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Abstract—To satisfy quality of service requirements in a cost-

efficient manner, cloud service providers would benefit from 

providing a means for quantifying the level of operational 

uncertainty within their systems. This uncertainty arises due to 

the dynamic nature of the cloud. Since tasks requiring various 

amounts of resources may enter and leave the system at any 

time, systems plagued by high volatility are challenging in 

preemptive resource provisioning. In this paper, we present 

a general method based on Dempster-Shafer theory that 

enables quantifying the level of operational uncertainty in an 

entire cloud system or parts thereof. In addition to the 

standard quality metrics, we propose monitoring of system 

calls tocapture historical behavior of virtual machines as an 

input tothe general method. Knowing the level of 

operationaluncertainty enables greater accuracy in online 

resourceprovisioning by quantifying the volatility of 

thedeployedsystem.  
 

Keywords- Cloud uncertainty ; Resource provisioning; 

System calls;. 

I. INTRODUCTION 

Day-to-day operations in cloud computing are plagued with 

uncertainty. Service providers must quickly decide which 

resource management actions to take based on incomplete 

information. Typical challenges according to the National 

Institute of Standards and Technology (NIST) include 

timely provisioning and release of resources [1]. NIST’s 

definition of cloud computing lists three service models: 

software, platform and infrastructure, cf. Fig 1. This article 

applies to the first two models, since SaaS is not concerned 

with Virtual Machines (VM). Further, NIST defines cloud 

computing as follows: "cloud computing is a model for 

enabling ubiquitous, convenient, on-demand network access 

to a shared pool of configurable computing resources (e.g., 

networks, servers, storage, applications and services) that 

can be rapidly provisioned and released with minimal 

management effort or service provider interaction." [1].  

The NIST definition gives five essential characteristics 

of cloud computing: on-demand self-service, broad network 

access, resource pooling, rapid elasticity or expansion, and 

measured service. Rapid elasticity or expansion combined 

with measured service is necessary to handle the volatility in 

service demand in a cost-efficient manner. However, the 

high amount of uncertainty makes cost-efficiency difficult 

to achieve in practice. By quantifying this level of 

operational uncertainty in a cloud system, the parameters to 

utilize the resources more optimally are available to the 

service providers.  

 
Figure 1. Cloud services 

A reactive system will always lag behind the now, which 

is why predictive resource provisioning is desirable. 

However, prediction introduces more error, and thus more 

uncertainty, into the system [2]. Traditional performance 

models for capacity planning do not work for volatile  

cloud systems, as they require a priori knowledge of the 

system. Automated empirical derivation of performance 

models is possible [3], but does not scale in highly dynamic 

environments [2].  

In cloud systems, there are different types of uncertainty. 

Table 1 outlines those related to resource provisioning. 

The two facets of uncertainty experienced by the 

customer relate to the uncertainty on information (accuracy, 

timeliness etc.) and on service (overloading, clogging). 

However, as the reasons are highly coupled, where one 

leads 

to the other, customers experience the combined effects as 

unreliable, slow service. In this paper, we quantify the total 

uncertainty daunting the customer from the service 

provider's perspective. 

As such, we define uncertainty as the amount of 

incomplete information, neither supported nor rejected by 

the evidence. For example, while a colorblind person can 

tell whether a light is on or off, they may not be able to tell 
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if the light is red or green. The available evidence only 

confirms or denies that the light is on. 

Table 1: Cloud computing parameters and main sources of 

their uncertainty [4] 

Source of 
  Uncertainty 
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Effective 

performance 

 x x x x x 

Available 

memory 

x  x x x x 

Available 

storage 

x   x  x 

Resource 

Capacity 

 x x  x x 

Network 

Capacity 

x     x 

 

We use historical data to form predictions of the future. 

In a stable system, the level of uncertainty goes towards 

zero, indicating that the system’s resource demand is fully 

predictable, which does not apply to On-Line Transaction 

Processing systems. For this, we use Dempster-Shafer 

theory to quantify the level of uncertainty in cloud systems, 

mentioned as a possibility by Tchernykh. al [5]. We derive 

this from quantified uncertainty through monitoring VMs 

and aggregating results in the cloud hypervisor. Hence, the 

VM stakeholder gains information about anomalies [6, 7], 

while the cloud provider gains a quantified level of 

uncertainty, facilitating cost-efficient resource provisioning. 

In addition to the standard quality metrics, we also propose 

monitoring of system calls to capture historical behavior of 

virtual machines as an input to the general method.  

The service provider seeks to optimize supply with 

respect to demand while adhering to the Service Level 

Agreement (SLA). The smallest VM available for 

provisioning determines the quantization of the scaling 

operations. Over-allocation means an opportunity cost, 

under-allocation means lost revenue. The scope of this paper 

is quantification of uncertainty; hence, we will not go into 

decision-making. 

