

SOFTWARE FOR THE CHANGING E-BUSINESS
Towards a More Rapid and Flexible Development Cycle

Maria Alarantaa,b,∗, Tuomas Valtonena,c,* and Jouni Isoahoa,c

Abstract: In this article, we first acknowledge the requirements for more rapid and cost-
efficient development cycles and systems evolution for e-business software
applications. Thereafter, we discuss the contemporary solutions used to meet
the requirements. These include technological and organizational innovations,
as well as commoditization. After that, we discuss attributes of modification of
an e-business application, i.e. the depth of modification, the sophistication of
the modification method, operational continuity, and freedom from errors.
These attributes are combined into a framework that is then used to evaluate
four common e-commerce applications as well as the dynamic e-commerce
platform also presented in this article. The dynamic e-commerce platform is
proposed to be the most favorable solution in cases where system specifica-
tions change frequently.

Key words: e-commerce, information system, modification, flexibility

a Turku Center for Computer Science (TUCS), Lemminkäisenkatu 14–18 B, 20520 Turku,

Finland, Tel. +358-(0)2-333 6942, Fax +358-(0)2-333 6950
b Turku School of Economics and Business Administration, Finland
∗ The first two authors had equal contribution to this article.
c Electronics and Communication Systems, Dept. of IT, University of Turku, Finland

 E-mail: maria.alaranta@tukkk.fi, tuomas.valtonen@utu.fi, jouni.isoaho@utu.fi

2 Maria Alaranta, Tuomas Valtonen and Jouni Isoaho

1. INTRODUCTION

Due to the globalization of business and the evolution towards web-based
systems, it is necessary to re-evaluate the way information systems are de-
veloped, modified, operated and maintained [1]. Changes in the global mar-
ketplace require frequent changes in software because firstly, globally used
systems need to be locally adjusted [15]. Secondly, different industries – e.g.
banking, insurance and stock exchanges in both Europe and also globally –
are responding to increasing competition by mergers and acquisitions [12].

Hence, there is a demand for systems that evolve with and support the
changing organization, facilitate business process redesign to better exploit
the characteristics of IT, and fulfill the requirements for outward-facing in-
formation systems linked to networks of suppliers and customers [7]. These
links include e.g. supply chain management (SCM), for which an increasing
number of companies are using web sites and web-based applications [14].

These new applications, or changes in those currently in use, are called
upon at a pace that calls for significantly shorter development cycle times.

Besides being important to the users, reducing both the cost and the time
from idea to market while ensuring high quality is also crucial for the com-
panies developing software. This is because reaching the marketplace first is
often the primary means to gain a competitive advantage, and the already
competitive market faces new entrants as several developing countries such
as India and China have strongly growing software industries with low labor
costs. [3] [15] Furthermore, the migration towards web-based systems makes
time and creativity essential success factors as the technology changes rap-
idly and the tasks become less clear [5].

In addition to the time and cost of creating the application, the program-
mers must also take the future evolution of the system into consideration.
Manifesting the apparent need for flexible software, corrective and adaptive
maintenance (fixing bugs and alterations to meet changed requirements re-
spectively) accounts for a significant share of software activities in organiza-
tions, and erroneous concentration on the development project – rather than
the whole life cycle of a software (including maintenance) is one of the main
reasons for software problems [7]. And with changing requirements for e-
business applications, the need for maintenance is definitely not going to
decrease. On top of these, downtime – i.e., the time that the system is out of
use due to updating – plays a significant role in some situations, especially
with applications that should always be in service. This is the case for most
e-commerce applications.

Despite of the pressure to create flexible systems, contemporary informa-
tion systems vary considerably in the ease and degree of modification avail-
able. Information systems are generally designed to perform a limited num-

SOFTWARE FOR THE CHANGING E-BUSINESS 3

ber of functions, to process certain types of information, and frequently also
to operate with exclusive operating systems and hardware. Modifying such a
system to include new functionality, understand new forms of data or sup-
port new operating environments may require significant amounts of repro-
gramming, or even restructuring of the whole system.

In this article, we aim at answering the question: How can the ever-
changing requirements for the software for e-business be met? In order to
reach this objective, we (1) review contemporary solutions, (2) present a
framework for analyzing the characteristics required for a solution aimed at
fulfilling the requirements, (3) present a technically oriented concept in
software development that aims at reducing evolution cycle time and in-
creasing flexibility, and (4) analyze the novel concept, as well as some ex-
amples of contemporary solutions, against the framework.

