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Abstract—This paper presents a session-based adaptive admis-
sion control approach for virtualized application servers called
ACVAS (adaptive Admission Control for Virtualized Application
Servers). ACVAS uses measured and predicted resource utiliza-
tions of a server to make admission control decisions for new
user sessions. Instead of using the traditional on-off control, it
implements per session admission control, which reduces the risk
of over-admission. Moreover, instead of relying only on rejection
of new sessions, ACVAS takes benefit of the cloud elasticity,
which allows dynamic provisioning of cloud resources. It also
implements a simple session deferment mechanism that reduces
the number of rejected sessions while increasing session through-
put. Thus, each admission control decision has three possible
outcomes: admit, defer, or reject. Performance under varying
user load is guaranteed by automatic adjustment and tuning
of the admission control mechanism. The proposed approach is
demonstrated in a discrete-event simulation.
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adaptive admission control; session-based admission control;

I. INTRODUCTION

Admission control refers to the mechanism of restricting the
incoming user load on a server in order to avoid overloading it.
Server overload prevention is important because an overloaded
server fails to maintain its performance, which translates
into subpar service (higher response time and lower through-
put) [1]. Thus, if an overloaded server keeps on accepting new
users, then not only the new users, but also the existing users
might experience deteriorated performance.

Admission control is often implemented at the server level.
A server with admission control in place would stop accepting
new user requests or sessions when the server approaches its
capacity limits. Therefore, overload prevention relies on rejec-
tion of new requests or sessions. Most traditional admission
control approaches use request-based admission control, but
there are recent approaches based on session-based admission
control (SBAC), such as [2], which often yield better results
for stateful web applications.

Web applications are often deployed in a three-tier computer
architecture, where the application and the datastore tiers are
implemented using a computer cluster in order to process
many user requests simultaneously. Traditionally, these clus-
ters are composed of a fixed number of computers and are
dimensioned to serve a predetermined maximum number of

concurrent users. However, Infrastructure as a Service (IaaS)
clouds, such as Amazon Elastic Compute Cloud (EC2) [3], can
be used to create a dynamically scalable server tier consisting
of a varying number of Virtual Machines (VMs) that could
serve a theoretically unlimited number of users. However, in
order to prevent virtualized servers from becoming overloaded,
an admission control mechanism would still be required.

One of the key advantages of cloud computing is the
elasticity of resources, wherein VMs can be dynamically
provisioned and released. The admission control mechanism
for a scalable server tier can benefit from cloud elasticity.
Thus, with dynamic provisioning of resources, it may be
possible to reduce the number of rejected sessions, which
would help in increasing the session throughput. However,
with contemporary IaaS providers, VM provisioning times
are non-trivial [4] and thus the admission control mechanism
might need to be augmented with a session deferment mecha-
nism that could allow to temporarily defer a session until a new
VM is provisioned or an existing VM becomes less loaded.
Therefore, with a session deferment mechanism in place, an
SBAC approach might be able to defer some sessions, which
would otherwise be rejected. The outcome of each admission
control decision would therefore be to admit, defer, or reject
the new sessions.

One way to implement SBAC is to use the traditional on-
off control, as used in [2], where admission control decisions
are made for an entire admission control interval. However,
since the admission control is applied only at the interval
boundaries, a server may accept too many sessions during an
interval and consequently become overloaded. The solution to
this shortcoming of the on-off control is to apply admission
control for each new session, as implemented in [5]. With per
session admission control, the SBAC mechanism makes an
admission control decision for each new session.

One of the main challenges in SBAC is to maintain the
required quality of service (QoS) under highly varying user
loads. This is often achieved by dynamically adapting the
admission control mechanism, as in [2] and [6]. Thus, it might
be possible to guarantee the required performance by doing
automatic adjustment and tuning of the important parameters.

