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Abstract—In this paper, we present a novel Multi-Objective
Ant Colony System algorithm to optimize Cost, Performance,
and Reliability (MOACS-CoPeR) in the cloud. The proposed
algorithm provides a metaheuristic-based approach for the multi-
objective cloud-based software component deployment problem.
MOACS-CoPeR explores the search-space of architecture de-
sign alternatives with respect to several architectural degrees
of freedom and produces a set of Pareto-optimal deployment
configurations. We also present a Java-based implementation of
our proposed algorithm and compare its results with the Non-
dominated Sorting Genetic Algorithm II (NSGA-II). We evaluate
the two algorithms against a cloud-based storage service, which
is loosely based on a real system.

I. INTRODUCTION

Cloud computing is a relatively new computing paradigm.
It leverages several existing concepts and technologies, such
as data centers and hardware virtualization, and gives them
a new perspective [1]. With its pay-per-use business model
for the customers, cloud computing shifts the capital in-
vestment risk for under or over provisioning to the cloud
providers [2]. Public cloud providers such as Amazon, Google,
and Microsoft operate large-scale cloud data centers around
the world and strive to provide a multitude of cloud resources
at competitive prices by exploiting economies of scale. For
instance, Infrastructure as a Service (IaaS) clouds provide
different types of virtual machines (VMs) that can be used
to deploy software applications and services [3]. The different
types of VMs often vary in terms of cost, performance, and
reliability. Therefore, renting the right amounts and types of
VMs is essential for ensuring the desired levels of Quality of
Service (QoS).

A large number of contemporary software systems are built
from software components that can be deployed on one or
more VMs. A typical software system comprises a number of
software components, where each component often requires
certain levels of performance and reliability. Therefore, when
deploying a component-based software system in an IaaS
cloud, performance and reliability requirements of individ-
ual software components should be taken into account. In
practice, it is often possible to provide high QoS levels by
over-provisioning of resources [4]. However, over-provisioning
of cloud resources results in an increased operational cost.
Therefore, performance and reliability of software systems
can not be optimized in isolation from the cost of cloud
resources. Thus, a software deployment configuration should

be simultaneously optimized in terms of cost, performance,
and reliability.

The cloud-based software component deployment problem
is a special case of the generic software architecture optimiza-
tion problem [5], in which the search-space of architecture de-
sign alternatives is explored with respect to one or more objec-
tives. The component-based software development paradigm
provides various generic architectural Degrees of Freedom
(DoFs) that can be exploited to create different functionally-
equivalent alternatives of an architectural design [4], [6]. An
architectural DoF refers to a way an architecture model can be
modified and improved in terms of certain quality properties
without affecting the functionality of the system [5], [6].
For instance, component allocation DoF allows to change
the allocation of software components to VMs in order to
optimize a software architecture model with respect to certain
objectives. Thus, architectural DoFs define the search-space
for optimization in which all solutions provide the same
functionality, but with different levels of quality properties.

In this paper, we formulate the cloud-based software com-
ponent deployment problem as a multi-objective optimization
problem with three antagonistic objectives: cost, performance,
and reliability. Manually exploring the search-space of de-
ployment configurations with respect to three antagonistic
objectives is time-consuming, error-prone, and may lead to
suboptimal solutions [4]. Moreover, since the multi-objective
cloud-based software component deployment problem is an
NP-hard combinatorial optimization problem [5], it should be
approached in a systematic way by using efficient optimization
techniques. Furthermore, since the problem involves multiple
objectives, the traditional single objective optimization tech-
niques are not appropriate for it [7]. Therefore, it should be
approached with a multi-objective optimization technique that
produces a set of Pareto-optimal configurations [8].

The existing works on software architecture optimization
can be classified into several different categories such as rule-
based approaches, metaheuristic-based approaches, and hybrid
approaches [5]. These approaches tend to use a particular
modeling language and often require an initial architecture
configuration. However, in many cases, an initial architec-
ture configuration may not exist or the system under study
may have been modeled in a different modeling language.
Moreover, a disadvantage of using an initial architecture
configuration is that it may restrict the search to a subset of the
search-space which is reachable from the initial architecture
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Fig. 1. Overview of the proposed approach

configuration. Furthermore, some of the existing approaches
do not take into account the performance and reliability
requirements of individual software components during the
search process. Instead, the search process is followed by
an additional evaluation step which checks the feasibility
and desirability of the solutions and eliminates infeasible and
undesired solutions.