2. CONTEMPORARY SOLUTIONS

Looking back at more than 50 years of history in software development,
three main paths of trajectories of innovation can be observed. These are: (1)
technical change, i.e. new programming languages, tools, techniques, and
methods, etc.; (2) organizational change, i.e. new ways of managing the
people and the process; and (3) substitution of standard products (generic
packages) for custom building. [9]

Technological change manifests itself in the development of program-
ming languages, starting from writing in machine code, all the way to 4G
languages that have vocabularies and syntax very similar to natural lan-
guage. After these, the technology advanced to e.g. “declarative systems”,
and structured techniques such as modularity and object-oriented (OO) de-
sign and programming. Object-oriented techniques provide significant pos-
sibilities for shortening the development life cycle. On top of this, compo-
nent-based and modular program structures provide greater rigor and pre-
dictability. [9]

Besides these, tools for supporting the development processes have also
evolved. These range from programmer aids – e.g. testing and debugging
tools – to tools supporting the whole development life cycle. The latter tools
are generally referred to as computer-aided software engineering (CASE)
tools. [9] Yet another strand of development focuses on the structured meth-
ods supported by CASE tools that emphasize user requirements analysis,
specification and design rather than programming and testing. These include
e.g. information engineering (IE) [1]. Other technical innovations include the
“cleanroom” approach in which the aim is to prevent the entry of defects

4 Maria Alaranta, Tuomas Valtonen and Jouni Isoaho

during the development, and non-serial machine architectures, such as neural
networks [9].

Organizational innovation aims at offering better tools, techniques and
methods for the quality of development, supply and maintenance of soft-
ware. These also take into account non-technical aspects of the development
process, such as project management and the organization of work [9]. These
include time-based software management [2], total quality management
(TQM) [4], quality function deployment [5], the Capability Maturity Mod-
elSM (CMM) [7], etc. These innovations are all suitable for developing both
“traditional” and e-commerce applications.

On the other hand, extreme programming (XP) is a team-based engineer-
ing practice that is suggested to be especially suitable for the high-speed,
volatile world of web software development. It can also be combined with
other innovations such as CMM [8]. However, the benefits of using cross-
functional teams in software development are also debated over [3].

Recent developments include e.g. the Model-Driven Architecture
(MDA). MDA is about merging the modeling and coding processes, achiev-
ing greater software portability, cross-platform interoperability, and platform
independence. The business functionality and behavior are first modeled by
using a technology-independent environment. After this, the platform-
specific model(s) for the selected technical platform(s) are developed. The
aim is to automate the transformations between the models and code. How-
ever, in practice, reaching this level of automation is not trivial, and more
research and development is required. [13]

The ISO 9001 [e.g. 15] quality standard also distinguishes between the
technical and organizational aspects of software development.

The third development tendency is commoditization, which refers to the
substitution of the process of custom building software for a software prod-
uct or package. This is assumed to be one of the most effective ways to
achieve the highest development productivity gains. Packages should reduce
uncertainty in the length of time and cost of development. Also, using a tried
and tested product is likely to ensure a predictable level of reliability and
known quality, as bugs are identified by earlier users. One extreme of the
packages are the user-configurable systems, of which the archetype is the
spreadsheet, offering the possibility of end-user developed applications.
However, the spreadsheet and databases allow only narrow applications,
similarly to the 4G languages that are marketed as “end-user languages”, but
in practice require significant skills. However, in theory, packages custom-
izable by the end-user would remove the productivity problem from the IT
developers. [9]

Besides these, recent developments affecting the e-business include, e.g.,
Web Services and Semantic Web. Web Services can be described as modu-

SOFTWARE FOR THE CHANGING E-BUSINESS 5

lar Internet-based applications that facilitate business interactions within and
beyond the organization. As opposed to the traditional business-to-business
applications such as EDI, Web Services are typically decentralized, open and
unmonitored, shared, and dynamically built, and the user base and scale are
not predefined. [10] On the other hand, Semantic Web aims at solving the
problem of the machines not being able to interpret the meaning and rele-
vance of the documents in the web. Semantic Web offers a vision for the
future in which the information is given explicit meanings, which enables
people and computers to co-operate more efficiently. [11]

3. ATTRIBUTES OF MODIFICATION

As described in the previous section, the rapidly changing environment
creates new requirements, while simultaneously obsolescing old specifica-
tions, at an increasing pace. During the past decade, information systems,
including e-commerce systems, have become more dynamic as new design
techniques and tools have become mainstream. However, the flexibility pro-
vided by systems is all too often no more than cosmetic: some “dynamic”
features are programmed for end-users, but the actual system core must be
continuously reprogrammed to cope with changing demand.

In this section, we aim at defining the concept of flexibility in e-
commerce systems. We first seek to identify the main attributes of e-
commerce systems that influence the type of actions required and cost in-
curred when functionality is altered. We then combine these to form a
framework for classifying and evaluating components of systems, as well as
entire e-commerce systems.

3.1 Depth of Modification

We first divide the components of a system into functional classes, ac-
cording to their roles within the system. The distinction between user and
core components is essential for fully understanding the extent of modifica-
tions possible in e-commerce systems. Hence, we distinguish between two
top-level classes of system components:
a) core components, and
b) user components.

Core components are an integral part of the e-commerce system and are
identical in each installation of the system. These components specify the
functionality of the system and methods for accessing information in the sys-
tem. User components are closely related to user requirements and may vary

6 Maria Alaranta, Tuomas Valtonen and Jouni Isoaho

from one installation to another. These are typically dependent on the type of
industry, in which the user is operating.