In this paper, we present the ACVAS (adaptive Admission
Control for Virtualized Application Servers) approach. AC-



VAS provides SBAC for a dynamically scalable application
server tier. Instead of relying only on rejection of new user
sessions, it implements a simple mechanism that defers such
sessions and then serves them as soon as possible in the near
future. ACVAS implements per session admission control. It
uses monitored resource utilizations for predicting a few steps
ahead in the future. Then, based on the measured and predicted
utilizations, it computes weighted utilizations. The weighted
utilizations of individual server resources are used to make an
admission control decision for each new session. Performance
under highly varying user loads is guaranteed by automatic
adjustment and tuning of the admission control mechanism.

The rest of the paper is organized as follows. Section II
discusses important related works. Section III outlines the
main tasks and the most important characteristics of the
ACVAS approach. Section IV presents the system architecture.
The proposed admission control algorithm is described in Sec-
tion V. Our load prediction approach is detailed in Section VI.
Section VII presents simulation results and Section VIII con-
cludes the paper.

II. RELATED WORK

The existing works on admission control for web-based
systems can be classified according to the scheme presented
in [7]. For instance, [8] and [9] are control-theoretic ap-
proaches, while [5] and [10] use machine learning techniques.
Similarly, [2], [7], [11], and [12] are utility-based approaches.

Almeida et al. [7] proposed a joint resource allocation and
admission control approach for a virtualized platform hosting a
number of web applications, where each VM runs a dedicated
web service application. The admission control mechanism
uses request-based admission control. The optimization ob-
jective is to maximize the provider’s revenue, while satisfying
the customers’ QoS requirements and minimizing the cost
of resource utilization. The approach dynamically adjusts the
fraction of capacity assigned to each VM and limits the
incoming workload by serving only the subset of requests
that maximize profits. It combines a performance model and
an optimization model. The performance model determines
future service level agreement (SLA) violations for each web
service class based on a prediction of future workloads. The
optimization model uses these estimates to make the resource
allocation and admission control decisions.

Cherkasova and Phaal [2] proposed an SBAC approach that
uses the traditional on-off control. It supports four admission
control strategies: responsive, stable, hybrid, and predictive.
The hybrid strategy tunes itself to be more stable or more
responsive based on the observed QoS. The proposed approach
measures server utilizations during predefined time intervals.
Using these measured utilizations, it computes predicted uti-
lizations for the next interval. If the predicted utilizations
exceed specified thresholds, the admission controller rejects
all new sessions in the next time interval and only serves the
requests from already admitted sessions. Once the predicted
utilizations drop below the given thresholds, the server changes

its policy for the next time interval and begins to admit new
sessions again.

Chen et al. [11] proposed admission control based on
estimation of service times (ACES). That is, to differentiate
and admit requests based on the amount of processing time
required by a request. In ACES, admission of a request is
decided by comparing the available computation capacity to
the predetermined delay bound of the request. The service
time estimation is based on an empirical expression, which is
derived from an experimental study on a real web server.

Shaaban and Hillston [12] proposed cost-based admission
control (CBAC), which uses a congestion control technique.
Rather than rejecting user requests at high load, CBAC uses
a discount-charge model to encourage users to postpone their
requests to less loaded time periods. However, if a user chooses
to go ahead with the request in a high load period, then an extra
charge is imposed on the user request. The model is effective
for e-commerce web sites when more users place orders that
involve monetary transactions. A disadvantage of CBAC is
that it requires CBAC-specific web pages to be included in
the web application.

Muppala and Zhou [5] proposed the coordinated session-
based admission control approach (CoSAC), which provides
SBAC for multi-tier web applications with per session ad-
mission control. CoSAC also provides coordination among
the states of tiers with a machine learning technique using
a Bayesian network. The admission control mechanism dif-
ferentiates and admits user sessions based on their type. For
example, browsing mix session, ordering mix session, and
shopping mix session. However, it remains unclear how it
determines the type of a particular session at the start of the
session.