In this paper, we present a metaheuristic-based approach
for the multi-objective cloud-based software component de-
ployment problem. The proposed approach uses ant colony
optimization (ACO) [9], [10] metaheuristic and is based on
a multi-objective ant colony system (ACS) algorithm by
Barán and Schaerer [11]. The proposed Multi-Objective Ant
Colony System algorithm to optimize Cost, Performance, and
Reliability (MOACS-CoPeR) finds a set of Pareto-optimal
solutions for the multi-objective cloud-based software com-
ponent deployment problem. We consider three generic ar-
chitectural DoFs: component allocation, VM selection, and
number of VMs [4], [5], [6], [12]. We also present a Java-
based implementation of our proposed algorithm and compare
its results with a highly efficient genetic algorithm called
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [13].
We evaluate the two algorithms against a cloud-based storage
service, which is loosely based on a real system. The results
show that MOACS-CoPeR outperforms NSGA-II in terms of
number and quality of Pareto-optimal configurations found.

Figure 1 presents an overview of the proposed approach.
Based on the available IaaS cloud offerings and the QoS
requirements of individual software components, the proposed
approach runs an optimization process which yields a set of
Pareto-optimal deployment configurations. Afterwards, the set
of Pareto-optimal configurations is analyzed further, either
manually by a software architect or automatically based on an
aggregate objective function [14] and the remaining trade-offs,
in order to select a final deployment configuration. Finally, the
selected configuration is deployed, resulting in a new alloca-
tion of software components to VMs. As depicted in Figure 1,
our main focus in this paper is on the optimization process to
produce a set of Pareto-optimal deployment configurations.
Two salient features of our proposed approach are that it is
not dependent on a particular modeling language and it does
not require an initial architecture configuration. Moreover, it
eliminates undesired and infeasible configurations at an early
stage by using performance and reliability requirements of
individual software components as heuristic information to
guide the search process.

II. MULTI-OBJECTIVE ACS ALGORITHM

In this section, we present our proposed Multi-Objective
Ant Colony System algorithm to optimize Cost, Performance,
and Reliability (MOACS-CoPeR) of software deployment con-
figurations in the cloud. In the context of cloud-based software
component deployment, each VM v ∈ V hosts one or more
software components c ∈ C. Both VMs and software com-
ponents are characterized by their performance and reliability.
The main objective is to allocate software components to VMs
in such a way that the cost of deployment infrastructure is
minimized while satisfying the performance and reliability re-
quirements of individual software components. For simplicity,
we assume that the most important deployment infrastructure
cost is the cost of provisioning VMs from an IaaS cloud. The
problem is similar to the multidimensional vector bin packing
problem (MDVPP) [15], where the VMs are the bins and the
software components are the objects to be packed into the bins.
Moreover, the performance and reliability requirements can
be modeled as the different dimensions in the MDVPP. The
problem of finding a packing that uses a minimum number of
bins is known to be NP-hard [15]. Therefore, it is difficult to
find an optimal solution in the multidimensional cloud-based
software component deployment problem with a large number
of VMs and software components.

We formulate the multidimensional cloud-based software
component deployment problem as a multi-objective combi-
natorial optimization problem with three objectives and three
generic architectural DoFs. For the sake of clarity, important
concepts and notations used in the following sections are
tabulated in Table I. The three generic architectural DoFs in
our approach are component allocation, VM selection, and
number of VMs. Component allocation DoF allows to change
the allocation of components to VMs in order to optimize a
deployment configuration for cost, performance, and reliabil-
ity. Similarly, VM selection DoF allows to select VMs with
different levels of cost, performance, and reliability. Moreover,
with number of VMs DoF, it is possible to add or remove
VMs to optimize the cloud-based deployment configuration.
Adding more VMs may provide better performance and higher
reliability, but it may also result in an increased operational
cost. The optimization process explores different architecture
alternatives with respect to these three DoFs without affecting
system functionality. It uses the generic architectural DoFs
to identify a set of system-specific DoFs. An example of
a system-specific DoF with respect to component allocation
is allocating a particular software component c ∈ C to a
particular VM v ∈ V . Therefore, c may be allocated to a
different VM in the set of VMs V in order to optimize cost,
performance, and reliability. Thus, the search-space of archi-
tecture alternatives can be viewed as the Cartesian product of
the design options of all system-specific DoFs [4]. In the next
step, our proposed multi-objective ACS algorithm searches
the search-space for non-dominated deployment configurations
with respect to cost, performance, and reliability, resulting in
a set of Pareto-optimal configurations.



