
Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

Quantifying Uncertainty for Preemptive Resource

Provisioning in the Cloud

Marin Aranitasi

Polytechnic University of Tirana,Faculty of Information

Technology, Department Fundamentals of Informatics

Tirana, Albania

Email:maranitasi@fti.edu.al

Benjamin Byholm, Mats Neovius

ÅboAkademi University, Faculty of Science and

Engineering, Department of Information Technologies

Turku, Finland

Email: bbyholm@abo.fimneovius@abo.fi

Abstract—To satisfy quality of service requirements in a cost-

efficient manner, cloud service providers would benefit from

providing a means for quantifying the level of operational

uncertainty within their systems. This uncertainty arises due to

the dynamic nature of the cloud. Since tasks requiring various

amounts of resources may enter and leave the system at any

time, systems plagued by high volatility are challenging in

preemptive resource provisioning. In this paper, we present

a general method based on Dempster-Shafer theory that

enables quantifying the level of operational uncertainty in an

entire cloud system or parts thereof. In addition to the

standard quality metrics, we propose monitoring of system

calls tocapture historical behavior of virtual machines as an

input tothe general method. Knowing the level of

operationaluncertainty enables greater accuracy in online

resourceprovisioning by quantifying the volatility of

thedeployedsystem.

Keywords- Cloud uncertainty ; Resource provisioning;

System calls;.

I. INTRODUCTION

Day-to-day operations in cloud computing are plagued with

uncertainty. Service providers must quickly decide which

resource management actions to take based on incomplete

information. Typical challenges according to the National

Institute of Standards and Technology (NIST) include

timely provisioning and release of resources [1]. NIST’s

definition of cloud computing lists three service models:

software, platform and infrastructure, cf. Fig 1. This article

applies to the first two models, since SaaS is not concerned

with Virtual Machines (VM). Further, NIST defines cloud

computing as follows: "cloud computing is a model for

enabling ubiquitous, convenient, on-demand network access

to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications and services) that

can be rapidly provisioned and released with minimal

management effort or service provider interaction." [1].

The NIST definition gives five essential characteristics

of cloud computing: on-demand self-service, broad network

access, resource pooling, rapid elasticity or expansion, and

measured service. Rapid elasticity or expansion combined

with measured service is necessary to handle the volatility in

service demand in a cost-efficient manner. However, the

high amount of uncertainty makes cost-efficiency difficult

to achieve in practice. By quantifying this level of

operational uncertainty in a cloud system, the parameters to

utilize the resources more optimally are available to the

service providers.

Figure 1. Cloud services

A reactive system will always lag behind the now, which

is why predictive resource provisioning is desirable.

However, prediction introduces more error, and thus more

uncertainty, into the system [2]. Traditional performance

models for capacity planning do not work for volatile

cloud systems, as they require a priori knowledge of the

system. Automated empirical derivation of performance

models is possible [3], but does not scale in highly dynamic

environments [2].

In cloud systems, there are different types of uncertainty.

Table 1 outlines those related to resource provisioning.

The two facets of uncertainty experienced by the

customer relate to the uncertainty on information (accuracy,

timeliness etc.) and on service (overloading, clogging).

However, as the reasons are highly coupled, where one

leads

to the other, customers experience the combined effects as

unreliable, slow service. In this paper, we quantify the total

uncertainty daunting the customer from the service

provider's perspective.

As such, we define uncertainty as the amount of

incomplete information, neither supported nor rejected by

the evidence. For example, while a colorblind person can

tell whether a light is on or off, they may not be able to tell

mailto:maranitasi@fti.edu.al
mailto:bbyholm@abo.fi
mailto:bbyholm@abo.fi
mailto:bbyholm@abo.fi
mailto:bbyholm@abo.fi

if the light is red or green. The available evidence only

confirms or denies that the light is on.

Table 1: Cloud computing parameters and main sources of

their uncertainty [4]

Source of
 Uncertainty

Parameters D
at

a

V
ir

tu
al

iz
at

io
n

Jo
b

s
A

rr
iv

al

R
es

o
u

rc
e

av
ai

la
b

il
it

y

E
la

st
ic

it
y

E
la

st
ic

p
ro

v
is

io
n
in

g

Effective

performance

 x x x x x

Available

memory

x x x x x

Available

storage

x x x

Resource

Capacity

 x x x x

Network

Capacity

x x

We use historical data to form predictions of the future.