Huang et al. [10] proposed admission control schemes for
proportional differentiated services. It applies to services with
different priority classes. The paper proposes two admission
control schemes to enable proportional delay differentiated
service (PDDS) at the application level. Each scheme is aug-
mented with a prediction mechanism, which predicts the total
maximum arrival rate and the maximum average waiting time
for each priority class, based on the arrival rate in the current
and last three measurement intervals. When a user request
belonging to a specific priority class arrives, the admission
control algorithm uses the time series predictor to forecast the
average arrival rate of the class for the next interval, computes
the average waiting time for the class for the next interval,
and determines if the incoming user request is admitted to the
server. If admitted, the client is placed at the end of the class
queue.

Voigt and Gunningberg [8] proposed admission control
based on the expected resource consumption of the requests,
including a mechanism for service differentiation that guar-
antees low response time and high throughput for premium
clients. The approach avoids overutilization of individual
server resources, which are protected by dynamically set-
ting the acceptance rate of resource-intensive requests. The
adaptation of the acceptance rates (average no. of requests



per second) is done by using proportional-derivative (PD)
feedback control loops.

Robertsson et al. [9] proposed an admission control mecha-
nism for a web server system with control-theoretic methods.
It uses a control-theoretic model of a G/G/1 system with an
admission control mechanism for nonlinear analysis and de-
sign of controller parameters for a discrete-time proportional-
integral (PI) controller. The controller calculates the desired
admittance rate based on the reference value of average server
utilization and the estimated or measured load situation (in
terms of average server utilization). It then rejects those
requests that could not be admitted.

III. ACVAS APPROACH

The main task of the ACVAS approach is to make admission
control decisions for a scalable application server tier that con-
sists of virtualized servers. The most important characteristics
of the proposed approach are as follows.

A. SBAC with Per Session Admission Control

The SBAC approach in [2] implements on-off control,
where acceptance of new sessions is turned on or off for the
entire admission control interval. Thus the admission control
decisions are made at the interval boundaries, which can not
be changed inside an interval. A shortcoming of the on-off
control is that it may lead to over-admission, especially when
handling a bursty load, which could result in overloading of
servers. To overcome this shortcoming of the on-off control,
CoSAC [5] proposed per session admission control. ACVAS
also implements SBAC with per session admission control.
Thus, it makes an admission control decision for each new
session.

B. Session Deferment Mechanism

All existing approaches discussed in this paper, except
CBAC [12], have a common shortcoming in that they rely
only on request rejection to avoid server overloading. However,
CBAC has its own disadvantages. The discount-charge model
of CBAC requires additional web pages to be included in the
web application and it is only effective for e-commerce web
sites when more users place orders.

We introduce a simple mechanism to defer user sessions
that would otherwise be rejected. In ACVAS, such sessions
are deferred on an entertainment server, which sends a wait
message to the user and then redirects the user session to
an application server as soon as a new server is provisioned
or an existing server becomes less loaded. However, if the
entertainment server also approaches its capacity limits, the
new session is rejected. Therefore, for each new session
request, the admission controller makes one of the three
possible decisions: admit the session, defer the session, or
reject the session.

C. Server Resource Utilization Metrics

The SBAC mechanism in [2] assumes that web servers are
CPU-bound and therefore it measures server resource utiliza-
tion in terms of CPU utilization. Voigt and Gunningberg [8]

uses two individual server resources: CPU and network band-
width. Likewise, the ACVAS approach can make use of one
or more individual server resources. However, assuming that
application servers often are CPU-bound or memory-bound,
ACVAS measures server resource utilization in terms of CPU
load average and memory utilization metrics.

D. Prediction Models

Cherkasova and Phaal [2] defined a simple method for
computing the predicted resource utilization, yielding pre-
dicted resource utilizations by assigning certain weights to the
current and the past utilizations. Muppala and Zhou [5] used
the exponential moving average (EMA) method for making
utilization predictions. Huang et al. [10] used machine learning
techniques called support vector regression (SVR) and particle
swarm optimization (PSO) for time-series prediction. Shaaban
and Hillston [12] assumed a repeating pattern of workload
over a suitable time period. Therefore, in their approach, load
in a future period is predicted from the cumulative load of the
corresponding previous period.

