owns its con-
tents. Finally, there are two characteristics that represent the new property mechanism:
derived: P → B is true if a property is a derived union whilesupersets: P → P (P)
represents the set of properties of which a property is a subset. The graph representing
the property superset relation(P,{(p1, p2) · p2 ∈ supersets(p1)}) must be acyclic.

For convenience, we define the functionsubsets: P→ P (P) as the inverse of super-
sets. We denote subsetting between properties by the⊆p relation, i.e.,⊆p

def= {(p,q) ·
q∈ supersets(p)}∗. We definea⊂ b def

= a⊆ b∧a 6= b for both⊂c and⊂p. Finally, we
denote bys� t thats is a direct subset oft, i.e.,s� t def= s⊂ t ∧¬(∃u · s⊂ u⊂ t). The
expressions|| t is defined as¬(s⊆ t)∧¬(t ⊆ s), i.e., there is no order defined betweens
andt.

The notable omission is that we cannot describe nonuniqueness (i.e., bags) with the
above definitions. This characteristics exists in UML/MOF but our current formaliza-
tion cannot cope with it. With some modifications, our framework could understand
unordered bags, but ordered bags would still be an issue.



2.2 Models

We defineM = {M · M = (E, type,slots,S,property, elements)} as the infinite set of all
models in our framework.M comprises all the models in a system at some specific time.
E is a finite set of elements andS is a finite set of slots. Each element inE has a type de-
fined by a class in a metamodel,type: E →C, and a set of slots defined by the function
slots: E → P (S). Every value of the functionslotsis a disjoint subset ofS. Thus, we can
defineslotowner: S→E which denotes the unique ownereof a slotswheres∈ slots(e).
Each slot corresponds to a property as defined by the functionproperty: S→ P. Slots
consist of element references and the functionelements: S→ (E,≺) returns a total or-
dered set of elements of its argument slots if ordered(property(s)) is true, otherwise
elements: S→ P (E) returns an unordered set of elements. A slot thus describes the
connection from its owner element to the elements in the slot. There is no actual or-
dering defined between the elements in an ordered slot; they merely have an assigned
position in it. An element cannot occur twice in a slot.

For convenience, we define the size of a slot to be the amount ofelements in that
slot: (∀s∈ S · #s def= #elements(s) ). For the elements of an ordered set, we says[i] to
denote the element at the zero-based indexi in the ordered sets.

Models are hierarchical structures based on composition properties. We define the
functionparent: E → P (E) to return a set consisting of the parent element of the argu-
ment, if any, otherwise the empty set:

parent(e) def
= {x · x∈ E∧ (∃s∈ S · s∈ slots(x)∧composite(property(s))

∧e∈ elements(s))}
The slot subsetting relation is⊆s

def
= {(s,t) · slotowner(s) = slotowner(t)∧

property(s) ⊆p property(t)}∗. A slot s (transitively) subsetting another slott is denoted
by s⊂s t.

By definition, if slots is subsetting slott, then the contents ofs must be a subset
of the contents oft. Also, MOF [15] tells us on page 56 that“The slot’s values are
a subset of those for each slot it subsets.”For ordered slots, we also wish to preserve
order, i.e., when elements occur in a specific order ins, they should occur in the same
order in t, althought might contain more elements in between. We denotea ≺x b if
elementa precedes elementb in a specific ordered slotx.

There are several constraints that must hold for any models,such as strong typing
and at most one parent element for each element. We refer the interested reader to [1] for
a more in-depth description of the constraints, but stress three novel constraints due to
subsets and unions. The constraints also serve as an invariant which must be maintained
by any operation on models.

– The contents of a derived slot is the union of the contents of its subset slots:(∀p∈
P · derived(p)⇒ (∀t ∈S· property(t) = p⇒ elements(t)\

S

{elements(s) · s�t}=
/0))

– The contents of any unordered slot must also exist in the contents of any superset
slots:(∀s,t ∈ S · s⊆ t ∧¬ordered(t) ⇒ elements(s) ⊆ elements(t))

– Similarly to unordered slots, the contents of any ordered slot must also exist in
the contents of any superset slots. Additionally, the elements must occur in the
same order:(∀x,y ∈ E,s,t ∈ S · s⊆s t ∧ x ∈ elements(s)∧ y ∈ elements(s)∧ x ≺s

y∧ordered(t) ⇒ x∈ elements(t)∧y∈ elements(t)∧x≺t y)



These three constraints are specific to derived slots and to unordered and ordered
slots with respect to property subsetting. We call them theinherent subsetting rules, or
ISR.