The depth of modification attribute (hereafter the “depth” attribute) indi-
cates which component classes in the information system are subject to
changes. For example, a simple system may allow the end-user to insert,
modify and delete database records, while a more elaborate system may also
permit changes to the structure of the record. An advanced information sys-
tem may also allow changes to functionality and internal structures of the
system itself. All of these cases are possible without reprogramming the sys-
tem itself; naturally, more elaborate modifications are possible if we allow
reprogramming of the system (see Section 3.2 for further discussion on this
topic).

Next we shall identify four main levels of depth in system components,
according to the content and structure that can be modified in these, corre-
sponding to levels 1–4:
1. content in user components only,
2. content and structure in user components,
3. content and structure in user components, as well as content in core com-

ponents, and
4. content and structure in both user and core components.
Level 1 allows modification of content in user components, typically data
related to the application area of the user. At level 2, the structure of such
information can also be modified, allowing the addition of new information
types or the extension of existing types. A level 3 component allows changes
in content of core components, in addition to that of case components. In this
case, both functionality and access to information in user components can be
altered. Finally, at level 4, one is also able to modify the structure of core
components. This permits changes in the basic elements of information types
(used at levels 1–4 access to information) and available functions (used at
levels 3–4 to define functionality)1.

1 One should note that to qualify for a certain level of depth, a system should also provide

support for modification of related subcomponents and the appropriate means for the end-
user to carry out modifications.

SOFTWARE FOR THE CHANGING E-BUSINESS 7

Custom-Tailored
(Web-Based)

Database Reporting
& Querying
Applications

Website/
Database

Management
Tools

Dynamic Tool
for (Web-Based)

Database
Reporting and
Management

Level 1 Level 2 Level 3 Level 4

Currently
Non-

Existent

Web
Form

User-
Customizable

News
Services

SQL
Enterprise
Manager

Excel

Example Applications
Example Application

Classes

eShop

Dynamic
E-Commerce

Platform
InterDev

Custom-Tailored
(Web-Based)

Database Reporting
& Querying
Applications

Website/
Database

Management
Tools

Dynamic Tool
for (Web-Based)

Database
Reporting and
Management

Level 1 Level 2 Level 3 Level 4

Currently
Non-

Existent

Web
Form

User-
Customizable

News
Services

SQL
Enterprise
Manager

Excel

Example Applications
Example Application

Classes

eShop

Dynamic
E-Commerce

Platform
InterDev

Figure 1. Examples of applications at various depth levels (sophistication level ≥ 3).

In Figure 1 we demonstrate the differences in the depth levels of various
generic components (applications in this example) when the sophistication of
the modification method ≥ 3; i.e., components that can be modified without
any reprogramming labor (see Section 3.2). Depth level 1 encompasses
stand-alone or web-based e-commerce applications built on a database plat-
form. Although the database itself is at a higher depth level, the custom-
tailored portion is inflexible and rates no higher than level 1 without repro-
gramming. A typical website/database management tool at level 2 is able to
modify both the content and structure of the content; however, automated
mechanisms for providing end-user functionality are not included. An inte-
grated, possibly web-based, database management and reporting tool with an
automated end-user editor would fulfill requirements at level 3, allowing
modification of core components, such as database access mechanisms and
some functionality (e.g. by generating queries and appropriate user inter-
faces) for the end-user. Level 4 applications do not currently exist without
reprogramming work.

3.2 Sophistication of the Modification Method

In this section, we categorize the methods available for modifying com-
ponents into the sophistication of the modification method attribute (hereaf-
ter the “sophistication” attribute); i.e. the type of action required to modify a
system component. The level of sophistication depends on the design of the
component and the tools used to create it. In the following we shall divide
the components into five main categories, corresponding to sophistication
levels 0–4:
0. non-modifiable,
1. pre-compiled,
2. auto-generated,
3. configurable, and
4. self-configuring.

8 Maria Alaranta, Tuomas Valtonen and Jouni Isoaho

The functionality of a level 0 non-modifiable system component is fixed
in the design phase and cannot be changed after the manufacturing stage.
Hence, modifying a component at this level requires physical replacement. A
level 1 pre-compiled component is also designed to perform a specific func-
tion, but can later be manually reprogrammed if modification is required. A
level 2 auto-generated component can be altered using automated modeling
tools, allowing a shorter and more reliable development process. A level 3
configurable component can be modified by the end-user at any time without
reprogramming. Finally, a level 4 self-configuring component will monitor
and modify itself autonomously.

Level 0 Level 1 Level 2 Level 3 Level 4

Component
Created with
IC Design

Tool

Component
Created in
Text-Based

Programming
Language

Component
Created with
Automated

Development
Environment

Component
in Dynamic

Platform

Component
in Autonomous

Dynamic
Platform

Cadence
HTML Editor
Java Editor
C++ Editor

Visual Basic
Frontpage

Component
Editor

Example Tools

Component
Classes

Visual C++

Level 0 Level 1 Level 2 Level 3 Level 4

Component
Created with
IC Design

Tool

Component
Created in
Text-Based

Programming
Language

Component
Created with
Automated

Development
Environment

Component
in Dynamic

Platform

Component
in Autonomous

Dynamic
Platform

Cadence
HTML Editor
Java Editor
C++ Editor

Visual Basic
Frontpage

Component
Editor

Example Tools

Component
Classes

Visual C++

Figure 2. Examples of system component classes and tools at various sophistication levels.

