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Abstract—This paper presents feedback control algorithms to
autonomously deploy and scale multiple web applications on a
given Infrastructure as a Service cloud. The proposed algorithms
provide automatic deployment and undeployment of applications
and proportional-derivative scaling of the application server tier.
The algorithms use utilization metrics as input and do not require
a performance model of the application or the infrastructure
dynamics. Moreover, our work supports deployment and scaling
of multiple simultaneous applications per virtual machine (VM).
This allows us to share VM resources among deployed appli-
cations, reducing the number of required VMs. The approach
is demonstrated in a prototype implementation that has been
deployed in the Amazon Elastic Compute Cloud.
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I. INTRODUCTION

Web applications are often deployed in a 3-tier computer
architecture. The client tier runs within the user web browser
while the application and database tiers run in the remote
server infrastructure. Both the application and the database
tiers often use a computer cluster to be able to process many
user requests simultaneously. In this configuration, a load
balancing subsystem distributes the user requests among the
computers in the cluster.

Traditionally, these clusters are composed of a fixed number
of computers and are dimensioned to serve a predetermined
maximum number of concurrent users. However, Infrastructure
as a Service (IaaS) clouds, such as Amazon Elastic Compute
Cloud (EC2) [1], currently offer computing resources such as
network bandwidth, storage, and virtual machines (VMs) on
demand. IaaS offerings can be used to create a dynamically
scalable server tier consisting of a varying number of VMs.
In this paper, we use IaaS offerings to create a dynamically
scalable application server tier.

Determining the number of VMs to provision for a cluster
is an important problem. The exact number of VMs needed
at a specific time depends upon the user load and the
Quality of Service (QoS) requirements that are specified in
the Service Level Agreements (SLAs). Allocating too little
resources will lead to subpar service, allocating too much
resources will lead to increased operation costs. There are

several research works that propose dynamic scaling solu-
tions: [2], [3], [4], [5], [6], including some works that use
control theoretic models [7], [8], [9]. There are also some
vendor-specific commercial dynamic scaling solutions and
management frameworks such as AWS Elastic Beanstalk [10].

Each one of these solutions has its own strengths and
limitations. However, a common characteristic is that one VM
hosts only one application. This is a reasonable approach if an
application is large enough and has a user load high enough
to keep at least one VM sufficiently utilized. But in many
cases, provisioning an entire VM for one single application
may introduce unnecessary overhead and cost due to under-
utilization. Large analyst firms estimate that 15%−20% server
utilization is common in enterprises and it is decreasing even
further every day, as more powerful servers enter the data
centers [11].

The underutilization of VMs becomes even more pertinent
when deploying a large number of web applications of varying
resource needs, where most of the applications may have
very few users at a given time, while a few applications may
have many users. The solution to this problem is to design
a dynamically scaling application server tier that manages
multiple applications simultaneously. In this case, a VM can
execute many applications if needed, in a similar way that a
single HTTP server process is currently used to serve many
static web sites.

In this paper, we present the ARVUE scaling algorithms,
which allow dynamic scaling of the application server tier
while simultaneously optimizing the resource allocation of
multiple applications. The ARVUE algorithms are part of a
larger project that aims at providing an open-source Platform
as a Service (PaaS) integrated solution for web application
development, deployment, and dynamic scaling [12]. In this
context, the ARVUE scaling algorithms provide a dynamic
scaling approach for PaaS clouds.

The rest of the paper is organized as follows. Section II
outlines the main tasks and the most important characteristics
of the ARVUE dynamic scaling approach. Section III presents
the system architecture. Scaling algorithms and their related
policies are described in Section IV. Section V presents our
prototype implementation and Section VI provides experi-



mental results of the prototype implementation. Section VII
discusses important related works and Section VIII concludes
the paper.

II. ARVUE DYNAMIC SCALING APPROACH

The main task of the proposed algorithms is to provision
and remove VMs for the application server tier and to deploy
and remove applications from each VM, in order to maintain
a desired QoS. For cost-effectiveness, the algorithms support
deployment of multiple simultaneous applications on a single
VM. At any given time, an application may be deployed in
zero, one or more VMs. Popular applications will often be
deployed in many VMs, while sporadically used applications
will not be deployed at all – in order to save resources. Due
to memory limitations, it is also not possible to assume that
we can deploy all applications in one VM.