2.3 Example

Based on the previous definitions, we can describe a part of Figure 2 in a little more
detail in Figure 3. We explicitly show slots as filled black circles, and the subsetting
relation as a solid line between the circles. We represent a slot visually higher up if it is
subsetted by the (connected) slots below it. In the figure, wedepict only elementsV1,V2
andE1. ElementV1 has two slots namedoutgoingandoutgoingRBsuch thatoutgoin-
gRB⊂s outgoing. The contents ofoutgoingRBis the set{E1}. As a consequence of the
ISR constraint, the contents ofoutgoingalso includeE1. The slotsfrom andfromRed
are the opposite of outgoing andoutgoingRBand, as a consequence, they linkE1 to
V1. In the figure, we see four different partially ordered sets (posets) of slots as dashes
ellipses. The first and second poset are isomorphic to each other (as well as the third and
fourth) when only considering the slots and the subsetting relation, disregarding the el-
ements they point to. This is always true, since property subsets always come in pairs of
two isomorphic posets. Drawing a poset in this way is known asa Hasse diagram [10].

Fig. 3. Part of Figure 2 in More Detail

Let us assume that we want to perform some simple model transformations. The
question is what elements should be created and removed fromthe model and what
are the changes to the 8 slots depicted in the figure in order toaccomplish these model
transformations. We address this problem in the next section.

3 Basic Edit Operations for Models

In this section we present the basic operations to create anddelete elements from models
as well as to insert to or remove an element from a slot. These four operations are the



basic edit operations for models that are necessary to implement a model repository and
a model transformation system.

We should note that a valid model transformation usually involves a sequence of
many basic operations. Also, one single basic edit operation can invalidate a slot with
respect to the multiplicity constraints. Therefore, we consider a model transformation
as a sequence of basic edit operations. As an example, let us assume that we want to
create an associationA between two classesC1andC2 in a model based on a simplified
UML with only classes and associations. This requires threebasic operations: createA,
connectC1 with A and connectC2 with A. The associationA is invalid just after the
create operation since an association should connect at least two classes. However, the
model should be well-formed after executing all the basic operations.

We define these operations using a pre- and postcondition specification. We first
describe element creation and deletion. Then, we describe the case of insertion into or-
dered or unordered slots and finally the case of removing elements from slots. The pre-
and postconditions are described as separate enumerated clauses. All of the clauses in
the precondition must hold for the operation to succeed, andall the clauses of the post-
condition must be guaranteed by an implementation. For succinctness and understand-
ability of presentation, we only describe the semantics of an operation in the context
of one poset. When modifying a slot, similar actions must be taken for the slots in the
opposite poset for bidirectionality to hold. This means that the actual operations must,
where necessary, be augmented with an additional index parameter for the ordered slots
in the opposite poset.

In any pre- or postcondition, the old models are denotedM = (E, type,slots,S,

property,elements). In postconditions, the new values of variables are denotedwith tick
marks. Thus, the new models are denotedM′ = (E′, type′,slots′,S′,property′,elements′).

3.1 Element Creation

The operation create :M ×C→M ×E such that(M′,e) = create(M,c) creates a new
element of typec ∈ C and has no preconditions. The new element will also be a root
element, i.e., it will not have any parent. The returned value is a tuple of the new mod-
els and the new element. The primary postcondition is that there must be exactly one
new element in the set of elements. The various model constraints mean that the sets
and functions inM must be updated inM′ to reflect this change; this leads to more
postconditions.