Figure 2 illustrates some examples of system components and develop-
ment tools at different levels of sophistication. At level 0, the Application-
Specific Integrated Circuit (ASIC) is a typical non-modifiable system com-
ponent. The functionality of an ASIC is fixed at design-time, and imple-
mented using an IC design tool, e.g. Cadence TM. Once installed, the compo-
nent cannot be updated (unless physically removed). At level 1, the func-
tionality and content of pre-compiled components can be created using an
editor for textual programming and markup languages, such as C++, Java
and HTML. However, modifying such code requires manual work and in-
volves the risk of human error. At level 2, an auto-generated component can
be re-designed using user-friendly, automated development environments,
such as Microsoft FrontPage TM. Here the end-user is able to generate content
and functionality without specific knowledge on the underlying mechanisms,
albeit the resulting code, once created, is static and comparable to that of
level 1. Between levels 1 and 2 are hybrid components, such as Microsoft
Visual Basic TM and Visual C++ TM, in which some portions are created
graphically, whereas others require textual programming work.

Components at levels 3–4 constitute a new class of dynamic platforms.
At level 3, the end-user can add configurable components, or remove or
modify existing ones at any time. The main difference, in comparison to
level 2, is that the component itself is dynamic, not only the tool that was
used to generate it. Hence, modifications can take place even during system

SOFTWARE FOR THE CHANGING E-BUSINESS 9

operation. Level 4 self-configuring components are similar, but are also
equipped with mechanisms for autonomously modifying themselves to adopt
to circumstances, without end-user intervention. Techniques for implement-
ing components at levels 3–4 are presented in Section 4.

3.3 Operational Continuity

The third attribute, operational continuity, refers to the ability to ensure
uninterrupted operation in the component subject to modification. Here we
define two primary levels of downtime with respect to system operation, cor-
responding to levels 0–1:
0. interrupted, and
1. uninterrupted.

At level 0, modifying the component results in interruption of the normal
operation of the component and other dependent components. At level 1, no
interruption is necessary, and the new functionality of the component is valid
from the moment that the modification takes place. Figure 3 illustrates two
examples of operational continuity. A typical compiled binary component
must be replaced when any modification other than normal data manipula-
tion is required (depth of modification ≥ 2). Upon replacement, the original
binary component must be removed, the modified component installed and
the system possibly reconfigured to accommodate the modification. This
inevitably entails that the component is out-of-service for a period of time
and, unless the system encompasses identical redundant components, down-
time of services provided by the component and other dependent compo-
nents. A dynamically configurable component, on the contrary, can be modi-
fied without downtime, expect for when modifying the structure of a core
component (depth of modification ≤ 3).

Level 0 Level 1

Compiled
Binary

Component
(depth ≥ 2)

Dynamic
Component
(depth ≤ 3)

Level 0 Level 1

Compiled
Binary

Component
(depth ≥ 2)

Dynamic
Component
(depth ≤ 3)

Figure 3. Examples of system components at two levels of operational continuity.

When taking the impact of the interruption into account, we could also
position a variety of intermediate levels between the extreme “interrupted”
and “non-interrupted” levels. For example, a short interruption of a single
service during hours of low usage can be considered relatively harmless and
thus closer to level 1, whereas the interruption of numerous or all services at
peak usage hours is bound to be more severe.

10 Maria Alaranta, Tuomas Valtonen and Jouni Isoaho

3.4 Freedom from Technical Errors

Finally, the freedom from technical errors attribute (hereafter the “error-
freedom” attribute) signifies the ability to ensure the correct implementation
of modifications; i.e., the risk of system instability or data inconsistency due
to technical errors is avoided. Specification errors are excluded in this case,
because these contain a significant human component; hence, tackling these
would require non-technical tools, methods and skills as well.

We can distinguish two primary levels of error-freedom with respect to
system operation, corresponding to levels 0–1:
0. technical errors possible, and
1. technical errors not possible.

Figure 4 shows some examples of generic system components at different
levels of error-freedom.

Manually
Programmed
Component

Component
Created

in Automated
Development
Environment

Level 0 Level 1

Manually
Programmed
Component

Component
Created

in Automated
Development
Environment

Level 0 Level 1
Figure 4. Examples of system components at various levels of error-freedom.

The risk of technical error can be reduced by creating the component in
automated development environment2. In addition, other methods for reduc-
ing the risk of error include modular and component-based design, and stan-
dardizing the interfaces. In such cases, components could be positioned at
intermediate levels, i.e. between levels 0 and 1, of error-freedom.

3.5 A Framework for Evaluating Modification

In the previous subsections, we have examined four main attributes that
influence the impact of modifications in an information system. Using these
attributes, many system design preferences differ from contemporary trends.
The depth attribute introduces the viewpoint that even core system compo-
nents could be divided into structure and content; hence, system functional-
ity could be modified extensively without programming work by adding,
removing or modifying the content of core components (that is stored as
data).3 The sophistication attribute suggests that programming in general –
regardless of whether a traditional textual language or modern fourth-
generation language is used – should be characterized as a primitive ap-

2 Obviously, this does not remove the risk of incorrect specification that can also lead to data

inconsistency, etc.
3 However, modification of the structure of core components requires reprogramming work.