It is clear that admission control augmented with prediction
models tends to produce better results and therefore ACVAS
also uses a prediction model. However, for efficient runtime
decision making, it is essential to avoid prediction models
which might require intensive computation, frequent updates
to their parameters, or (off-line) training. Thus, ACVAS uses
a two-step approach [13], which has been designed to predict
future resource loads under real-time constraints. The two-step
approach consists of a load tracker and a load predictor. For
the load tracker, ACVAS uses the EMA method.

E. Automatic Adjustment and Tuning for Better QoS

Schroeder et al. [6] considered automatic adjustment and
tuning of the admission control mechanism to be the most
difficult part. The SBAC approach in [2] proposed a hybrid
policy for automatic adjustment and tuning of the admission
control mechanism. The hybrid policy tries to achieve high
QoS, while at the same time it aims to achieve better session
throughput. This is done by adjusting a parameter called
admission control weight, which gives more or less weight to
the measured and the predicted utilizations. In [2], the weight
parameter is adjusted based on the number of aborted sessions
and refused connections.

For automatic adjustment and tuning of the admission
control mechanism, ACVAS uses a similar approach as in [2].
However, it adjusts and tunes the weight parameter based on
the following metrics: number of aborted sessions, number of
deferred sessions, number of rejected sessions, and number of
overloaded servers.

F. Quality and Efficiency of the Admission Control Mechanism

The quality and efficiency of an admission control mech-
anism might be measured in a number of different ways.
Traditional SBAC approaches that are designed for a fixed
number of servers may be evaluated based on server overload
prevention and increase in the session throughput. Likewise,



Cherkasova and Phaal [2] used a QoS metric based on the
number of aborted sessions and refused connections. However,
for dynamically scalable server tiers, the quality and efficiency
of an admission control approach is based on the tradeoff
between number of servers and QoS. Therefore, we propose to
measure goodness of an admission control mechanism based
on the tradeoff between number of servers and six important
QoS metrics: zero overloaded servers, maximum achievable
session throughput, zero aborted sessions, minimum deferred
sessions, zero rejected sessions, and minimum average re-
sponse time for all admitted sessions.

IV. SYSTEM ARCHITECTURE

ACVAS is part of a larger project that aims at providing an
open-source Platform as a Service (PaaS) integrated solution
for web application development, deployment, and dynamic
scaling [14]. In this context, it provides an admission control
solution for the PaaS clouds. The system architecture consists
of the following components, as shown in Figure 1: admission
controller, predictor, application server, local controller, ap-
plication repository, global controller and resource allocator,
cloud provisioner, HTTP load balancer, and entertainment
server. In this paper, our primary focus is on the admission
controller and the predictor. Therefore, we will only describe
these two components in detail. Only a brief description of
the other components will be provided.

Fig. 1. The ACVAS system architecture

An application server instance runs on a dynamically provi-
sioned VM. Each application server runs multiple web appli-
cations in an OSGi [15] environment. In such an environment,
each application runs as an OSGi component called a bundle.
OSGi also introduces the dynamic component model, which
allows dynamic loading and unloading of bundles. In addition
to the web applications, each application server also runs a
local controller. The local controller monitors and logs server
resource utilizations. For each admission control decision, the
admission controller fetches resource utilization data from
the global controller, which in turn fetches them from the
local controllers. The local controllers also control the OSGi
environment for loading and unloading of web applications.
Web applications are stored in an application repository, from
where they are loaded onto application servers. For appli-
cations under the OSGi environment, we use Apache Felix

OSGi Bundle Repository (OBR) [16]. The global controller
also acts as a capacity manager and a resource allocator. It
implements resource allocation and deallocation algorithms
along with related policies, which include session-to-server
and application-to-server allocation policies.