TABLE I
SUMMARY OF CONCEPTS AND THEIR NOTATIONS

C set of software components
P set of Pareto-optimal configurations
T set of tuples as defined in (1)
Tk set of tuples not yet traversed by ant k
V set of VMs
VΨP set of VMs in a non-dominated configuration ΨP

Rc required level of availability of software component c
Rv availability of VM v
Ic performance requirement of software component c
Iv processing rate of VM v in MIPS
IvA amount of allocated processing rate of VM v
q a uniformly distributed random variable
S a random variable selected according to (3)
η heuristic value
τ amount of pheromone
τ0 initial pheromone level
Ψ a software component deployment configuration
ΨP a Pareto-optimal configuration in P
Ψk ant-specific configuration of ant k
∆P
τs additional pheromone amount given to the tuples in a ΨP

q0 parameter to determine relative importance of exploitation
α pheromone decay parameter in the global updating rule
β parameter to determine relative importance of η
λ parameter to determine relative importance of η1 and η2

ρ pheromone decay parameter in the local updating rule
nA number of ants that concurrently build their solutions
nI number of iterations of the main loop

Since each software components c ∈ C is deployed on a
VM v ∈ V , the proposed MOACS-CoPeR algorithm makes
a set of tuples T , where each tuple t ∈ T consists of two
elements: software component c and VM v

t := (c, v) (1)

The output of the MOACS-CoPeR algorithm is a set of Pareto-
optimal software component deployment configurations P , in
which each configuration ΨP simultaneously optimizes the
three objectives. In addition, each configuration ΨP ∈ P
should satisfy the performance and reliability requirements of
individual software components. Therefore, MOACS-CoPeR
seeks to find software component deployment configurations
that maximize performance and reliability and minimize cost
subject to the performance and reliability requirements of
individual software components.

In ACS, each ant builds a complete solution. In our proposed
approach, a software component deployment configuration Ψ
comprises a set of tuples, which are stochastically chosen from
the set of tuples T . Since there is no notion of path in the
cloud-based software component deployment problem, ants
deposit pheromone on the tuples defined in (1). Each of the
nA ants uses a stochastic state transition rule to choose the
next tuple to traverse. The state transition rule in ACS called
the pseudo-random-proportional-rule [10] determines the next
decision in solution construction. According to this rule, an
ant k ∈ nA chooses a tuple s to traverse next by applying

s :=

{
arg maxu∈Tk{[τu] · [η1u ]λβ · [η2u ](1−λ)β}, if q ≤ q0

S, otherwise
(2)

where τ denotes the amount of pheromone and η1 and η2

represent the heuristic values associated with a particular
tuple. η1 denotes the optimization objective concerning the
performance requirement of a software component c on a
VM v. Similarly, η2 represents the objective concerning the
reliability requirement of c on v. The parameter λ = k/nA
is used to determine the relative importance of η1 and η2.
Therefore, each ant weighs the relative importance of these
two optimization objectives differently when choosing a tuple
s to traverse [16]. Similarly, β is a parameter to determine
the relative importance of the heuristic values η1 and η2 with
respect to the pheromone value τ . The expression arg max
returns the tuple for which [τu] · [η1u ]λβ · [η2u ](1−λ)β attains
its maximum value. Tk ⊂ T is the set of tuples that remain
to be traversed by ant k. q ∈ [0, 1] is a uniformly distributed
random variable and q0 ∈ [0, 1] is a parameter. S is a random
variable selected according to the probability distribution given
in (3), where the probability probks of an ant k to choose tuple
s to traverse next is defined as

probks :=


[τs]·[η1s ]λβ ·[η2s ](1−λ)β∑

u∈Tk
[τu]·[η1u ]λβ ·[η2u ](1−λ)β

, if s ∈ Tk

0, otherwise
(3)

The heuristic value concerning performance η1s for a tuple
s is defined as

η1s :=

{
IvA+Ic
Iv

, if IvA + Ic ≤ Iv
0, otherwise

(4)

where Iv is the processing rate of the VM v in millions
of instructions per second (MIPS), IvA is the amount of
processing rate of v in MIPS that has already been allocated to
some software components, and likewise Ic is the performance
requirement of the software component c in tuple s in terms of
MIPS. In an open workload system [4], the required amount
of MIPS for a software component can be derived from
the performance requirement of the software component in
millions of instructions (MI), the expected user request arrival
rate in the system, and the probability of the component to
be invoked in a user request. The heuristic value concerning
performance η1 is based on the ratio of (IvA + Ic) to Iv .
Therefore, VMs with the minimum unallocated processing
rate receive the highest amount of heuristic value. Moreover,
the constraint IvA + Ic ≤ Iv prevents deployments that
would violate the required performance level of the software
component in tuple s.