In a stable system, the level of uncertainty goes towards

zero, indicating that the system’s resource demand is fully

predictable, which does not apply to On-Line Transaction

Processing systems. For this, we use Dempster-Shafer

theory to quantify the level of uncertainty in cloud systems,

mentioned as a possibility by Tchernykh. al [5]. We derive

this from quantified uncertainty through monitoring VMs

and aggregating results in the cloud hypervisor. Hence, the

VM stakeholder gains information about anomalies [6, 7],

while the cloud provider gains a quantified level of

uncertainty, facilitating cost-efficient resource provisioning.

In addition to the standard quality metrics, we also propose

monitoring of system calls to capture historical behavior of

virtual machines as an input to the general method.

The service provider seeks to optimize supply with

respect to demand while adhering to the Service Level

Agreement (SLA). The smallest VM available for

provisioning determines the quantization of the scaling

operations. Over-allocation means an opportunity cost,

under-allocation means lost revenue. The scope of this paper

is quantification of uncertainty; hence, we will not go into

decision-making.

II. BACKGROUND AND MOTIVATION

Research on uncertainty in computing are plentiful with

examples in computational biology, decision-making,

statistical model checkers and as a foundation for logics.

These domains frequently assume readily quantified

uncertainty derived from repeated tests in a laboratory

environment by the manufacturer, e.g. a sensor’s

uncertainty. The problem in software construction is then

calleddependability [8] or resilience [9]. In dependability

fault prevention, tolerance, removal and forecasting are

technologies for resilience, i.e. they view the same problem

from a slightly different angle. The obvious solution in

theseis redundancy that fundamentally raise the probability

of satisfiability. However, redundancy through

overdimensioning is not financially sustainable. This merely

indicate the extent to which assuming that the event will

conform to a given contract. Parallel to this, the domain of

statistical model checkers do quantify stochastic systems by

a level of reliance [10]. These require an assumed

probability distribution in terms of an automaton [11] to, for

example, construct a Markov Chain on which to run

simulations. The final level of reliance must then exceed the

given safety integrity level as defined in the requirements.

Another track of quantifying uncertainty is that of fuzzy

logics. Fuzzy logics approach the problem with the

assumption that the input is inherently inaccurate, e.g. a

linguistically vague proposition [12] such as tall. As this is

not the case in computerized systems, where events

measured or of logical nature with parameterized levels, the

logic is motivated to be closer to probabilities than fuzzy

sets. That is, as we can measure an uptime of a system in

percentage, we lose information if we fuzzyfy this crisp

value to, for example, ―very stable‖.

Uncertainty specifically in the context of cloud

computing has been defined as the ―difference between the

available knowledge and the complete knowledge‖ [5]. The

definition faces by the challenges of defining complete

knowledge. We claim the ―complete knowledge‖ to be

impossible to quantify or parametrize and hence, to be

unknown voiding the level of available knowledge as well.

In addition to cost, performance and reliability, Trenzet

al. [24]identified privacy, security and availability as major

sources of uncertainty.These may have devastating

consequences, such as in the case of data breaches on Sony

PlayStation [13] and Dropbox [14] or in case of social

attacks. However, as these consider uncertainty as an

attribute of reliability often being a probability, the

uncertainty considered in this paper is very different.

The motivation of this paper is merely in quantifying

uncertainty in that the resource demand of a cloud system is

constant. From this, the level of uncertainty indicate the

volatility in this demand and indicates thereby the level

underutilization from the rule of thumb, i.e. the tradeoff

between the SLA and revenue.

III. HOW WE MIGHT APPROACH THESE ISSUES

The model quantifying uncertainty relies on performance
metrics and system calls. We obtain the performance metrics
from the VMs and system call traces from an instrumented
hypervisor. The model’s output is then a level of certainty of
consistent behavior; or conversely, the level of behavioral
uncertainty. Letting the certainty count for normality, the
model also defines this and hence, using it for detecting
anomalies is possible. This normality will define the way the
system works in a state of behavioral certainty, with any
anomaly indicating a situation calling for further attention.
Also by the monitoring of the hypercalls we can define the
resource usage form the different VMs. This will help in
further analysis of the resource provisioning in order to

maintain the QoS for the client but also not to stress or
overload the physical machines where the VMs resides.