The most important characteristics of the ARVUE algo-
rithms are that they are based on reactive feedback control,
they do not depend upon a performance model of the appli-
cation or the infrastructure dynamics, they deploy multiple
applications per VM, and they provide server and application
level scaling.

A. Lack of Knowledge about the Application, Infrastructure
or User Dynamics

Our approach does not use any knowledge of the perfor-
mance and dynamics of each application nor of the VMs
used to execute them. We also do not use a prediction model
of future user load [13], [14]. We acknowledge that this
information can be used to develop better deployment and
scaling algorithms. However, this information is often not
available or may change often, as in the case of applications
that are constantly under development. Thus, our approach
is based on a feedback control loop, where the resource
allocation is based on current and past user load measured
in the system in terms of individual resource utilizations.

A common QoS requirement for web applications is to
ensure a maximum response time for each user request. If
the desired response time for an application is known, the
scaling algorithms should work towards ensuring that the
actual response time is lower than the maximum allowed
response time. Using the response time as a QoS requirement
has the advantage of being an intuitive performance measure
that is relatively easy to monitor for both the server and the
client. Again, we decided not to use any additional knowledge
about the application and user expectations in our approach.
The reason is that the expected response time may not be
defined for a given application. Also, an application may have
different expected response times for different request types.

B. Multiple Applications per VM

The proposed algorithms should provide a finer deployment
granularity than the smallest VM provided by the current
IaaS providers. Instead of adding or removing one full VM
for a particular application, the algorithms should effectively
support adding or removing a fraction of a VM for an

application. This is especially important when running a large
number of web applications, most of which may have very few
users at a given time, while a few of them may have many
users. In this case, if one or more full VMs are provisioned
exclusively for an application, then a fraction of a VM will
be over-provisioned for each application. As the number of
applications increases, these over-provisioned fractions add
up to a large number of over-provisioned full VMs in total.
Thus, allocating one or more full VMs per application incurs
unnecessary costs, due to a large number of underutilized
VMs.

The ARVUE scaling algorithms share VM resources by
deploying multiple simultaneous applications per VM, which
effectively supports adding or removing a fraction of a VM
per application. Consequently, fewer VMs can be used to run
several web applications, and unnecessary costs can thus be
avoided without compromising the desired QoS.

C. VM Provisioning Time

With the current IaaS offerings, provisioning of a VM takes
a considerable amount of time, which is defined by the IaaS
provider. Due to this inevitable VM provisioning delay, han-
dling of a sudden peak load becomes even more challenging,
because some existing servers may become heavily overloaded
while provisioning the required number of VMs. Our solution
to this problem uses a small number of additional VMs. If
the additional VMs are provisioned on an application basis,
then that might require a large number of VMs in total. Thus,
ARVUE uses additional VMs at the PaaS level. It is important
to note, that in order to achieve a sustainable QoS, such
an additional VM capacity might be required even when a
prediction model is used. This is due to the fact that prediction
models sometimes lead to false predictions. Additional VM
capacity would help in managing the peak loads in these cases.

Using additional VMs as reserve capacity poses an impor-
tant question on the number of VMs that should be used for
this purpose. We argue, that rather than using a fixed number
of VMs, this number should be determined dynamically.

D. Server and Application Level Scaling

A distinguishing characteristic of the ARVUE scaling al-
gorithms is that in addition to the support for creating a
dynamically scalable application server tier, the algorithms
also support scaling of individual web applications.

The server level scaling algorithms are based on the mon-
itoring of the server CPU load average (or simply load
average) and server memory utilization metrics. The load
average represents the average CPU load over a period of
time. It is computed as the exponentially weighted moving
average of running (on CPU) and runnable (waiting for CPU)
processes on all cores. Memory utilization is a real number
Mem U ∈ [0, 1], representing the amount of used memory
in proportion to the amount of total memory, which includes
physical memory and virtual memory.

The application level scaling is based on the monitoring of
the application level CPU and memory utilization metrics. The



CPU utilization is the amount of time an application has spent
executing on the CPU in a certain time window, while the
memory utilization represents the amount of memory currently
used by said application.