The cloud provisioner in the ACVAS system architecture
refers to the cloud provisioner in an external IaaS cloud,
such as the provisioner in Amazon EC2. While the scaling
decisions are made by the global controller, the actual lower
level tasks of starting and terminating VMs are done by the
cloud provisioner. The HTTP requests are routed through a
high performance HTTP load balancer and proxy. For this, we
use HAProxy [17], which balances the load of requests for new
user sessions among the application servers. For its functions,
HAProxy maintains a configuration file containing information
about application servers and application deployments on each
server. As a result of application server scaling up and scaling
down operations, the configuration file is frequently updated
with new information.

When a new session request arrives, the admission con-
troller obtains measured resource utilizations of individual
servers from the global controller and likewise the pre-
dicted resource utilizations from the predictor. Based on the
measured and predicted resource utilizations, it updates the
server states. At any given time, an application server can
be in one of three states: open, closed, or overloaded. The
open state implies that the server is open for new sessions.
Similarly, the closed state means that the server does not
accept new sessions. The overloaded state is undesirable. It
is characterized by very high utilization of the bottleneck
server resource, which results in deteriorated performance.
The admission controller uses these server states to make
decisions for new session requests. If the admission controller
finds at least one open server, the new session is admitted.
If it cannot find an open server, the session is deferred onto
the entertainment server. However, if the entertainment server
also approaches its capacity limits, the new session request is
rejected. All deferred sessions are automatically redirected to
an application server in a FIFO (First In, First Out) order as
soon as a new server is provisioned or a closed server becomes
open. When admitting a mix of deferred and new sessions,
deferred sessions are given priority over new sessions, as
described in the next section.

V. ADMISSION CONTROL ALGORITHM

The admission control algorithm is given as Algorithm 1.
For the sake of clarity, the concepts used in the algorithm and
their notation are summarized in Table I.

The algorithm is activated when a new session request
arrives or when the admission controller finds at least one
deferred session. The first step (line 3) concerns automatic
adjustment and tuning of the admission control mechanism,
as discussed in Section III-E. ACVAS adjusts and tunes the
weight parameter (w) based on the following metrics: number
of aborted sessions |sa|, number of deferred sessions |sd|,
number of rejected sessions |sr|, and number of overloaded



TABLE I
SUMMARY OF CONCEPTS AND THEIR NOTATION

sa list of aborted sessions
sd list of deferred sessions
sn list of new session requests
sr list of rejected sessions
S list of application servers
So list of open application servers
Sover list of overloaded application servers
LA(ent) load average of entertainment server
LA(s) CPU load average of server s
LAm(s) measured load average of server s
LAp(s) predicted load average of server s
MU(ent) memory utilization of entertainment server
MU(s) memory utilization of server s
MUm(s) measured memory utilization of server s
MUp(s) predicted memory utilization of server s
w weight parameter
LAUT load average upper threshold
MUUT memory utilization upper threshold
admit(x, So) admit session x on a server in the list So

defer(x) defer a session x
pop(list) remove and return first element of the list
reject(x) reject a session x
updateW () update the weight parameter w

servers |Sover|. The automatic adjustment and tuning is de-
fined as

w =


1, if |sa| > 0 ∨ |sd| > 0 ∨ |sr| > 0

1, if |Sover| > 0

w − 0.01, otherwise if w > 0.1

(1)

The next step deals with the monitoring of the server
resource utilizations and using them to predict server resource
utilizations a few steps ahead in the future. The algorithm then
calculates weighted utilizations by using w to give more or
less weight to both the measured and the predicted utilizations
(line 8 and 9). The weighted resource utilizations, LA(s) and
MU(s), are then used to determine the state of each server
(line 11). However, if w = 1, the algorithm skips the prediction
step to avoid computing predicted utilizations that will not be
used. The two-step load prediction method used by ACVAS
is described in Section VI.