II. BACKGROUND AND MOTIVATION 

Research on uncertainty in computing are plentiful with 

examples in computational biology, decision-making, 

statistical model checkers and as a foundation for logics. 

These domains frequently assume readily quantified 

uncertainty derived from repeated tests in a laboratory 

environment by the manufacturer, e.g. a sensor’s 

uncertainty. The problem in software construction is then 

calleddependability [8] or resilience [9]. In dependability 

fault prevention, tolerance, removal and forecasting are 

technologies for resilience, i.e. they view the same problem 

from a slightly different angle. The obvious solution in 

theseis redundancy that fundamentally raise the probability 

of satisfiability. However, redundancy through 

overdimensioning is not financially sustainable. This merely 

indicate the extent to which assuming that the event will 

conform to a given contract. Parallel to this, the domain of 

statistical model checkers do quantify stochastic systems by 

a level of reliance [10]. These require an assumed 

probability distribution in terms of an automaton [11] to, for 

example, construct a Markov Chain on which to run 

simulations. The final level of reliance must then exceed the 

given safety integrity level as defined in the requirements.  

Another track of quantifying uncertainty is that of fuzzy 

logics. Fuzzy logics approach the problem with the 

assumption that the input is inherently inaccurate, e.g. a 

linguistically vague proposition [12] such as tall. As this is 

not the case in computerized systems, where events 

measured or of logical nature with parameterized levels, the 

logic is motivated to be closer to probabilities than fuzzy 

sets. That is, as we can measure an uptime of a system in 

percentage, we lose information if we fuzzyfy this crisp 

value to, for example, ―very stable‖.  

Uncertainty specifically in the context of cloud 

computing has been defined as the ―difference between the 

available knowledge and the complete knowledge‖ [5]. The 

definition faces by the challenges of defining complete 

knowledge. We claim the ―complete knowledge‖ to be 

impossible to quantify or parametrize and hence, to be 

unknown voiding the level of available knowledge as well.  

In addition to cost, performance and reliability, Trenzet 

al. [24]identified privacy, security and availability as major 

sources of uncertainty.These may have devastating 

consequences, such as in the case of data breaches on Sony 

PlayStation [13] and Dropbox [14] or in case of social 

attacks. However, as these consider uncertainty as an 

attribute of reliability often being a probability, the 

uncertainty considered in this paper is very different.  

The motivation of this paper is merely in quantifying 

uncertainty in that the resource demand of a cloud system is 

constant. From this, the level of uncertainty indicate the 

volatility in this demand and indicates thereby the level 

underutilization from the rule of thumb, i.e. the tradeoff 

between the SLA and revenue. 

III. HOW WE MIGHT APPROACH THESE ISSUES 

The model quantifying uncertainty relies on performance 
metrics and system calls. We obtain the performance metrics 
from the VMs and system call traces from an instrumented 
hypervisor. The model’s output is then a level of certainty of 
consistent behavior; or conversely, the level of behavioral 
uncertainty. Letting the certainty count for normality, the 
model also defines this and hence, using it for detecting 
anomalies is possible.  This normality will define the way the 
system works in a state of behavioral certainty, with any 
anomaly indicating a situation calling for further attention.  
Also by the monitoring of the hypercalls we can define the 
resource usage form the different VMs. This will help in 
further analysis of the resource provisioning in order to 



maintain the QoS for the client but also not to stress or 
overload the physical machines where the VMs resides.  

A. Cloud architecture 

A hypervisor is software that exists outside of a guest 

operating system to intercept the commands sent to the 

computer hardware. The term ―hypervisor‖ comes from the 

different levels of an operating systems kernel; it performs 

actions with more authority than the ―supervisor‖ level, 

hence, hyper-visor.Popular hypervisors used in industry 

include XEN and KVM. They have some differences but at 

the end, they provide the same services: allowing multiple 

guest VMs to share the system resources. However, the 

VMs have to transfer control to the hypervisor to execute 

sensitive and privileged instructions on the HW after which 

the control is returned to the VM. Hence, the hypercalls are 

very similar to system calls in normal operating systems. 

Hypercalls, as system calls, differ depending if the HW 

architecture [15]. 

B. System calls 

Asystem call is an atomic request in a Unix-like operating 
system made via a software interrupt by an active process for 
a service performed by the kernel [16].System calls are a 

direct entry point into the kernel through which programs 
request services from the kernel.Developers gain access to 
the system calls through an application-programming 
interface (API). The API functions invoke the system calls. 
This is illustrated in Figure 1. By using the API, certain 
benefits can be gained: 

 Portability: as long a system supports an API, any 

program using that API can compile and run. 