E. Relationship Between Utilization Metrics and QoS

QoS is often defined in terms of commonly used software
performance metrics, such as response time and through-
put [15]. However, as discussed in Section II-A, the expected
response time, and similarly the throughput, may be difficult
to define for an application. Therefore, we decided to define
QoS in terms of server utilization metrics. The rationale of
using utilization metrics is that a scalable server maintains
its performance as long as its individual resource utilizations
do not exceed their upper limits. However, when the resource
utilization of the bottleneck server resource exceeds its upper
limit, the server becomes saturated. A saturated server fails
to maintain its performance, which translates into subpar
service (higher response time and lower throughput) [16].
Thus, in order to ensure a sustainable QoS, the ARVUE
scaling algorithms strive to maintain the individual resource
utilizations below their respective upper thresholds.

III. SYSTEM ARCHITECTURE

The ARVUE dynamic scaling algorithms distribute end user
sessions for web applications to a scalable application server
tier, which is dynamically scaled up and down according to
end user workload. The scaling algorithms operate within the
ARVUE backend, which consists of the following components,
as shown in Figure 1: application server, local controller,
application repository, global controller, cloud provisioner,
and HTTP load balancer.

Fig. 1. The ARVUE dynamic scaling architecture

An application server instance runs on a dynamically provi-
sioned VM. Each application server runs multiple web appli-
cations in an OSGi [17] environment. In such an environment,
each application runs as an OSGi component called a bundle.
OSGi also introduces the dynamic component model, which
allows dynamic loading and unloading of bundles. In addition
to the web applications, each application server also runs a
local controller. The local controller monitors and logs server

and application level utilizations. On the discrete sampling
period k, each local controller sends utilization data to the
global controller. Another responsibility of the local controller
is to control the OSGi environment for loading and unloading
of web applications. Web applications are stored in an appli-
cation repository, from where they are loaded onto application
servers. For applications under the OSGi environment, we use
the Apache Felix OSGi Bundle Repository (OBR) [18]. The
global controller acts as a capacity manager. It implements
scaling algorithms and their related policies, as described in
Section IV.

The cloud provisioner in the ARVUE architecture refers to
the cloud provisioner in an IaaS cloud, such as the provisioner
in Amazon EC2. While the scaling decisions are made by
the global controller, the actual lower level tasks of starting
and terminating VMs are done by the cloud provisioner. The
HTTP requests are routed through a high performance HTTP
load balancer and proxy. For this, we use HAProxy [19],
which balances the load of requests for new user sessions
among the application servers. For its functions, HAProxy
maintains a configuration file which contains information
about application servers and application deployments on each
server. As a result of application server and application level
scaling operations, the configuration file is frequently updated
with new information.

IV. SCALING ALGORITHMS AND POLICIES

The global controller implements the scaling algorithms and
their related policies. There are a total of four algorithms: scal-
ing up the application server tier, scaling down the application
server tier, scaling up web applications, and scaling down web
applications. For the sake of clarity, the concepts used in the
algorithms and their notation are summarized in Table I. The
algorithms implement reactive feedback control. That is, the
scaling decisions are performed inside a feedback control loop
whose inputs are observed resource utilizations.

The scaling decisions are based on the states of applications
and application servers. The server states are determined by
comparing observed load average and memory utilization with
their upper and lower threshold values, while the application
states are based on the application level CPU and memory
utilization metrics, and their respective threshold values. These
threshold values depend upon a tradeoff between QoS and
cost. The server states are: saturated, non-saturated, underuti-
lized, and long-term underutilized. Similarly, the application
states are: saturated, non-saturated, inactive, and long-term
inactive.