A. Cloud architecture

A hypervisor is software that exists outside of a guest

operating system to intercept the commands sent to the

computer hardware. The term ―hypervisor‖ comes from the

different levels of an operating systems kernel; it performs

actions with more authority than the ―supervisor‖ level,

hence, hyper-visor.Popular hypervisors used in industry

include XEN and KVM. They have some differences but at

the end, they provide the same services: allowing multiple

guest VMs to share the system resources. However, the

VMs have to transfer control to the hypervisor to execute

sensitive and privileged instructions on the HW after which

the control is returned to the VM. Hence, the hypercalls are

very similar to system calls in normal operating systems.

Hypercalls, as system calls, differ depending if the HW

architecture [15].

B. System calls

Asystem call is an atomic request in a Unix-like operating
system made via a software interrupt by an active process for
a service performed by the kernel [16].System calls are a

direct entry point into the kernel through which programs
request services from the kernel.Developers gain access to
the system calls through an application-programming
interface (API). The API functions invoke the system calls.
This is illustrated in Figure 1. By using the API, certain
benefits can be gained:

 Portability: as long a system supports an API, any

program using that API can compile and run.

 Ease of Use: using the API can be significantly easier

than using the actual system call.

The system calls are plentiful and vary between

operating systems, with Linux kernel having 300+ system

calls and Windows 7 having close to 700. These can be

categorized to five different categories [17]:

1. Process controlis a running program that needs to be

able to stop execution either normally or abnormally.

When execution is stopped abnormallytypically, a dump

of the memory is taken to be examined by a debugger.

2. The file management system callsinclude create(),

delete(), read(), write(), reposition(), or close(). In

addition, there is a need to determine the file attributes –

get and set file attribute. Often the OS provides an API

to make these system calls.

3. The device management process requires several

resources to execute, if these resources are available,

they will be granted and control returned to the user

process. These resources are also thought of as devices.

Some are physical, such as a video card, and others are

logical, such as a file.User programs request the device,

and when finished they release the device. Similar to

files, we can read, write, and reposition the device.

4. The information managementsystem call exists for

transferring information between the user program and

the operating system. An example of this is time, or date.

The OS also keeps information about all its processes

and provides system calls to report this information.

5. The communicationsystem call exists in two models of

interprocess communication, the message-passing model

and the shared memory model.

o Message passing uses a common mailbox to pass

messages between processes.

o Shared memory use certain system calls to create and

gain access to regions of memory owned by other

processes. The two processes exchange information

by reading and writing in the shared data.

For our model, we monitor 2 categories of system calls:

1. File management.

2. Communication

Hardware

Hypervisor

VM1

APP APP

Kernel

VM2

Kernel

APP APP

Figure 2. Cloud architecture

System

calls

Library

Functions

Application

Kernel

Hardware

Figure 3. System calls

https://www.howtogeek.com/howto/31632/what-is-the-linux-kernel-and-what-does-it-do/

For the file management Fcategory we propose to monitor

read (), write (), delete () and create () system calls and for

the Ccommunication category we propose to monitor accept

(), socket (), connect () system calls. Thus, the set of system

/ hyper calls 𝑋 = 𝐹 ∪ 𝐶 = r, w, d, cr, a, s, co . We will

denote this system / hypercallshereafter merely as calls. We

chose to use these in the model because Cloud Security

Alliance report[18]note thesecalls to be frequentin the

threats captured in the cloud systems, and because these are

used when applicationsrequest resources from the VM.

Thus, by monitoring these we can analyze the resource

usage by the VMs and use this analysis for quantifying

uncertainty.