If the algorithm finds at least one open server (line 12), it
admits a new or deferred session. The sessions are served
in a FIFO order. However, to ensure reasonable response
times for any deferred sessions and to further prevent them
from starvation, deferred sessions are given priority over new
sessions (line 14). The next step (line 18) deals with the case
when the algorithm could not find an open server. In this case,
the new session is deferred (line 20), subject to the state of the
entertainment server. That is, if the entertainment server could
not accommodate any more deferred sessions, the session is
rejected (line 22).

VI. LOAD PREDICTION

There are several existing load prediction models for web-
based systems, such as [13], [18], and [19]. Andreolini and
Casolari [13] and Andreolini et al. [18] proposed a two-step
approach for predicting future resource loads under real-time

Algorithm 1 Admission Control Algorithm
1: while true do
2: if |sn| ≥ 1 ∨ |sd| ≥ 1 then
3: w := updateW ()
4: if w = 1 then
5: ∀sεS|LA(s) := LAm(s)
6: ∀sεS|MU(s) := MUm(s)
7: else
8: ∀sεS|LA(s) := w · LAm(s) + (1− w) · LAp(s)
9: ∀sεS|MU(s) := w ·MUm(s) + (1−w) ·MUp(s)

10: end if
11: So := {∀sεS|LA(s) < LAUT ∧MU(s) < MUUT }
12: if |So| ≥ 1 then
13: if |sd| ≥ 1 then
14: admit(pop(sd), So)
15: else
16: admit(pop(sn), So)
17: end if
18: else if |sn| ≥ 1 then
19: if LA(ent) < LAUT ∧MU(ent) < MUUT then
20: defer(pop(sn))
21: else
22: reject(pop(sn))
23: end if
24: end if
25: end if
26: end while

constraints. The two-step approach is based on the rationale
that periodic sampling of the resource utilization data offers an
instantaneous view of the load conditions. However, raw data
are of little help for distinguishing overload conditions. The
direct use of the measured raw data does not solve the problem,
because utilization data are highly variable. Prediction based
on monitored data can be risky and inconvenient. Thus, it is
preferable to operate on a representation of the load behavior
of system resources. The approach involves load trackers that
may offer a representative view of the load conditions to the
load predictors, thus achieving the two-step approach.

A load tracker (LT) filters out the noise and yields a
more regular view of the load trend of a resource [13].
It takes as input a resource measure si monitored at time
ti, and a set of previously collected n measures, that is−→
Sn(ti) = (si−n, ..., si), and outputs a representation of the
load conditions li at time ti. Formally, LT is a function
LT (
−→
Sn(ti)) : Rn → R [13]. Multiple applications of LT

provides a sequence of load values that yield a regular trend
of the load conditions. There are different classes of linear and
non-linear LTs, such as simple moving average (SMA), expo-
nential moving average (EMA), and cubic spline (CS) [18].
SMA is a simple linear method, but has known shortcomings
of increased oscillations when n is small and of significant
delay when n is large. CS is a non-linear method that is
more expensive to compute than SMA and EMA, but instead



of returning a new LT for each resource measure, it returns
a new LT value after n measures [13]. More sophisticated
(time-series) models often require training periods to compute
the parameters and/or off-line analyses. Likewise, the linear
(auto) regressive models such as ARMA and ARIMA, usually
require frequent updates to their parameters in the case of
highly variable systems [13]. Therefore, the ACVAS predictor
implements an LT based on the EMA model, which limits the
delay without incurring oscillations and computes an LT value
for each measure.