 Ease of Use: using the API can be significantly easier 

than using the actual system call. 

The system calls are plentiful and vary between 

operating systems, with Linux kernel having 300+ system 

calls and Windows 7 having close to 700. These can be 

categorized to five different categories [17]: 

1. Process controlis a running program that needs to be 

able to stop execution either normally or abnormally. 

When execution is stopped abnormallytypically, a dump 

of the memory is taken to be examined by a debugger. 

2. The file management system callsinclude create(), 

delete(), read(), write(), reposition(), or close(). In 

addition, there is a need to determine the file attributes – 

get and set file attribute. Often the OS provides an API 

to make these system calls. 

3. The device management process requires several 

resources to execute, if these resources are available, 

they will be granted and control returned to the user 

process. These resources are also thought of as devices. 

Some are physical, such as a video card, and others are 

logical, such as a file.User programs request the device, 

and when finished they release the device. Similar to 

files, we can read, write, and reposition the device. 

4. The information managementsystem call exists for 

transferring information between the user program and 

the operating system. An example of this is time, or date. 

The OS also keeps information about all its processes 

and provides system calls to report this information. 

5. The communicationsystem call exists in two models of 

interprocess communication, the message-passing model 

and the shared memory model. 

o Message passing uses a common mailbox to pass 

messages between processes. 

o Shared memory use certain system calls to create and 

gain access to regions of memory owned by other 

processes. The two processes exchange information 

by reading and writing in the shared data. 

For our model, we monitor 2 categories of system calls:  

1. File management. 

2. Communication  
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For the file management Fcategory we propose to monitor 

read (), write (), delete () and create () system calls and for 

the Ccommunication category we propose to monitor accept 

(), socket (), connect () system calls. Thus, the set of system 

/ hyper calls 𝑋 = 𝐹 ∪ 𝐶 =   r, w, d, cr, a, s, co . We will 

denote this system / hypercallshereafter merely as calls. We 

chose to use these in the model because Cloud Security 

Alliance report[18]note thesecalls to be frequentin the 

threats captured in the cloud systems, and because these are 

used when applicationsrequest resources from the VM. 

Thus, by monitoring these we can analyze the resource 

usage by the VMs and use this analysis for quantifying 

uncertainty.  

C. System and hyper call patterns 

A call is by nature executed in an atomic manner and they 

are exclusive. This means that a call is run one at a time 

from the beginning until the end without interrupts omitting 

race conditions. Moreover, the set of monitored X is 

exhaustive. Given this, the log of calls serves as the history 

of the cloud system. Analyzing this history provides 

evidence for the normal behavior of the system, i.e. the 

certainty of continuation. This certainty outlines the 

justifiable level to which assuming the cloud system to 

continue to operate as before. In the special case of a stable 

call pattern such as a reoccurring ping, the certainty tends 

towards full certainty providing a very concrete normal state 

of the system. 

In addition to stable systems, discovering behavioral 

patternsprovides a basis for increased certainty on the 

upcoming resource demand. These patterns would extend 

the definition of normality over some domain. These 

domains vary and may depend on external events, such as 

being context dependent. Whatever the underlying reasons, 

to quantify uncertainty on the calls, we teach the model by 

the distribution of the monitored callsX. If any change in the 

distribution occurs, for example due to migration of VMs or 

a change in the utilization of the VM, this is typically 

detected by a momentary increasein the level of uncertainty. 

Gradually, however, depending on the consistency of calls, 

the model will adjust to the new normal.  

D. Theory of evidence 

On the problem and domain outlined in this paper, we 

propose to use Dempster-Shafer theory, aka, evidence 

theory. The evidence theory is a generalization of Bayesian 

theory of subjective probabilities on a set of exclusive and 

exhaustive events 𝑋 . The powerset 2𝑋  denotes all 

combinations of calls, realistically enabling comparing any 

category of callsto discover new domain specific patterns; in 

this paper file management and communication categories. 

The mass m is the level of certainty on a set of events where 

𝑚 ∶ 2𝑋 → [0,1] , 𝑚 ∅ = 0  and  𝑚 = 12𝑋 . On this, the 

beliefbelof a subset of outcomes 𝐴 ⊆ 𝑋  is 𝑏𝑒𝑙 𝐴 =
 𝑚(𝑥)𝑥⊆𝐴  and plausibility pl is 𝑝𝑙 𝐴 =  𝑚(𝑥)𝑥∩𝐴≠∅  as 

for the possibilityof this outcome. This implies that 𝑏𝑒𝑙 <

𝑝𝑙 whenever 𝑚 𝑋 ≠ 0and𝐴 ⊂ 𝑋. The semantics of this is 

that the difference between bel and pl denote the quantified 

uncertainty. The complement of a set of events 𝐴denoted 

𝐴 is the evidence against this proposition, i.e. 𝑝𝑙 𝐴 = 1 −
𝑏𝑒𝑙(𝐴 ).Thus, with respect to DS-theory, bel indicates the 

certainty in favour of a proposition and 1-plthe certainty 

against this proposition and thereby, pl - bel is the 

uncertainty. 