SOFTWARE FOR THE CHANGING E-BUSINESS 11

proach to implementing flexible systems. More advanced methods would
allow users to construct and modify the system without programming, e.g.
by selecting and combining components using a graphical user interface. The
operational continuity attribute highlights that the need for downtime during
system modification could be completely avoided, if components can be
modified as data, rather than via recompilation. The error-freedom attribute
asserts that implementation errors upon modification can be completely
avoided, if the modification tool is adequately sophisticated.

In Figure 5, these attributes are combined to form a four-dimensional
framework for assessing the modification characteristics of an information
system. The indices in the axes of the framework correspond to the levels
introduced in chapters 3.1–3.4.

When depth levels 1–4 or 0–1 for each component are displayed in a sin-
gle graph, a modification profile for the component can be formed. The dot-
ted lines illustrate two imaginary modification profiles.

Depth of Modification

Modification
Method

Operational Continuity

Freedom
From
Errors

1 2 3 41

2

3

4

1

1
0

0

examples of profiles

A

B

Depth of Modification

Modification
Method

Operational Continuity

Freedom
From
Errors

1 2 3 41

2

3

4

1

1
0

0

examples of profiles

Depth of Modification

Modification
Method

Operational Continuity

Freedom
From
Errors

1 2 3 41

2

3

4

1

1
0

0

Depth of Modification

Modification
Method

Operational Continuity

Freedom
From
Errors

1 2 3 41

2

3

4

1

1
0

0

examples of profiles

A

B

Figure 5. Modification attributes combined

From the shape of this profile, we can determine the modification charac-
teristics of the component. Narrow flame-shaped profiles similar to example
A are a sign of a very static component; modifying such a component would
require manual work, could interrupt the operation of the component and
cause errors. In contrast, broad and circular profiles similar to example B
promise straightforward modification, entailing little manual programming
work or negative side effects4.

4. THE DYNAMIC E-COMMERCE PLATFORM

Today many e-commerce systems are tailored to match the needs of a
particular end-user group (or end-user organization) at a certain time. Often

4 As a rule of thumb we can say that the greater the distance between the dotted line mark-

ing the profile and the origin, the more attributes favorable for modifications prevail.

12 Maria Alaranta, Tuomas Valtonen and Jouni Isoaho

the entire system is designed and implemented based on assumptions on the
structure of the source information and the functional requirements of the
end-user. When these assumptions change, some or all components of the
system must be reprogrammed; this may result in increased expenses on de-
velopment and/or IT consulting services, system downtime and the risk of
data inconsistency or corruption.

In this section we outline the design methodology of a next-generation
real-time dynamic e-commerce system that is completely configurable by
end-users and requires little re-engineering. In particular, the system exhibits
the following characteristics:
a) the content and structure of all user components, as well as the content of

all core components, can be modified (depth level = 3),
b) all modifiable components are configurable (sophistication level = 3),
c) modifications do not interrupt component operation (operational continu-

ity level = 1), and
d) modifications do not cause technical errors (error-freedom level = 1).

In the following subsections, we present the design principles, objectives
and architecture of the dynamic e-commerce platform.

4.1 System Design

When creating an e-commerce system where all components are config-
urable and the content of core components is modifiable, a number of design
issues must be addressed. Firstly, because the functionality of the system
(residing in core components) is dynamic, using standard techniques for im-
plementing functionality – such as programming and compiling code – is not
an option. Furthermore, the end-user must be able to modify the internal
methods used to access information from the database, as well as all user
interface components. The end-user should also have access to all user com-
ponents, be able to modify the content and structure of these, as well as the
ability to process information and use this to generate totally new informa-
tion types. The end-user must be allowed to modify components at any time,
without shutting down any components in the system, and modifications
should not be allowed to produce technical errors. These requirements are
particularly challenging for real-time e-commerce systems, where the flow
of information is continuous.

SOFTWARE FOR THE CHANGING E-BUSINESS 13

4.2 System Architecture

The e-commerce system can be divided into two main sections:
a) the system core that is programmed and compiled prior to installation, and
b) database structures that can be modified at any time.

The system core comprises several control units for the information sys-
tem. Firstly, the user interface controller is responsible for displaying user
interface atoms, components that are visible and accessible to the end-user,
such as windows, buttons, images, etc. The external message controller
deals with the reception and transmission of messages from and to external
information sources and other installations. The database message controller
manages all communication with the database. The atomic function unit
processes incoming data. Finally, the system kernel schedules events in the
system core and coordinates communication between other units.

Using the basic mechanisms in the system core, one can configure a com-
plete system by creating appropriate database structures. User interfaces are
collections of user interface atoms, and can be completely user-tailored. The
external message controller reads messages formats from the database,
which can be modified as specifications are altered. Likewise, the database
controller reads its own messaging format from the database; if the database
changes, only the messaging information needs to be updated. Finally, the
atomic function unit reads binary code directly from the database into the
memory; hence, new functions can be added without modifying the system
core. The system architecture is illustrated in Figure 6.