1. (∃!e∈ E′ · E′ \ {e}= E∧ type′(e) = c)
2. type′∩ type= type
3. #S′ = #S+#{p · p∈ P∧ (∃!e∈ E′ \E∧ type′(e) ⊆c owner(p))}
4. S′∩S= S
5. slots′ = slots∪{e→ s · e∈ E′ \E∧s∈ S′ \S}
6. property′ = property∪ {s→ p · s ∈ S′ \ S∧ p ∈ P∧ {∃!e∈ E′ \ E · type′(e) ⊆c

owner(p)}}
7. #Range(property′\property)= #{p · p∈P∧(∃!e∈E′\E∧type′(e)⊆c owner(p))}
8. elements′ = elements∪{s→ {} · s∈ S′ \S∧¬ordered(property′(s))}

∪{s→ [ ] · s∈ S′ \S∧ordered(property′(s))}



The only relevant postcondition is the first one, the rest areimplicit or informally
understandable from the various model constraints. To avoid too much repetition, we
assume that the new values of any variables not mentioned arekept identical to their pre-
vious values and that only the necessary changes to fulfill the postconditions are made.
We will refrain from listing obvious postconditions and concentrate on the important
ones.

3.2 Element Deletion

The operation delete :M ×E →M deletes an element. We require the element being
deleted to have no connections to other elements via its slots. Therefore the precondition
for deleting an elemente is:

1. (∀s∈ slots(e) · #s = 0)

The postcondition is that the element must no longer be in theset of elements:

1. E′ = E \ {e}

3.3 Element Insertion into an Unordered Slot

Consider an operationinsert : M ×S×E → M such thatinsert(M,s,e) inserts ele-
mente into slot s. The intuition behind the insertion operation is that all supersets of
s must contain the new elemente for the ISR constraints to hold. The clauses for the
precondition for element insertion into an unordered slot are thus:

1. ¬derived(property(s))
2. ¬ordered(property(s))
3. e 6∈ elements(s).
4. type(e) ⊆ owner(opposite(property(s)))
5. (∃t ∈ S · s⊆s t ∧composite(property(t)) ⇒ parent(e)\ {slotowner(t)} = /0

The clauses state that (1) we are not modifying a derived read-only slot, (2) the slot is
unordered, (3) the element must not yet exist in the slot, (4)that we obey the rules of
strong typing and (5) we do not create a connection to a secondparent fore.

The postcondition for element insertion is simple. We wish elemente to be found
in the slots and all its transitive supersets. All the model constraintsexcept for the
multiplicity constraints must also hold as a postcondition.

1. (∀t ∈ S · s⊆s t ⇒ elements′(t) = elements(t)∪{e}) (Notes⊆s s)

An example of element insertion into an unordered slot can beseen in Figure 4.
Again, the Hasse diagram notation means thatt ⊂s q ⊂s p∧ q ⊂s r ∧ t ⊂s s⊂s r. In
case (1) of the figure, we have a poset of unordered slots. Suppose we insert an elementc
into slotq. This requires an insertion ofc into slotsp andr as well, to maintain the ISR,
with the end result shown in case (2). After this, insertingc into slott also inserts it into
slot s, again to maintain the ISR, resulting in case (3). Slotsp, q andr are not modified
becausec already existed in those slots.

It can be noted that in our semantics, an insertion into a slotnever modifies any
subset of that slot.



(1) (2) (3)

Fig. 4. Example of Inserting an Element into Unordered Slots

3.4 Element Insertion into an Ordered Slot

Subsetting with ordered slots is more complicated than withunordered slots, due to
the need to maintain an order between the elements in different slots. We define the
operationinsert:M ×S×E×Z

0+ →M such thatinsert(M,s,e, i) inserts an elemente
into a slotsat indexi.

We assume there is a functionindex: E×S→ Z
0+ which returns the zero-based

index of an element in the contents of an ordered slot. A function lower_index: Z
0+×

S×S→ Z
0+ is such thatlower_index(i,x,y) returns the index inx wherey[i] should be

inserted to maintain the subsetx⊆s y. It is shown in Figure 5 and is used to calculate
which restrictions from supersets apply to subsets when inserting an element. As an
example, consider what the restriction given by elementc (at index position 2) in the
superset[a,b,c,d ] is to its subset[a,d ]. Thenlower_index(2, [a,d ], [a,b,c,d ]) returns
1 sincec should be inserted betweena andd.