The scaling algorithms are designed to prevent oscillations
in the number of provisioned VMs [3]. This is desirable
due to the inevitable VM provisioning time, as discussed in
Section II-C, which may lead to deteriorated performance.
Moreover, since some IaaS providers, such as Amazon EC2,
charge on an hourly basis, oscillations will result in a higher
provisioning cost. Therefore, the algorithms counteract oscilla-
tions by delaying new scaling operations until previous scaling
operations have been realized. Furthermore, the scaling down



TABLE I
SUMMARY OF CONCEPTS AND THEIR NOTATION

A(k) set of web applications at k
Ai(k) set of inactive applications at k
Ali(k) set of long-term inactive applications at k
As(k) set of saturated applications at k
NSs(k) set of non-saturated servers at k
S(k) set of servers at discrete time k
Slu(k) set of long-term underutilized servers at k
Sn(k) set of new servers at k
Ss(k) set of saturated servers at k
St(k) set of servers selected for termination at k
Su(k) set of underutilized servers at k
CPU U(a, k) CPU utilization of application a at k
Load A(s, k) load average of server s at k
Mem U(a, k) memory utilization of application a at k
Mem U(s, k) memory utilization of server s at k
NA(k) number of additional servers at k
NP (k) number of servers to provision at k
NT (k) number of servers to terminate at k
CPU ULTa application CPU utilization lower threshold
CPU UUTa application CPU utilization upper threshold
ICTa inactivity count threshold for an application
Load ALT server load average lower threshold
Load AUT server load average upper threshold
Mem ULTa application memory utilization lower bound
Mem ULT server memory utilization lower threshold
Mem UUT server memory utilization upper threshold
Mem UUTa application memory utilization upper bound
UCT underutilization count threshold for a server
delay() delay function
dep apps(s, k) applications deployed on server s at k
deploy(a) deploy application a as per allocation policy
deploy(a, S) deploy application a on a set of servers S
inactiv c(a) inactivity count of application a
migrate(A) migrate user sessions for applications A
migrate(S) migrate user sessions for servers S
provision(n) provision n servers
select(n) select n servers for termination
sort(S) sort servers S on server utilization metrics
terminate(S) terminate servers S
under u c(s) underutilization count of server s
unload(a) unload application a
NB number of servers to use as base capacity
shutDown server shutdown time
startUp server startup time

algorithm terminates only those VMs that have been constantly
underutilized for a certain amount of time.

The algorithms maintain a fixed minimum number of servers
representing the base capacity (NB). Moreover, as explained
in Section II-C, they also use a small number of additional
servers. The number of additional servers (NA(k)) is deter-
mined as follows:

NA(k) =

d|S(k)| ·AAe, if |S(k)| − |Ss(k)| = 0⌈
|S(k)|

|S(k)|−|Ss(k)| ·AA
⌉
, otherwise

,

(1)
where the aggressiveness parameter for additional VM capac-
ity AA ∈ [0, 1] restricts the maximum size of the additional
capacity. It accounts for the VM provisioning time and the
sampling period (k). For example, AA = 0.2 restricts the
maximum size of the additional VM capacity to 20% of the
total number of VMs (|S(k)|).

Instead of provisioning or terminating one VM at a time, the

application server scaling algorithms implement proportional
control. The number of VMs to provision in the proportional
control is based on the number of saturated servers (|Ss(k)|)
and the aggressiveness of control for VM provisioning (AP ).
Similarly, the number of VMs to terminate is based on the
number of long-term underutilized servers (|Slu(k)|) and the
aggressiveness of control for VM termination (AT ). The
proportional scaling up enables handling of sudden peak
loads. Since, for sudden peak loads, provisioning one VM
at a time might be too slow, due to VM provisioning time.
This might also lead to continuous violations of the desired
QoS. The proportional scaling down saves VM provisioning
cost, because terminating one VM at a time might result in
unwanted longer provisioning periods.

One known shortcoming of proportional control is that it
does not consider how fast the servers become saturated or
underutilized. The standard solution is to augment proportional
control with derivative control. Thus, we use proportional-
derivative (PD) feedback control [20]. However, instead of
using a standard fixed-gain PD controller, we design a PD
controller that does not depend on a performance model of the
application or the infrastructure dynamics (Section II-A), and
supports server and application level scaling (Section II-D),
while deploying multiple applications per VM (Section II-B).
With our PD control design, we determine the number of
servers to provision (NP (k)) in scaling up as:

NP (k) = dw · PP (k) + (1− w) ·DP (k)e, (2)

where w ∈ [0, 1] is a real number called the weighting
coefficient. It determines how much weight is given to the
proportional factor (PP (k)) respective to the derivative factor
(DP (k)). For example, w = 0.5 means equal weight to PP (k)
and DP (k). The proportional factor for VM provisioning
(PP (k)) is calculated as:

PP (k) = |Ss(k)| ·AP , (3)

where AP ∈ [0, 1] is a real number, which represents the
aggressiveness of control for VM provisioning. For example,
AP = 1 suggests to provision as many new as saturated. The
derivative factor for VM provisioning (DP (k)) is computed
as:

DP (k) = |Ss(k)| − |Ss(k − 1)|. (4)

The number of servers to terminate (NT (k)) in scaling down
is computed in a similar way:

NT (k) = dw ·PT (k)+(1−w) ·DT (k)e−NB−NA(k), (5)

where the proportional factor for termination (PT (k)) is cal-
culated as:

PT (k) = |Slu(k)| ·AT , (6)

where AT ∈ [0, 1] is similar to AP . It represents the aggres-
siveness of control for VM termination. The derivative factor
for termination (DT (k)) is computed as:

DT (k) = |Slu(k)| − |Slu(k − 1)|. (7)



A. Scaling Up The Application Server Tier

The scaling up algorithm for the application server tier is
given as Algorithm 1. Based on the observed load average
and memory utilization of individual servers, the algorithm
first determines their states. It then makes a set of saturated
servers and a set of non-saturated servers. From the set of
saturated servers, it makes a set of saturated applications. If
it finds at least one saturated and at least one non-saturated
server, it deploys each saturated application on another existing
server according to the application-to-server allocation policy,
as described in Section IV-F. However, if it finds that all
servers (S(k)) except the additional VM capacity (NA(k)) are
saturated, the algorithm scales up the application server tier by
provisioning one or more servers according to the NP and then
deploys each saturated application on each new server.

Algorithm 1 Scaling up the application server tier
1: while true do
2: Ss(k) := {∀sεS(k)|Load A(s, k) > Load AUT } ∪

{∀sεS(k)|Mem U(s, k) > Mem UUT }
3: As(k) :=

⋃
sεSs(k)

dep apps(s, k)
4: NSs(k) := S(k) \ Ss(k)
5: if |Ss(k)| ≥ 1 ∧ |NSs(k)| ≥ 1 then
6: for aεAs(k) do
7: deploy(a)
8: end for
9: end if

10: if |Ss(k)| ≥ (|S(k)| −NA(k)) ∧NP (k) ≥ 1 then
11: Sn(k) := provision(NP (k))
12: S(k) := S(k) ∪ Sn(k)
13: delay(startUp)
14: for aεAs(k) do
15: deploy(a, Sn(k))
16: end for
17: end if
18: end while

B. Scaling Down The Application Server Tier

The algorithm for scaling down the application server tier is
presented in Algorithm 2. It first determines the state of each
individual server based on the observed resource utilizations. It
then makes a set of underutilized servers, from which a set of
long-term underutilized servers is obtained. Since the aim of
the algorithm is to minimize VM provisioning cost, which is a
function of number of VMs and time, the algorithm terminates
any redundant VMs as soon as possible. Therefore, when the
algorithm finds at least one long-term underutilized server,
while excluding the base capacity (NB) and the additional
capacity (NA(k)), it sorts them in an increasing order based
on their resource utilizations and selects one or more servers
according to the NT (k). The rationale of the sorting is to
ensure that the least loaded servers are selected for termination.

Since the servers selected for termination might still be
running a small number of active user sessions on them,

the next step is to ensure that the termination of the se-
lected servers does not abandon any active sessions that
were currently running on said servers. This is achieved by
migrating all active sessions from the selected servers to other
existing servers. Finally, the selected servers are terminated
and removed from the application server tier.

Algorithm 2 Scaling down the application server tier
1: while true do
2: Su(k) := {∀sεS(k)|Load A(s, k) < Load ALT } ∩

{∀sεS(k)|Mem U(s, k) < Mem ULT }
3: Slu(k) := {∀sεSu(k)|under u c(s) ≥ UCT }
4: if (|Slu(k)| −NB −NA(k)) ≥ 1 ∧NT (k) ≥ 1 then
5: sort(Slu(k))
6: St(k) := select(NT (k))
7: migrate(St(k))
8: S(k) := S(k) \ St(k)
9: terminate(St(k))

10: delay(shutDown)
11: end if
12: end while

C. Scaling Up Web Applications

Scaling up individual web applications is less complex than
scaling up the application server tier. Algorithm 3 uses re-
source utilizations of the individual web application instances
to determine their states. It then makes a set of saturated
applications and finally deploys all saturated applications
on one or more servers, based on the application-to-server
allocation policy, as described in Section IV-F.