For the reliability requirements, we use the availability
metric. Therefore, the heuristic value concerning reliability η2s

for a tuple s is defined as

η2s :=

{
1− (Rv −Rc), if Rc ≤ Rv
0, otherwise

(5)

where Rv is the availability of the VM v measured as the
percentage of time when v is operational and Rc is the
required level of availability of the software component c
in tuple s. The heuristic value concerning reliability η2 is



based on the difference between 1 and (Rv − Rc). It favors
component deployments where the VM availability level Rv
closely matches the availability requirement of the software
component Rc. Moreover, the constraint Rc ≤ Rv prevents
deployments that would violate the availability requirement of
component c in tuple s.

The stochastic state transition rule in (2) and (3) prefers
tuples with a higher pheromone concentration and which result
in fewer or smaller VMs while satisfying the performance
and reliability requirements of the software components. The
first case in (2) where q ≤ q0 is called exploitation [10],
which chooses the best tuple that attains the maximum value
of [τu] · [η1u ]λβ · [η2u ](1−λ)β . The second case, called biased
exploration, selects a tuple according to (3). The exploitation
helps the ants to quickly converge to a high quality solution,
while at the same time, the biased exploration helps them
to avoid stagnation by allowing a wider exploration of the
search-space [17], [18]. In addition to the stochastic state
transition rule, ACS also uses a global and a local pheromone
trail evaporation rule. The global pheromone trail evaporation
rule is applied towards the end of an iteration after all ants
complete their solutions. In MOACS-CoPeR, the pheromone
trail is updated with each non-dominated configuration ΨP

in the current Pareto set P [11]. The global pheromone trail
evaporation rule is defined as

τs := (1− α) · τs + α ·∆P
τs (6)

where ∆P
τs is the additional pheromone amount that is given to

only those tuples that belong to a non-dominated configuration
ΨP in order to reward them. Therefore, if a tuple belongs
to multiple non-dominated configurations, it is more likely
to receive a higher amount of pheromone. The additional
pheromone amount ∆P

τs is defined as

∆P
τs :=

{
(|VΨP |)−1, if s ∈ ΨP

0, otherwise
(7)

α ∈ (0, 1] is the pheromone decay parameter, ΨP is a non-
dominated configuration in the Pareto set P , and |VΨP | is the
number of VMs in the non-dominated configuration ΨP . The
objective here is to favor the configurations that use fewer
VMs.

The local pheromone trail update rule is applied on a tuple
when an ant traverses the tuple while making its solution. It
is defined as

τs := (1− ρ) · τs + ρ · τ0 (8)

where ρ ∈ (0, 1] is similar to α and τ0 is the initial pheromone
level, which is computed as the multiplicative inverse of the
product of the number of software components |C| and the
number of VMs |V |

τ0 := (|C| · |V |)−1 (9)

The pseudocode of the proposed MOACS-CoPeR algorithm
is given as Algorithm 1. It outputs the set of Pareto-optimal
deployment configurations P (line 30), which is initially empty

Algorithm 1 MOACS-CoPeR
1: P := ∅ {Set of Pareto-optimal configurations}
2: ∀t ∈ T |τt := τ0 {Initial pheromone level}
3: for i ∈ [1, nI] do
4: for k ∈ [1, nA] do
5: Ψk := ∅ {Ant-specific configuration of the k-th ant}
6: while all software components in C are allocated do
7: compute η1s and η2s ∀s ∈ T using (4) and (5)
8: generate q ∈ [0, 1] with a uniform distribution
9: if q > q0 then

10: compute probability probks∀s ∈ T using (3)
11: end if
12: choose a tuple t ∈ T to traverse using (2)
13: apply local update rule in (8) on t
14: if ant k has not allocated component c in t then
15: if deployment of c does not overload v in t then
16: if v meets reliability requirement of c then
17: update allocated processing rate IvA of v
18: Ψk := Ψk ∪ {t}
19: end if
20: end if
21: end if
22: end while
23: if P is empty or Ψk is non-dominated then
24: P := P ∪ {Ψk}
25: remove dominated configurations from P
26: end if
27: end for
28: apply global update rule in (6) on all s ∈ T
29: end for
30: return P