EMA is the weighted mean of the n measures in the vector−→
Sn(ti), computed at time ti, where i > n, and the weights
decrease exponentially [13]. An EMA based LT is defined as

EMA(
−→
Sn(ti)) = α · si + (1− α) · EMA(

−→
Sn(ti−1)) (2)

where α = 2
n+1 . The initial value EMA(

−→
Sn(tn)) is set to the

arithmetic mean of the first n values [13]

EMA(
−→
Sn(tn)) =

n∑
j=0

sj

n
(3)

The load predictor (LP) takes as input a set of LT val-
ues
−→
Lq(ti) = li−q, ..., li and outputs a future LT value at

time ti+k, where k > 0 [13]. Formally, LP is a function
LPk(

−→
Lq(ti)) : Rq → R. With the use of LTs that provide high

correlation among values, even simple linear predictors are
sufficient to predict the future behavior of resource load. The
LP is characterized by the prediction window k and the past
time window q. Using a simple linear regression model [20],
the LP would be based on all LT values

−→
Lq(ti) in the past

time window. The LP of the LT is based on a straight line
defined as

l = Θ0 + Θ1 · t (4)

where Θ0 and Θ1 are unknown constants, called regression
coefficients, which can be estimated at runtime based on the
LT values

−→
Lq(ti) in the past time window. One common

approach to estimate these regression coefficients is to use
the least-square estimation method [20]. The least-square
estimators of Θ0 and Θ1, say Θ̂0 and Θ̂1, are computed as

Θ̂0 = l̄ − Θ̂1 · t̄ (5)

and

Θ̂1 =

i∑
j=i−q

(lj · tj)−

 i∑
j=i−q

lj

 ·
 i∑

j=i−q

tj


q

i∑
j=i−q

t2j −

 i∑
j=i−q

tj

2

q

(6)

where

l̄ =
1

q

i∑
j=i−q

lj (7)

and

t̄ =
1

q

i∑
j=i−q

tj (8)

The LP returns a predicted future LT value l̂i+k that
corresponds to the point (ti+k, li+k). It is computed as follows:

LPk(
−→
Lq(ti)) = l̂i+k = Θ̂0 + Θ̂1 · ti+k (9)

Prediction results depend upon selection of proper values for
the LT and LP parameters. Therefore, it is necessary to find a
value of n that represents a good tradeoff between a reduced
delay and a reduced degree of oscillations [13]. Likewise, the
values of q and k should be carefully selected.

VII. SIMULATION RESULTS

A convenient and quick way of testing new algorithms and
solutions involving complex environments is to write and run
software simulations. A special kind of simulations called
discrete-event simulations are most appropriate for simulating
and evaluating cluster, grid, and cloud computing environ-
ments and systems [21]. Therefore, we have developed a
discrete-event simulation for the ACVAS approach. Also, for a
comparison of results with the alternative existing approaches,
we have developed a discrete-event simulation for the SBAC
approach of Cherkasova and Phaal [2], here referred to as
the alternative approach. The simulations are written in the
Python programming language and are based on the SimPy
simulation framework [22].

A. Experimental Design and Setup

We considered two scenarios of interest in two separate ex-
periments. Scenario 1 in experiment 1 used synthetic workload
traces, while scenario 2 in experiment 2 used workload traces
derived from a real web-based system. The LT and LP param-
eters were carefully chosen based on the recommendations
in [13]: n = 30, q = 15, and k = 30.

1) Experiment 1: Synthetic Workload Traces: Experiment
1 used synthetic workload traces. It was designed to generate
a load representing a maximum of 500 simultaneous user
sessions in two separate load peaks. In each peak, the sessions
were ramped up from 0 to 500. After the ramp-up phase,
the number of sessions was maintained constant for a while
and then reduced back to 0 in a ramp-down phase. The
two load peaks were similar, except that the sessions in the
second peak were ramped up twice as quickly as in the first
peak. Each session was randomly assigned to one particular
web application. The experiment used 100 simulated web
applications of varying resource needs.