Algorithm 3 Scaling up individual web applications
1: while true do
2: As(k) := {∀sεS(k)∀aεdep apps(s, k)|CPU U(a, k)

> CPU UUTa/|dep apps(s, k)|} ∪ {∀sεS(k)∀aε
dep apps(s, k)|Mem U(a, k) > Mem UUTa}

3: if |As(k)| ≥ 1 then
4: for aεAs(k) do
5: deploy(a)
6: end for
7: end if
8: end while

D. Scaling Down Web Applications

Individual web applications are scaled down in a similar
fashion to application servers. Algorithm 4 uses application
level resource utilizations of individual web application in-
stances to determine their states. Based on the application
inactivity count, the algorithm then makes a set of long-term
inactive applications from the set of inactive applications. A
long-term inactive application should ideally have no active
sessions. However, based on the utilization lower thresholds,
it might have a small number of active sessions. Therefore,
to ensure an uninterrupted service to any such sessions, the



algorithm migrates all sessions belonging to a long-term
inactive application to another existing server, preferably to a
server on which said application is already deployed. Finally,
to minimize memory utilization of the servers, the algorithm
removes all long-term inactive applications from their servers.

Algorithm 4 Scaling down individual web applications
1: while true do
2: Ai(k) := {∀sεS(k)∀aεdep apps(s, k)|CPU U(a, k)

< CPU ULTa} ∩ {∀sεS(k)∀aεdep apps(s, k)|
Mem U(a, k) < Mem ULTa}

3: Ali(k) := {∀aεAi(k)|inactiv c(a) ≥ ICTa}
4: if |Ali(k)| ≥ 1 then
5: migrate(Ali(k))
6: A(k) := A(k) \Ali(k)
7: for a in Ali(k) do
8: unload(a)
9: end for

10: end if
11: end while

E. Server Selection for New Session Requests

Whenever an HTTP request for a new user session arrives
at the HTTP load balancer, an application server is chosen
to handle the new session request. There are two possible
scenarios, based on the deployment of the required application.

Server selection in the first scenario, when the required
application is already deployed, is handled by the HTTP load
balancer. If the load balancer finds that the application is
deployed on more than one server, it distributes the new ses-
sion requests based on the current session-to-server allocation
policy. The typical policies are: (weighted) round-robin, lowest
number of sessions, and lowest load average.

In the second scenario when the requested application is
not deployed anywhere, server selection for a new session
request is handled by the global controller. It first selects
one or more servers based on the current application-to-server
allocation policy. The requested application is then deployed
on the selected server(s), and the new session request is sent to
the application based on the session-to-server allocation policy.

F. Server Selection for Loading Saturated Applications

As explained in Section IV-A and Section IV-C, a saturated
application is deployed on one or more other (less busy)
servers. Server selection is performed by the global controller,
which selects one or more servers according to the current
application-to-server allocation policy. The global controller
implements a number of application-to-server allocation poli-
cies, such as lowest load average, lowest number of applica-
tions, lowest number of sessions, and selected servers.

V. PROTOTYPE

We have developed a discrete-event simulation and a pro-
totype implementation of the ARVUE dynamic scaling algo-
rithms. Discrete-event simulations have been recently used to

simulate cloud computing environments [21]. The algorithms
were first validated using the discrete-event simulation. Once
validated, we implemented them in an actual cloud.

The prototype is implemented in Java and has been deployed
on the Amazon EC2 cloud. It consists of two key components:
GlobalController and LocalController. The prototype is not de-
pendent on any web development framework, but has initially
been tested for web applications developed using the Vaadin
web development framework [22], an open-source framework
for developing Java Servlet-based applications.