C. System and hyper call patterns

A call is by nature executed in an atomic manner and they

are exclusive. This means that a call is run one at a time

from the beginning until the end without interrupts omitting

race conditions. Moreover, the set of monitored X is

exhaustive. Given this, the log of calls serves as the history

of the cloud system. Analyzing this history provides

evidence for the normal behavior of the system, i.e. the

certainty of continuation. This certainty outlines the

justifiable level to which assuming the cloud system to

continue to operate as before. In the special case of a stable

call pattern such as a reoccurring ping, the certainty tends

towards full certainty providing a very concrete normal state

of the system.

In addition to stable systems, discovering behavioral

patternsprovides a basis for increased certainty on the

upcoming resource demand. These patterns would extend

the definition of normality over some domain. These

domains vary and may depend on external events, such as

being context dependent. Whatever the underlying reasons,

to quantify uncertainty on the calls, we teach the model by

the distribution of the monitored callsX. If any change in the

distribution occurs, for example due to migration of VMs or

a change in the utilization of the VM, this is typically

detected by a momentary increasein the level of uncertainty.

Gradually, however, depending on the consistency of calls,

the model will adjust to the new normal.

D. Theory of evidence

On the problem and domain outlined in this paper, we

propose to use Dempster-Shafer theory, aka, evidence

theory. The evidence theory is a generalization of Bayesian

theory of subjective probabilities on a set of exclusive and

exhaustive events 𝑋 . The powerset 2𝑋 denotes all

combinations of calls, realistically enabling comparing any

category of callsto discover new domain specific patterns; in

this paper file management and communication categories.

The mass m is the level of certainty on a set of events where

𝑚 ∶ 2𝑋 → [0,1] , 𝑚 ∅ = 0 and 𝑚 = 12𝑋 . On this, the

beliefbelof a subset of outcomes 𝐴 ⊆ 𝑋 is 𝑏𝑒𝑙 𝐴 =
 𝑚(𝑥)𝑥⊆𝐴 and plausibility pl is 𝑝𝑙 𝐴 = 𝑚(𝑥)𝑥∩𝐴≠∅ as

for the possibilityof this outcome. This implies that 𝑏𝑒𝑙 <

𝑝𝑙 whenever 𝑚 𝑋 ≠ 0and𝐴 ⊂ 𝑋. The semantics of this is

that the difference between bel and pl denote the quantified

uncertainty. The complement of a set of events 𝐴denoted

𝐴 is the evidence against this proposition, i.e. 𝑝𝑙 𝐴 = 1 −
𝑏𝑒𝑙(𝐴).Thus, with respect to DS-theory, bel indicates the

certainty in favour of a proposition and 1-plthe certainty

against this proposition and thereby, pl - bel is the

uncertainty.

E. Quantifying uncertainty by calls

Having the Dempster-Shafer theory of evidence as a solid

mathematical foundation, we derive the values for each call

𝑥 ∈ 𝑋 from the log. Here each call is a piece of evidence

defined as an experience denoted Exp.Inspired by Krukow’s

[19] and Teacy et al. [20] and continuing related work [21,

22, 23, 7, 25], an Expis defined as a four tuple

 𝛿, 𝜖, 𝜁, 𝜂 where 𝛿 is the subject system’s and application’s

identification, 𝜖 the timestamp, 𝜁 as a subset of calls and 𝜂 a

score ∈ {0, 1}. An example Exp is 𝑣𝑚1 , 𝑡𝑖𝑚𝑒, 𝑤, 1

indicating that a write call from a service at timeoriginating

from vm1was recognised.The history of Expis a set of such

tuples, i.e. 𝛿, 𝜖, 𝜁 ⊆ 𝑋, 𝜂 . Adding a new experience is

straightforward: 𝛿, 𝜖, 𝜁 ∈ 𝑋, 𝜂 ∪ 𝛿, 𝑡𝑖𝑚𝑒, 𝑤, 1 .

A projection on the history of experiences is

𝐸𝑥𝑝 𝛿, 𝑡, 𝑥 ⊆ 𝑋 = 𝜂 wheret may define a timespan.

Whenever recent experiences weigh more,decay 𝑑𝜖𝑚
 at 𝜖𝑚

is defined by a function 𝜆 ∈ 0,1 with the semantics of

higher indicates lower decay with 1 indicating no decay and

0 vacuous experiences. Thus, 𝑑𝜖𝑚
 𝐸𝑥𝑝 𝛿, 𝜖𝑖 , 𝜁 ⊆ 𝑋 =

 𝜆𝜖𝑚 −𝜖𝑖 ∗ 𝜂 is a set of experiences given by the

projection over a timespan.To aggregate the set of decayed

score called an abstraction, we apply simple summation, i.e.