DATABASE

SYSTEM CORE

User
Interface
Controller

User
Interface
Formats

External
Message
Controller

Database
Message
Controller

Atomic
Function

Unit

External
Message
Formats

Database
Message
Formats

Functions
(Binary
Code)

System Kernel

User Component Formats
Core Component Formats

Data

DataExternal
Systems

Data

User Interface

DATABASE

SYSTEM CORE

User
Interface
Controller

User
Interface
Formats

External
Message
Controller

Database
Message
Controller

Atomic
Function

Unit

External
Message
Formats

Database
Message
Formats

Functions
(Binary
Code)

System Kernel

User Component Formats
Core Component Formats

Data

DataExternal
Systems

Data

User Interface

Figure 6. Architecture of the dynamic e-commerce platform.

The depth of modification of this system is at level 3, because the content
of core components, as well as the content and structure of user components,
is stored in the database. However, the structure of the core components is
programmed into the system core and cannot be modified without repro-
gramming. Hence, the system fails to qualify for depth level 4 (above so-
phistication level 2).

14 Maria Alaranta, Tuomas Valtonen and Jouni Isoaho

5. DISCUSSION

5.1 The Cost of Modification

In this section we first examine the cost of modifying components in a
system. Here we focus solely on the technology-related expenditure; other
indirect costs, such as the cost of re-training personnel etc., are omitted from
this study. For each level of depth (d), the cost (C) of modification is:

C(d) = C(s(d)) + C(o(d)) + C(e(d)) (1)
where

d = the level of depth of modification,
s(d) = the level of sophistication of the modification method at depth level d,
o(d) = the level of operational continuity at depth level d, and
e(d) = the level of freedom from errors at depth level d.

Due to the differences in the amount of modification work required at
different levels of sophistication, it is fair to assume that lower levels of so-
phistication will account for higher cost, whereas higher levels will bear a
lower cost:

C(s0) ≥ C(s1) ≥ C(s2) ≥ C(s3) ≥ C(s4) (2)
The same applies to operational continuity and error-freedom; uninter-

rupted and non-volatile operation is assumed to bear a lower cost than inter-
rupted and volatile:

C(o0) ≥ C(o1) (3)
C(e0) ≥ C(e1) (4)

Hence, higher levels of sophistication, operational continuity and error-
freedom are beneficial in terms of modification cost. In a system where the
system components already exist, one could also optimize the interdepend-
encies between the components at different levels of sophistication. In par-
ticular, for any system composed of the component set A, modification costs
are minimal5 if for each level of depth, the level of sophistication of each
component a is at least as high as all components that it is dependent on:

C(A) = Cmin(A) | ∀ a ∈ A, b ∈ D(a), d ∈ [1,4]: s(a,d) ≥ s(b,d) (5)
where

D(x) = the set of components dependent on component x, and
s(x,d) = the level of sophistication of the modification method for x at depth level d.

5 Here we assume that operational continuity o(x,d) and error-freedom e(x,d) are fixed and

independent of s.

SOFTWARE FOR THE CHANGING E-BUSINESS 15

s

a1
a3

a2
a4

a5

a)

a1 a3a2 a4 a5

c)

a1 a3

a2 a4

a5

b)

s

a1
a3

a2
a4

a5

a)

a1 a3a2 a4 a5

c)

a1 a3

a2 a4

a5

b)
Figure 7. Level of sophistication and interdependencies between components.

Hence, components most dependent on others should be implemented
with the highest possible level of sophistication, at each level of depth. The
example in Figure 7 shows interdependencies between five system compo-
nents (a1–a5); when a component is modified, all dependent component must
also be altered. Because in a) the components subject to the most dependen-
cies (a2 and a4) are at a higher level of sophistication than dependent compo-
nents, modification cost is non-optimal. This is because any change in a2 or
a4, occurring at a high level and thus entailing only low modification cost,
also forces modification of lower-level components that account for higher
modification costs. In contrast, in b) a2 and a4 are lower than dependent
components. Now any inevitable changes in these components will only
cause moderate modification costs to components at higher levels.

Contemporary information and e-commerce systems that comprise pre-
compiled or custom-tailored applications (a1, a3, a5) for implementing end-
user functionality, together with a relational database for information man-
agement, fall into category a) of Figure 7. Category b) is more difficult to
achieve in this context, because end-user applications should be at a higher
level of sophistication than the database that resides at level 3. A dynamic e-
commerce platform that, for each level of depth, exhibits a level of sophisti-
cation similar to that of a database, could result in case c); here no compo-
nents are dependent on other components with a higher level of sophistica-
tion – hence, modification costs remain minimal.

However, the obvious drawback of a dynamic system is the high initial
cost of programming the platform. Hence, for systems that are changed in-
frequently, traditional programming techniques are typically more cost-
efficient.