When running multiple web applications on a Java appli-
cation server, all web applications are usually placed in the
same Java Virtual Machine (JVM). However, Java lacks some
important features needed to safely run multiple third-party
web applications in one JVM. This is partly addressed by a
widely adapted OSGi specification [17], which is extended
for use in the security layer of ARVUE [12]. The Vaadin
framework is compatible with OSGi and can be configured
as an OSGi bundle. There are several open-source as well
as commercial implementations of the OSGi specification.
Among the open-source implementations, the free open-source
Apache Felix [23] is certified to be compliant with the OSGi
specification. Thus, we decided to use Felix for our prototype
implementation.

VI. EXPERIMENTAL RESULTS

Now we describe an experiment that we have conducted
with our prototype implementation.

A. Experimental Design and Setup

The objective of the experiment was to demonstrate the most
important characteristics of the ARVUE dynamic scaling ap-
proach, while emphasizing its cost-effectiveness. The ARVUE
PaaS [12] is currently under development and therefore real
data is not yet available. Hence, we decided to generate and
use synthetic load in the experiment, which was designed to
generate a load representing 1000 simultaneous user sessions.
The sessions were ramped up from 0 to 1000 at a discrete rate
of 25 new sessions per 10 seconds. After the ramp up phase,
the number of sessions was maintained constant and then
reduced at a rate of −25 sessions per 10 seconds. Each session
was randomly assigned to one particular web application.
The experiment used 10 web applications of varying resource
needs. Application 1 was the most popular, having 50% of total
user sessions, application 2 had 25% sessions, application 3
had 20% sessions, while the other 7 applications shared the
remaining 5% sessions. Session duration was 15 minutes. Each
session continuously generated HTTP requests on its web
application. Each request was designed to cause the application
server to do some work requiring up to 10 milliseconds of a
dedicated CPU. User think time between consecutive requests
varied uniformly between 0 seconds and 20 seconds. All
random values were uniformly distributed over their range.
The ARUVE sampling period (k) was 10 seconds. The upper
thresholds for server load average (Load AUT ) and memory
utilization (Mem UUT ) were set to 0.8, which are considered



reasonable for efficient use of the servers [24]. Similarly, the
lower thresholds (Load ALT and Mem ULT ) were set to 0.2.

The experiment used small (m1.small) instances from the
Amazon EC2 cloud. One instance was used for running the
HTTP load balancer and the global controller. A varying
number of instances were used to make a dynamically scalable
application server tier. The experiment also used a small
number of additional VMs, which was calculated dynamically.
Moreover, five (5) small instances were used for generating
user load.

The application-to-server allocation policy was set to lowest
load average. The session-to-server allocation policy was also
based on the lowest load average, achieved by using load
average to calculate weights used by HAProxy’s weighted
round-robin policy.

B. Results and Analysis

Figure 2 presents the experimental results. The results show
proportional-derivative scaling of the application server tier
with a sustainable QoS. The response times (in milliseconds)
were reasonable, while the server load average and memory
utilization were always less than 1.0. The sharing of resources
among multiple applications resulted in a reduced total number
of VMs. The total VM cost for application deployment and
scaling was |VMs| · costVM · hours, which amounts to
(6 + 1) · $0.080 / h · 1 h = $0.56. Hosting a dedicated
application per VM would have required a minimum of
(10 + 1) · $0.080 / h · 1 h = $0.88. Thus, under these
circumstances, ARVUE operated at 36% less cost. The results
demonstrate that dynamic scaling of VMs based only on the
resource utilization metrics can be as good as an approach
that depends on the knowledge about the performance and
dynamics of the applications and VMs. The results also indi-
cate that using additional VM capacity is a suitable solution
for avoiding heavy overloading of the application servers due
to the VM provisioning time. The load average plot shows that
the application server tier was able to conveniently absorb the
temporary overload due to the VM provisioning time without
saturating the servers. Finally, the server and application level
scaling ensured that each server ran a reasonable number of
applications, while each application was deployed on as many
or as few servers as it needed at a certain time, based on the
user load on the application.

It is important to note here that the algorithms did not
produce oscillations in the number of VMs. As explained in
Section IV, ARVUE algorithms are designed to counteract
such oscillations.