𝐴𝑏𝑠𝜖𝑚
 𝐸𝑥𝑝 𝛿, 𝜖𝑖 , 𝜁 ⊆ 𝑋 = 𝜂𝑑𝜖𝑚 𝐸𝑥𝑝 𝛿 ,𝜖𝑛 ,𝜁⊆𝑋 providing

the 𝑏𝑒𝑙(𝜁)

To quantify the uncertainty a non-informative priori

weight Wis defined. Let W= 2.Acquiring the evidence

against a proposition 𝜁 is similar 𝐴𝑏𝑠𝜖𝑚
 𝐸𝑥𝑝 𝛿, 𝜖𝑖 , 𝜁 ⊆

𝑋providing𝑏𝑒𝑙(𝜁), hereafter called 𝑑𝑖𝑠(𝜁) as for disbelief.

Then, the uncertainty uis defined as the relation of the non-

informative priori weight with respect to the evidences, i.e.
𝑊

𝑏𝑒𝑙 𝜁 +𝑑𝑖𝑠 𝜁 +𝑊
. Replacing the dividend by 𝑏𝑒𝑙(𝜁) and

𝑑𝑖𝑠(𝜁) gives the normalised b and d. Having a tuple b, d,

umaps this method to Subjective Logic and enables

illustration in abarycentric coordinate system [26, 27].

IV. CONCLUSION

We presented a model to quantify uncertainty for

preemptive resource provisioning in the cloud.

Over-provisioning constitutes an opportunity cost, while

under-provisioning constitutes lost revenue. Service

providers can make more informed decisions when

provisioning their cloud systems by accounting

for their inherent uncertainty. Our model is based on

Dempster-Shafer theory and quantifies the level of

uncertainty, that which is neither confirmed or denied by

available evidence. We use historical data of performance

metrics as well as traces of hypercalls as input to the model.

By detecting and quantifying deviations from the inferred

normal behavior, we can reliably measure the level of

uncertainty. In the future, we intend to validate the proposed

method by implementing it and testing on realistic data.

REFERENCES

[1] US national institute of standards and

technology.http://csrc.nist.gov/, 2016, accessed 15.1.2017

[2] A. Ashraf, B. Byholm, I. Porres, ―Prediction-based VM
provisioning and admission control for multi-tier web
applications‖, Journal of Cloud ComputingAdvances,
Systems and Applications, 5:15, 2016.

[3] B. Urgaonkar, P. Shenoy, T. Roscoe,―Resource overbooking
and application profiling in a shared internet hosting
platform‖, ACM Trans. Intern. Tech. 9, 1, Article 1, February
2009.

[4] J.Ramirez, A.Tchernukh, R. Yahyapour, U. Schwiegelshohn,
A.Quezada, J.Gonzales, A.Hirales ―Job allocation Strategies
with user Run Time Estimates for Online Shceduling in
Hierachal Grids.‖ Journal of Grid Computing, 9:95-116,
Springer. February 2011

[5] A. Tchernykh, U. Schwiegelsohn, V. Alexandrov, E.-G.
Talbi, Towards understanding uncertainty in cloud computing
resource provisioning, Proc. Comput. Sci., 51, pp. 1772–
1781, 2015

[6] Audun Jøsang. ―Subjective Logic: A Formalism for Reasoning
Under Uncertainty‖, ISBN 978-3-319-42337-1, Springer
Verlag, 2016

[7] M. Aranitasi, M. Neovius, ―Anomaly Detection in Cloud
Based Application using System Calls‖ CLOUD
COMPUTING, The Eighth International Conference on
Cloud Computing, GRIDs, and Virtualization, 2017.

[8] Jean-Claude Laprie, From dependability to resilience, in:
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), 2008.