5.2 Evaluating Applications with the Framework

In this section, we use the framework presented in Section 3.5 to evaluate
four common e-commerce applications (1–4) that exhibit various levels of
sophistication, a spreadsheet tool (5), and the dynamic e-commerce platform
(6) presented in section 4. The spreadsheet tool is included to exemplify a

16 Maria Alaranta, Tuomas Valtonen and Jouni Isoaho

familiar user-configurable system with the possibility of end-user developed
applications.6

The applications are evaluated against the framework in a situation where
a change in the e-commerce application is required, in order to analyze
whether the application discussed is able to meet the flexibility requirements
imposed by the changing environment.

The first application to study is a generic form in a web site created on a
traditional web-server. These forms are used e.g. for collecting end-user in-
formation such as the name, address, etc.

A Form in a Website Created on a Traditional Web Server
Depth of Modif ication

Modif ication Method

Operational Continuity

Freedom from Errors

Modifying User Data

Restructuring User Data

Modifying System Data

Restructuring System Data
Figure 8. A form in a web site created on a traditional web-server.

As seen in Figure 8, a form of this type is very flexible when used for the
purpose it is designed for: collecting and changing the data entered in the
fields. However, altering the structure of the form, or the system core, re-
quires significant effort.

A User-Customizable Website Created on a Traditional Web Server
Depth of Modif ication

Modif ication Method

Operational Continuity

Freedom from Errors

Modifying User Data

Restructuring User Data

Modifying System Data

Restructuring System Data
Figure 9. A user-customizable web site created on a traditional web-server.

The second example is a user-customizable web site created on a tradi-
tional web-server. This could be, for example, a service that allows the user

6 The examples presented in this section are rather simplistic, in order to illustrate the

concepts. With regard to more complex real-life systems, each module should be analyzed
individually.

SOFTWARE FOR THE CHANGING E-BUSINESS 17

to key in a set of preferences, which then creates a customized web site for
the user. A typical example could be e.g. a news service that allows the user
to choose between a variety of areas of interest, and creates a customized
service according to these preferences. As shown in Figure 9, flexibility now
extends to the level of user data structure. However, the customization op-
tions available to the user are limited, unless the system itself is designed to
accommodate dynamic transformation.

In the following, Figure 10 illustrates a similar system created with an
automated tool.

A User-Customizable Website Created with an Automated Tool
Depth of Modif ication

Modif ication Method

Operational Continuity

Freedom from Errors

Modifying User Data

Restructuring User Data

Modifying System Data

Restructuring System Data
Figure 10. A user-customizable web site created with an automated tool.

In this case, the improvement is due to the fact that an automated tool re-
duces the possibility of technical errors.

Templates for creating an e-store application exemplify a yet more flexi-
ble system. These templates allow the creation of customized commercial
web sites without requiring programming skills.7

A Template Tool for Creating an e-Store
Depth of Modif ication

Modif ication Method

Operational Continuity

Freedom from Errors

Modifying User Data

Restructuring User Data

Modifying System Data

Restructuring System Data
Figure 11. A template tool for creating an e-store.

Although this system is flexible, especially in comparison to the exam-
ples in Figure 8 through Figure 10, it nevertheless has the problem of down-

7 See e.g. [6] for a service of this type. (We apologize for using a web site published in Fin-

nish as an example).

18 Maria Alaranta, Tuomas Valtonen and Jouni Isoaho

time, and modification of core components still requires programming. On
the other hand, using a template prevents errors effectively.

The following example is a spreadsheet application. Although this is not
directly related to e-commerce applications, it was chosen to illustrate a fa-
miliar user-configurable system with the possibility of end-user developed
applications, and hence acts as a reference frame for comparison.

An Application Built with a Spreadsheet Tool
Depth of Modif ication

Modif ication Method

Operational Continuity

Freedom from Errors

Modifying User Data

Restructuring User Data

Modifying System Data

Restructuring System Data
Figure 12. An application built with a spreadsheet tool.

As shown in Figure 12, operational continuity is an advantage that the
spreadsheet tool has over the previously presented applications. The advan-
tage of this for service-intensive web applications is obvious, because down-
time means that customers are left without service.

The last item subject to analysis is the dynamic e-commerce platform
presented in Section 4. As shown in Figure 13, this approach combines the
benefits of both template tools for creating an e-store and spreadsheets.
Hence, it possesses the characteristics required from a system that is de-
signed to meet the constantly changing requirements; i.e., extensive modifi-
ability, advanced tools for system modification, operational continuity, and
error-freedom due to the use of automated tools.

A Configurable Platform for Developing e-Commerce Solutions
Depth of Modif ication

Modification Method

Operational Continuity

Freedom from Errors

Modifying User Data

Restructuring User Data

Modifying System Data

Restructuring System Data
Figure 13. A configurable platform for developing e-commerce solutions.

SOFTWARE FOR THE CHANGING E-BUSINESS 19

The main advantage of this system is that most of the system can be
modified without any reprogramming work; the structure and content of user
components, as well as the content of core components, can be configured
during system operation. Reprogramming and recompilation of the code, in
addition to the distribution and installation of updated modules, is required
only when the structure of one or more core components is modified.