lower_index(i,s,t) :=
if t[i] ∈ s then returnindex(t[i],s)
do

if t[i] ∈ s then returnindex(t[i],s)+1
else ifi = 0 then return 0
elsei := i−1

od

lift_interval(s,t, [v..w]) :=
if v > 0 thenv′ := index(s[v−1],t)+1

elsev′ := 0
if w = #s thenw′ := #t

elsew′ := index(s[w],t)
return[v′..w′ ]

Fig. 5. (Left) The lower_indexFunction . (Right) Thelift_interval Function

A function lift_interval : S×S×R→ R, whereR denotes integer intervals is such
that lift_interval(s,t, [v..w]) “lifts” the interval [v..w] from s as superimposed ont
(whens⊆s t). It is shown in Figure 5 and is used to calculate which restrictions from
subsets apply to supersets and works as the dual oflower_index. As an example, con-
sider the ordered setss= [c] andt = [b,c]. If we were to insert elementa at index 0 in
s, the corresponding interval fors would be[0..0]. This interval is superimposed onto
t as the interval[0..1], meaning that the same element can be inserted either beforeor
afterb in t without violating the ISR. Thus,lift_interval(s,t, [0..0]) = [0..1].

The function indices_ok: P (S) × (S→ R) → B returns true if when executing
indices_ok(T,F) there is a possible way to insert an element into every slot inT such



that the constraints inF are satisfied. Here,F : S→ R is a map from slots to inte-
ger intervals[v..w] such thatv ≤ w wheree can be inserted. The function is shown in
Figure 6. Here, Dom(F) returns the domain of functionF. Using thelift_interval and
lower_indexfunctions we restrict the possible intervals whereecan be inserted into the
slots.

indices_ok( /0,F) := (∀t ∈ Dom(F) · F(t) 6= /0)

indices_ok(T,F) :=
(∃t ∈ T · (∀u∈ T · t 6⊃ u)

∧R
def
= ∩{lift_interval(c,t, [v..w]) · (∀c · s⊆s c� t ∧F(c) = [v..w])}

⇒ indices_ok(T \{t},F [t 7→ R∩F(t)]))

Fig. 6. The indices_okFunction

The precondition of inserting into an ordered slot is otherwise identical to the case
when inserting into an unordered slot, except for the check for an ordered slot and that
there exists an extra clause which calculates if the insertion into the slot and its transitive
supersets is at all possible without violating the ISR.

1. ¬derived(property(s))
2. ordered(property(s))
3. e 6∈ elements(s)
4. type(e) ⊆c owner(opposite(property(s)))
5. (∃t ∈ S · s⊆s t ∧composite(property(t)) ⇒ parent(e)\ {slotowner(t)} = /0
6. indices_ok({t · s⊂s t},

{s 7→ [ i..i ]}
∪{t 7→ [ lower_index(index(e,u),t,u)..lower_index(index(e,u),t,u) ] · s⊂s t∧ t ⊆s

u∧e∈ elements(u)}
∪{t 7→ [0, #t ] · s⊂s t ∧¬(∃u · t ⊆s u∧e∈ elements(u))}
)

The intuition behind the last clause in the precondition andthe definition of the
indices_okfunction is that we calculate the range restrictions ofe which exist in any
super- or subsets onto the other slots. TheF function is initially created by describing
constraints from supersets.F is created from three different clauses. The first,s 7→ [ i..i ],
constrainse to be inserted at exactly indexi. The second does similarly for supersets
which have a superset that already hase, whereas the third initially allows all indices
to be candidates for insertion. This initialization makes sure thatF is restricted by the
the elementse that already exist in any supersets ofs. Note that any sloto such that
o⊂s t∧s⊂s t∧o || s is outside of the transitive superset closure ofsand any restrictions
from it will already be visible int and thus it is not necessary to includeo in F .

Then,indices_okcalculates the constraints from subsets and does set intersection to
calculate whether an insertion is possible. The actual function takes all supersetsT and
picks onet ∈ T which is a bottom element, which must exist since the slots inT are part



of a finite poset. It then imposes all intervals from subset slots c (such thats⊆s c� t)
onto t, also including the initial constraint ont. It then recurses with a modifiedF
until T is empty. The notation for a modified function isf [x 7→ y] which returns a new
function f ′ such that(∀z 6= x · f ′(z) = f (z)) and f ′(x) = y.