[9] A. Legay, B. Delahaye, S. Bensalem,―Statistical model
checking: an overview. In: Runtime verification (RV)‖,
LNCS, vol 6418. Springer, Berlin, pp 122–135, 2010

[10] P. Bulychev, A. David, K. G. Larsen, A. Legay, M.
Mikucionis, D. B. Poulsen. ―Checking & Distributing
Statistical Model Checking.‖ 4th NASA Formal Methods
Symposium, pages 449-463, LNCS 7226, Springer, 2012

[11] A. Jøsang, "A logic for uncertain probabilities," Int. J.
Uncertain. Fuzziness Knowl.-Based Syst., vol. 9, no. 3, pp.
279-311., 2001

[12] H. Liu, ―Software Performance and Scalability: A
Quantitative Approach‖, Wiley Publishing, ISBN:
0470462531, 2009

[13] E. Petterson, ―Sony to pay as much as $8 million to settle data
breach case‖, Bloomberg Technology,
2015https://www.bloomberg.com/news/articles/2015-10-
20/sony-to-pay-as-much-as-8-million-to-settle-data-breach-
claims accesed on 13.01.2017.

[14] S. Yin, ‖Dropbox accounts were accessible by anyone fo four
hours on Sunday‖ PCMag UK,
2011.http://uk.pcmag.com/storage-devices-
reviews/9092/news/dropbox-accounts-were-accessible-by-
anyone-for-four-hours-onaccesed on 13.01.2017.

[15] N.Pitropakis, C. Lyvas, C. Lambrinoudakis, ‖The grater the
power, the more dangerous the abuse: Facing malicious

insiders in the cloud‖ The eighth International conference on
Cloud Computing, GRIDs and Virtualization, Athens 2017

[16] Linux Information Project ―System call definition‖ 2016
http://www.linfo.org/system_call.html accessed on
13.01.2017.

[17] Kansas State University. http://faculty.salina.k-
state.edu/tim/ossg/Introduction/sys_calls.html, accesed on
29.03.2017

[18] Cloud security alliance, ―Cloud Computing top threats in
2016‖.https://downloads.cloudsecurityalliance.org/assets/rese
arch/top-threats/Treacherous-12_Cloud-Computing_Top-
Threats.pdfaccesed on 13.01.2017

[19] K. Krukow, ―Towards a theory of trust for the global
ubiquitous computer,‖ PhD thesis, University of Aarhus,
Denmark., 2006.

[20] W. Teacy,J. Patel, N. Jennings, and M. Luck, ―TRAVOS:
Trust and Reputation in the Context of Inaccurate Information
Sources,‖ Autonomous Agents and Multi-Agent Systems, vol.
12, no. 2, pp. 183-198. , 2006.

[21] M. Neovius, ―Trustworthy Context Dependency in Ubiquitous
Systems,‖ TUCS dissertations nr. 151. PhD thesis, Turku,
Finland, 2012.

[22] M. Neovius,M. Stocker,M. Rönkkö, and L. Petre,
―Trustworthiness Modelling on Continuous Environmental
Measurement,‖ in Proc. of the 7th Int. Conf. on
Environmental Modelling and Software, 2014.

[23] M. Neovius, ―Adaptive Experience-Based Composition of
Continuously Changing Quality of Context,‖ in Int. Conf. on
Adaptive and Self-Adaptive Systems and Applications, 2015

[24] M.Trenz, J.C. Huntgeburth, D.Veit ―The role of Uncertainty
in Cloud Computing Continuance: Antecedents, Mitigators,
and Consequences, ECIS, 147. 2013

[25] M. Neovius, B. Duncan, ―Anomaly Detection for Soft
Security in Cloud Based Auditing of Accounting Systems‖,
To appear in the 7th International Conference on Cloud
Computing and Services Science, 2017.

[26] A. Jøsang, "A logic for uncertain probabilities," Int. J.
Uncertain. Fuzziness Knowl.-Based Syst., vol. 9, no. 3, pp.
279-311., 2001

[27] A. Jøsang. ―Subjective Logic: A Formalism for Reasoning
Under Uncertainty‖, ISBN 978-3-319-42337-1, Springer
Verlag, 2016

http://faculty.salina.k-state.edu/tim/ossg/Introduction/sys_calls.html
http://faculty.salina.k-state.edu/tim/ossg/Introduction/sys_calls.html