E. Quantifying uncertainty by calls  

Having the Dempster-Shafer theory of evidence as a solid 

mathematical foundation, we derive the values for each call 

𝑥 ∈ 𝑋 from the log. Here each call is a piece of evidence 

defined as an experience denoted Exp.Inspired by Krukow’s 

[19] and Teacy et al. [20] and continuing related work [21, 

22, 23, 7, 25], an Expis defined as a four tuple 

 𝛿, 𝜖, 𝜁, 𝜂 where 𝛿 is the subject system’s and application’s 

identification, 𝜖 the timestamp, 𝜁 as a subset of calls and 𝜂 a 

score ∈ {0, 1}. An example Exp is  𝑣𝑚1 , 𝑡𝑖𝑚𝑒, 𝑤, 1  

indicating that a write call from a service at timeoriginating 

from vm1was recognised.The history of Expis a set of such 

tuples, i.e.   𝛿, 𝜖, 𝜁 ⊆ 𝑋, 𝜂  . Adding a new experience is 

straightforward:   𝛿, 𝜖, 𝜁 ∈ 𝑋, 𝜂  ∪  𝛿, 𝑡𝑖𝑚𝑒, 𝑤, 1 . 

A projection on the history of experiences is 

𝐸𝑥𝑝 𝛿, 𝑡, 𝑥 ⊆ 𝑋 =  𝜂 wheret may define a timespan. 

Whenever recent experiences weigh more,decay 𝑑𝜖𝑚
 at 𝜖𝑚  

is defined by a function 𝜆 ∈  0,1  with the semantics of 

higher indicates lower decay with 1 indicating no decay and 

0 vacuous experiences. Thus, 𝑑𝜖𝑚
 𝐸𝑥𝑝 𝛿, 𝜖𝑖 , 𝜁 ⊆ 𝑋  =

  𝜆𝜖𝑚 −𝜖𝑖 ∗ 𝜂   is a set of experiences given by the 

projection over a timespan.To aggregate the set of decayed 

score called an abstraction, we apply simple summation, i.e.  

𝐴𝑏𝑠𝜖𝑚
 𝐸𝑥𝑝 𝛿, 𝜖𝑖 , 𝜁 ⊆ 𝑋  =  𝜂𝑑𝜖𝑚 𝐸𝑥𝑝  𝛿 ,𝜖𝑛 ,𝜁⊆𝑋 providing 

the 𝑏𝑒𝑙(𝜁) 

To quantify the uncertainty a non-informative priori 

weight Wis defined. Let W= 2.Acquiring the evidence 

against a proposition 𝜁  is similar 𝐴𝑏𝑠𝜖𝑚
 𝐸𝑥𝑝 𝛿, 𝜖𝑖 , 𝜁  ⊆

𝑋providing𝑏𝑒𝑙(𝜁), hereafter called 𝑑𝑖𝑠(𝜁) as for disbelief. 

Then, the uncertainty uis defined as the relation of the non-

informative priori weight with respect to the evidences, i.e. 
𝑊

𝑏𝑒𝑙  𝜁 +𝑑𝑖𝑠 𝜁 +𝑊
. Replacing the dividend by 𝑏𝑒𝑙(𝜁)  and 

𝑑𝑖𝑠(𝜁) gives the normalised b and d. Having a tuple b, d, 

umaps this method to Subjective Logic and enables 

illustration in abarycentric coordinate system [26, 27].  

IV. CONCLUSION 

We presented a model to quantify uncertainty for 

preemptive resource provisioning in the cloud. 

Over-provisioning constitutes an opportunity cost, while 

under-provisioning constitutes lost revenue. Service 

providers can make more informed decisions when 

provisioning their cloud systems by accounting 

for their inherent uncertainty. Our model is based on 

Dempster-Shafer theory and quantifies the level of 



uncertainty, that which is neither confirmed or denied by 

available evidence. We use historical data of performance 

metrics as well as traces of hypercalls as input to the model. 

By detecting and quantifying deviations from the inferred 

normal behavior, we can reliably measure the level of 

uncertainty. In the future, we intend to validate the proposed 

method by implementing it and testing on realistic data. 
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