VII. RELATED WORK

The existing works on creating dynamically scalable server
tiers can be classified into two main categories: Plan-based
approaches and control theoretic approaches. Plan-based ap-
proaches can be further classified into workload prediction
approaches and performance dynamics model approaches. One
example of the workload prediction approaches is Ardagna et
al. [2], while TwoSpot [3], Hu et al. [4], Chieu et al. [5], and
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Iqbal et al. [6] use a performance dynamics model. Similarly,
Dutreilh et al. [7], Pan et al. [8], and Patikirikorala et al. [9]
are control theoretic approaches. One common difference,
between all existing works discussed here and ARVUE scaling
approach, is that ARVUE uses one VM for deploying multiple
simultaneous applications. Another distinguishing characteris-
tic is that in addition to scaling of application servers, ARVUE
algorithms also provide scaling of individual applications.

Ardagna et al. [2] proposed a distributed algorithm for
managing Software as a Service (SaaS) cloud systems that
addresses capacity allocation for multiple heterogenous ap-
plications. The resource allocation algorithm takes into con-
sideration a predicted future load for each application class
and a predicted future performance of each VM, while de-
termining possible SLA violations for each application type.
The main challenge in the prediction-based approaches is in
making good prediction models. In contrast, ARVUE scaling
algorithms do not depend upon prediction models.

TwoSpot [3] aims to combine existing open source tech-
nologies to support web applications written in different
programming languages. It supports hosting of multiple web
applications, which are automatically scaled up and down in a
horizontal fashion. However, the scaling down is decentralized,
which may lead to severe random drops in performance.
For example, when all controllers independently choose to
scale down at the same time. In contrast, ARVUE algorithms
provide centralized scaling.

Hu et al. [4] proposed a heuristic algorithm that determines
the server allocation strategy and job scheduling discipline
which results in the minimum number of servers. They also
presented an algorithm for determining the minimum number
of required servers, based on the expected arrival rate, service
rate, and SLA. In contrast, ARVUE algorithms use server level
and application level resource utilization metrics. Moreover,
the ARVUE algorithms support several application-to-server
and session-to-server allocation policies.

Chieu et al. [5] presented an approach that scales servers
for a particular web application based on the number of active
user sessions. The main problem with this approach is in
determining suitable threshold values on the number of user
sessions.



Iqbal et al. [6] proposed an approach for adaptive resource
provisioning for read intensive multi-tier web applications.
Based on response time and CPU utilization metrics, the
approach determines the bottleneck tier and then scales it up
by provisioning a new VM. Scaling down is supported by
checking for any over-provisioned resources from time to time.
In contrast, ARVUE scaling algorithms support proportional-
derivative scaling of the application servers.

Dutreilh et al. [7] and Pan et al. [8] used control theoretic
models for designing resource allocation solutions for cloud
computing. Dutreilh et al. presented a comparison of static
threshold-based and reinforcement learning techniques. Pan et
al. used proportional integral (PI) controllers to provide QoS
guarantees. Patikirikorala et al. [9] proposed a multi-model
framework for implementing self-managing control systems
for QoS management. The work is based on a control theo-
retic approach called the Multi-Model Switching and Tuning
(MMST) adaptive control. In contrast to the control theoretic
approaches, the proportional-derivative scaling in the ARVUE
algorithms does not depend upon performance models or
infrastructure dynamics.

VIII. CONCLUSIONS

In this paper, we proposed feedback control algorithms for
dynamic scaling of the application server tier in an IaaS cloud.
The algorithms also provide automatic deployment and dy-
namic scaling of multiple web applications. We also presented
a prototype implementation of the scaling algorithms and
experimental results using the Amazon EC2 cloud. The results
indicate that based on the user load on web applications, the
ARVUE algorithms maintain an optimal number of VMs for
the application server tier so that the over and under provi-
sioning of VMs could be minimized. The algorithms scale
multiple applications of varying resource needs, where most
applications might not require a full VM at a given time, while
a few applications may require one or more VMs. The cost-
effectiveness in the proposed algorithms is based on the idea of
sharing VM resources by deploying multiple applications per
VM and thereby reducing the number of required VMs. For
ensuring performance under dynamically and unpredictably
varying user load, ARVUE algorithms provide proportional-
derivative scaling of the application server tier.
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