2) Experiment 2: Workload Traces Based on Access Logs:
Experiment 2 was designed to simulate a load representing
a workload trace from a real web-based system. The traces
were derived from SQUID access logs obtained from the
IRCache [23] project. As the access logs did not include
session information, we defined a session as a series of
requests from the same originating IP-address, where the time
between individual requests was less than 15 minutes. We



then produced a histogram of sessions per second and used
linear interpolation and scaling by a factor of 30 to obtain
the load traces used in the experiment. As in Experiment 1,
each session was randomly assigned to one particular web
application out of 100.

B. Results and Analysis

Now we compare the experimental results of the ACVAS
approach with that of the alternative approach. The compari-
son of the results is based on the goodness criteria defined in
Section III-F.

1) Experiment 1: Synthetic Workload Traces: Figure 2
presents ACVAS results from experiment 1. The results show
a dynamically scalable application server tier, which consists
of a varying number of VMs. The prediction results with
the EMA-based two-step method correlated well with the
measured results: the root-mean-square error (RMSE) for CPU
and memory were 0.0284 and 0.0161 respectively. ACVAS
used a maximum of 10 servers with 0 overloaded servers, 0
aborted sessions, 25 deferred sessions, and 0 rejected sessions.
There were a total of 3709 completed sessions with an average
response time always below 1 second. Thus, ACVAS provided
a good tradeoff between the number of servers and the QoS
requirements.

The results of the alternative approach are shown in Fig-
ure 3. The alternative approach also used a maximum of
10 servers, but with 5 occurrences of server overloading, 0
aborted sessions, and 72 rejected sessions. There were a total
of 3741 completed sessions with an average response time
always below 1 second. Thus, in experiment 1, the alternative
approach completed 3741 sessions compared to 3709 sessions
by ACVAS, but with 72 rejected sessions compared to 0
rejected sessions by ACVAS.

Fig. 2. Experiment 1: ACVAS with synthetic load

2) Experiment 2: Workload Traces Based on Access Logs:
Figure 4 presents ACVAS results from experiment 2. ACVAS
used a maximum of 16 servers with 0 overloaded servers, 0

Fig. 3. Experiment 1: alternative approach with synthetic load

aborted sessions, 20 deferred sessions, and 0 rejected sessions.
There were a total of 8559 completed sessions with an average
response time always below 1 second. The prediction accuracy
was similar to that in the first experiment. Thus, ACVAS
provided a good tradeoff between the number of servers and
the QoS requirements for experiment 2 as well.

Fig. 4. Experiment 2: ACVAS with real load

The results of the alternative approach are shown in Fig-
ure 5. The alternative approach used a maximum of 17 servers
with 3 occurrences of server overloading, 0 aborted sessions,
and 55 rejected sessions. There were a total of 8577 completed
sessions with an average response time always below 1 second.
Thus, the alternative approach used an almost equal number of
servers, but it did not prevent them from becoming overloaded.
Also, it completed 8577 sessions compared to 8559 sessions
by ACVAS, but with 55 rejected sessions compared to 0
sessions rejected by ACVAS.



Fig. 5. Experiment 2: alternative approach with real load

VIII. CONCLUSION

In this paper, we presented an SBAC approach for dynami-
cally scalable application server tiers called ACVAS. ACVAS
uses measured and predicted server load of individual servers
to make admission control decisions. Our prediction approach
is based on a two-step method. The first step filters out
noise to yield a more regular view of the load trend. The
second step outputs a future load value based on a set of
load trend values. ACVAS uses per session admission control,
which reduces over-admission. It also implements a simple
session deferment mechanism, which decreases the number of
rejected sessions. We presented a discrete-event simulation of
the proposed approach along with experimental results.

The evaluation and analyses compared ACVAS against an
existing approach available in the literature. We considered
two different scenarios in two separate experiments. The first
scenario used a synthetic workload while the second scenario
used workload traces derived from a real web-based system.
The results showed that ACVAS provides a good tradeoff be-
tween the number of servers used and the QoS requirements. In
comparison with the alternative admission control approach,
ACVAS provided significant improvements in terms of server
overload prevention and reduction of rejected sessions.
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