We claim, without proof, that if the final mappingF contains only nonempty inter-
vals, it is possible to successfully inserte into sat indexi. The postcondition is:

1. elements′(s)[i] = e
2. (∀t ∈ S · s⊆s t ∧e 6∈ elements(t) ⇒ elements′(t)\ {e}= elements(t)

∧e∈ elements′(t))

The current definitions do not tell us the exact index where toinsert e into any
superslot ofs, only that a combination of indices exists; an indexit for a superslott of
smust exist somewhere in the range given byF(t).

An example of element insertion can be seen in Figure 7. Case (1) is the initial
configuration of the slotsw, x, y andz. Let us assume an insertion of elementc into
slot w at index position 0 occurs. The returned slot ranges wherec should be inserted
raises the possibilities in cases (2) to (5), depending on whetherc is inserted onto the left
or right side of eithera in sloty or b in slotz. Cases (2), (3) and (4) are correct solutions
and our postcondition does not prefer any particular one over the another. Case (5) is
not legal, because slotx cannot maintain the superset relationship as enforced by both
slotsy andz, as elementc should occur both beforea and afterb in the ordered set. It is
up to the implementation to choose one of the correct solutions, perhaps with guidance
from the user.

(1) (2) (3)

(4) (5)

Fig. 7. Example of Inserting an Element into Ordered Slots

3.5 Element Removal from a Slot

The operationremove:M ×S×E →M is defined such thatremove(M,s,e) removes
the elemente from sand all its subsets, as well as from those supersets which would not



acquiree via some other subset which is not comparable tos. Element removal from
an ordered slot is identical to element removal from an unordered slot since removing
a specific element from an ordered slot does not alter the relative position of the other
elements in the slot.

The precondition requires that a derived slot is not being modified and that the
element must exist in the slot:

1. ¬derived(property(s))
2. e∈ elements(s)

The postcondition:

1. (∀r ∈ S · r ⊆s s⇒ elements(r) = elements′(r)∪{e}∧e 6∈ elements′(r))
2. (∀t ∈ S · s⊂s t ∧¬(∃m∈ S · m⊂s t ∧m || s∧e∈ elements(m))

⇒ elements(t) = elements′(t)∪{e}∧e 6∈ elements′(t))

Both clauses in the postcondition are interesting. The firstclause states that a removal
from a slot triggers a removal from any subset, so that the ISRcan hold. This can be
contrasted with the insertion operation, which does not modify any subsets. The second
clause states that a removal from a slot triggers a conditional removal from any superset.
An interesting feature of the clause is shown in Figure 8. If we have an initial setting as
in case (1) and removea from z, the clause requires thata is removed fromx as shown
in case (2), although this is not necessary to maintain modelconsistency. However, we
believe that this feature is the intended usage by the modeling standards. Inserting into
a subset triggers insertion in all supersets, and so dually aremoval from a subset ought
to trigger a removal from all supersets. A similar chain of reasoning has been reported
by Markus Scheidgen [17].

(1) (2)

Fig. 8. Removinga from an Unordered Slotz

As an example where the second clause is necessary, considerFigure 9 with the
initial setting as in case (1). Assume we wish to removea from y. An incorrect approach
is the removal ofa from supersets and subsets, which would leavex without a, but z
with a intact, violating the ISR, as shown in case (2). A correct option would be to
removea also fromz, as shown in case (3), but our opinion is that this “snowball effect”
of removinga reduces the usefulness of subsets; sloty should affect slotz as little as
possible, since they are not comparable in the Hasse diagram. Our postcondition ensures
thata must be removed fromw andy, but not fromx, becausez still containsa; this is
seen in case (4).



(1) (2) (3)

(4) (5)

Fig. 9. Different Scenarios for Removinga from an Unordered Sloty

Another interesting case is the ISR rule for derived slots. If (and only if)z is marked
as derived, we must remember that its elements must be found in the union of its subsets.
In case (5),a is removed fromy which leads to it being removed fromw as well. Asz
is marked as derived,a must also be removed from it, sincez does not have any other
subset containinga. This in turn leads toa being removed fromx!