It should be noted that the configurable platform proposed above is a
purely technological solution. In order to strive for the most efficient devel-
opment life cycle for e-commerce products, this technique should be com-
bined with organizational innovations and commoditization (see [8]).

6. CONCLUSIONS

This article is concerned with the modification of e-commerce systems.
We first discuss contemporary solutions and methods for dealing with fre-
quently changing system requirements. Here we describe a number of tech-
nological and organizational innovations aimed at shortening the product
development cycle, whilst maintaining the rigor and predictability of sys-
tems. We discuss four attributes of modification in e-commerce applications:
the depth of modification, sophistication of the modification method, opera-
tional continuity, and freedom from errors. Using these, we compose a
common framework for the evaluation of modification in e-commerce sys-
tems. In particular, we emphasize that traditional programming techniques –
regardless of which language is used – are not necessarily optimal for creat-
ing dynamic e-commerce systems; when flexibility is important, more elabo-
rate methods are recommended.

We also introduce a novel configurable e-commerce development plat-
form and assess its modification characteristics against four typical e-
business applications: a website using simple web forms, two types of user-
customizable websites and a web-based e-store. In the analysis, we observe
that contemporary e-commerce applications can deal with certain levels of
modification with no difficulty, but more fundamental changes in system
specification could lead to extensive reprogramming, downtime and the risk
of data inconsistency. The configurable e-commerce platform is found ad-
vantageous in three specific cases: when system specifications are altered
frequently, when changes are of fundamental nature, and when the end-user
requires extensive control over the system. We also conclude that combining
the platform with organizational innovations and commoditization could
prove useful in future.

Finally, we demonstrate some of the benefits of studying system flexibil-
ity using multiple independent attributes; many strengths and weakness of

20 Maria Alaranta, Tuomas Valtonen and Jouni Isoaho

diverse system designs can only be revealed via thorough and multi-
perspective analysis. In particular, the significance of modifiability is em-
phasized – the ability to rapidly adapt to a constantly changing environment
will be the key to future e-commerce.

ACKNOWLEDGEMENTS

We wish to thank Professor Reima Suomi and Ph.D. Olli-Pekka Hilmola
(Turku School of Economics and Business Administration, Turku, Finland),
for their valuable comments.

REFERENCES

1. Behling, Robert – Behling, Cris – Sousa, Kenneth (1996) Software Re-engineering: Con-
cepts and Methodology in Industrial Management & Data Syst. Vol. 96, No. 6, pp. 3–10.

2. Blackburn, Joseph D. – Scudder, Gary D. – Wassenhove, Luk N. – Hill, Graig (1996)
Time-based Software Development in Integrated Manufact. Syst. Vol. 7, No. 2, pp. 60–66.

3. Dubé, Line (1998) Teams in Packaged Software Development – the Software Corp. Ex-
perience in Information Technology & People. Vol. 11, No. 1, pp. 36–61.

4. Gong, Beilan – Yen, David C. – Chou, David C. (1998) A Manager’s Guide to Total Qual-
ity Software Design in Industrial Management & Data Syst. Vol. 98, No. 3. pp. 100–107.

5. Herzwurm, Georg – Schockert, Sixten (2003) The Leading Edge in QFD for Software and
Electronic Business in Int’l Journal of Quality & Reliabil. Man. Vol. 20, No. 1, pp. 36–55.

6. Kotisivut.com (2002) http://www.kotisivut.com/eshop.shtml. (Read: 30/04/03).
7. Paulk, Mark C. – Weber, Charles V. – Garcia, Suzanne M. – Chrissis, Mary Beth – Bush,

Marilyn (1993) Key Practices of the Capability Maturity Model, version 1.1. Software En-
gineering Institute, Carnegio Mellon University, Pittsburgh, USA.

8. Paulk, Mark C. (2001) Extreme Programming from a CMM Perspective in IEEE Software.
Nov/Dec, pp. 1–8.

9. Quintas, Paul (1994) Programmed Innovation? Trajectories of Change in Software Devel-
opment in Information Technology & People. Vol. 7 No.1, pp. 25–47.

10. Ratnasingam, Pauline (2002) The importance of technology trust in Web services security
in Information Management & Computer Security. Vol. 10, No.5, pp. 255–260.

11. Sadeh, Tamar – Walker, Jenny (2003) Library Portals: Toward the semantic Web in New
Library World. Vol. 104, No. 1184/1185, pp. 11–19.

12. Saksan Pankit Yhdistyvät (2000) in Verkkouutiset http://www.verkkouutiset.fi/arkisto/
Arkisto_2000/17.maaliskuu/depa1100.htm (Read: 28/04/03).

13. Siegel, Jon et al. (2001) Developing In OMG’s Model-Driven Architecture at
http://www.omg.org/mda/mda_files/developing_in_omg.htm (Read: 15/07/03).

14. Supply Chain Management (SCM) Definition (2003) http://www.mariosalexandrou.com/
glossary/scm.asp (Read: 28/04/03).

15. Yang, Y Helio (2001) Software Quality Management and ISO 9000 Implementation in
Industrial Management & Data Systems. Vol. 101, No. 7, pp. 329–338.