3.6 Implementation of Edit Operations in a Modeling Toolkit

We do not discuss the actual implementation of the basic editoperations in this article
due to space restrictions. However, we have implemented themetamodeling language
with the operations as described in this article in our modeling tool Coral, with details
defined in [1]. We have tested the implementation extensively and found no consistency
errors or omissions. Coral is open source and available athttp://mde.abo.fi/.

We know of no other tools that support subsets as extensivelyas proposed in this
article, even with different semantics. At the time of writing, the Eclipse EMF model
repository does not implement subsets, although the feature is being planned.

4 Related Work

Several others have studied the formalization of the metamodel and model layers in the
past, for example [5, 3, 9]. Our contribution comes from the definitions of property sub-
sets, which neither metamodeling nor traditional object oriented language descriptions
explain.

Several authors use association inheritance without defining exact semantics, and
some say that it denotes covariance. An example of this covariant specialization [8] is
the multilevel metamodeling technique called VPM by Varro and Pataricza [18], which
also limits itself to single inheritance. We argue that property subsetting is not the same
concept as covariant specialization, and requires different semantics.



Carsten Amelunxen, Tobias Rötschke and Andy Schürr are authors to the MOFLON
tool [4] inside the Fujaba framework [12]. MOFLON claims to support subsetting, but
no description of the formal semantics being used is included. It is not clear if their tool
works in the context of subsets between ordered slots, or with diamond inheritance with
subsetting.

Markus Scheidgen presents an interesting discussion of thesemantics of subsets in
the context of creating an implementation of MOF 2.0 in [17].To our knowledge, this
has been so far the most thorough attempt to formalize subsetproperties. The approach
is slightly different in that a slot modification creates anupdate graphof slots, so that a
later modification at some other slot in the update graph actually updates all the associ-
ated slots. The actual operational semantics are unfortunately not described in detail. In
comparison, we do not have to create or maintain any update graphs. Furthermore, our
contribution not only discusses but also defines pre- and postconditions and implemen-
tations for the operations for ordered and unordered sets. It is also not clear if the work
by Scheidgen supports diamond subsets or ordered sets, bothof which are used in the
UML 2.0.

The object-oriented and database research communities arealso researching a sim-
ilar topic, although it is called relationship or association inheritance, or first-class rela-
tionships. In [6], Bierman and Wren present a simplified Javalanguage with first-class
relationships. In contrast with our work, they do not support multiple inheritance, bidi-
rectionality or ordered properties; all of these constructs are common in modeling and
in the UML 2.0 specification. However, relationship links are explicitly represented as
instances, and they can have additional data fields (just like the AssociationClass of
UML). As the authors have noticed, the semantics of link insertion and deletion is not
without problems. Albano, Ghelli and Orsini present in [2] arelationship mechanism
for a strongly-typed object-oriented database programming language. It also handles
links as relationship instances, but without additional data fields. Multiple inheritance
is supported, but ordered slot contents are not.

5 Conclusions

MOF 2.0 provides new property characteristics: subsets, (derived) unions and redef-
initions. However, it does not describe these concepts in detail, not even informally,
and therefore they cannot be applied in practice. In this article, we have first described a
simple formalization of metamodels and models and then presented pre- and postcondi-
tions for basic operations on element creation and deletionand slot modification, taking
into account subsets and derived unions. It must be stressedthat we do not cover several
important aspects of MOF 2.0, such as association end ownership or navigability. They
are not in the scope of this article.

We consider that the definition of these concepts is not as straightforward as one
may think and it requires an extensive study. There is an imminent need in the model-
ing community to standardize on one formalization of subsets and derived unions, so
that tools implementing MOF 2.0 and UML 2.0 can be interoperable. The semantics
described in this article are one proposal and we hope it spurs further interest and dis-
cussion. We have avoided using OCL or any other modeling standard in order to be able



to present a relatively small and self-contained description of the core of these OMG
standards with respect to subsetting. Furthermore, the idea of subsetting is intriguing,
since it is a new construct for modeling relationships between classes and objects, and
thereby brings a novel idea to the software modeling and object-oriented community.

The authors would like to thank Patrick Sibelius for insightful discussions. Marcus
Alanen would like to acknowledge the financial support of theNokia Foundation.
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