(line 1). The algorithm makes a set of tuples T by using (1) and
sets the pheromone value of each tuple to the initial pheromone
level τ0 by using (9) (line 2). It iterates over nI iterations,
where each iteration uses a new generation of ants (line 3).
The total number of iterations nI may depend on a stopping
criterion. For instance, when a certain amount of clock time
has elapsed or when no further improvements are achieved
in multiple consecutive iterations [19]. In each iteration of
the main loop, nA ants concurrently build their solutions
(lines 4–27). Each ant builds a complete solution by allocating
the software components in C to the VMs in V . Therefore,
an ant continues to build its solution until it allocates all
components in C (lines 6–22). It computes heuristic value
concerning performance η1s and heuristic value concerning
reliability η2s ∀s ∈ T by using (4) and (5) (line 7). Then, it
generates a uniformly distributed random value for q ∈ [0, 1]
(line 8) and if q > q0 (line 9), it computes the probabilities
for choosing the next tuple to traverse ∀s ∈ T by using (3)
(line 10). Afterwards, based on the computed probabilities and
the stochastic state transition rule in (2), each ant k chooses a
tuple t to traverse next (line 12). Then, the local pheromone
trail update rule in (8) and (9) is applied on the selected tuple
t (line 13). If ant k has not already allocated component c



in tuple t (line 14), the deployment of component c does not
overload VM v in tuple t (line 15), and VM v satisfies the
reliability requirement of component c (line 16), the amount of
allocated processing rate IvA of VM v in t is updated to reflect
the impact of the component deployment (line 17) and the
tuple t is added to the ant-specific configuration Ψk (line 18).
Afterwards, when all ants complete their solutions, each ant-
specific configuration Ψk is compared to the current Pareto set
P to see if it is non-dominated (line 23). Then, each new non-
dominated configuration is added to the current Pareto set P
(line 24) and the dominated configurations in P are removed
(line 25). Finally, the global pheromone trail update rule in (6)
and (7) is applied on all tuples (line 28).

III. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

We have implemented our proposed algorithm as a Java
program called MOACS-CoPeR solver. It uses as inputs a set
of software components C representing the system under study
and a set of VMs V on which the components are deployed.
Previous work, such as [4], used the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [13]. We have developed a
Java program using the same algorithm, here referred to as the
NSGA-II solver. The NSGA-II solver implementation is based
on jMetal [20], which is a Java-based framework for multi-
objective optimization. The two solvers are evaluated against
a cloud-based storage service (CBSS), which is loosely based
on the F-Secure Input Output (FSIO) platform of the F-Secure
Corporation1.

A. Experimental Design and Setup

The FSIO platform provides a foundation for content-centric
applications that store, share, and synchronize different types
of digital content in the cloud. Table II presents a list of
software components from CBSS. It comprises 13 software
components, numbered from c1 to c13, along with their
performance and availability requirements. The performance
requirement of each software component is given in millions
of instructions (MI) along with the probability of the com-
ponent to be invoked in a user request. We assumed an open
workload system with a user request arrival rate of 10 requests
per second. Therefore, the required amount of millions of
instructions per second (MIPS) for each software component
was computed as the product of the component performance
requirement in MI, the component usage probability, and the
request arrival rate 10. Table III presents a list of VMs, num-
bered from 1 to 10, along with their performance, availability,
and hourly cost. Thus, the search-space comprised 10 VMs
and 13 components, giving 1013 possible configurations.

Given the set of software components C along with their
performance and availability requirements and the set of VMs
V with their cost, performance, and availability levels, the
MOACS-CoPeR solver explored different architecture alter-
natives with respect to the three generic architectural DoFs
described in Section II. Each deployment configuration was

1www.f-secure.com

TABLE II
SYSTEM UNDER STUDY: CLOUD-BASED STORAGE SERVICE

Component Performance Probability Availability
c1: API Frontend 490 MI 0.1020 0.99
c2: Data Frontend 367 MI 0.0816 0.98
c3: Data Backend 367 MI 0.0816 0.98
c4: Database Frontend 840 MI 0.0952 0.99
c5: Database Backend 630 MI 0.0952 0.999
c6: Cache 176 MI 0.3401 0.99
c7: Gaffer 420 MI 0.0476 0.98
c8: Antivirus Scanner 2940 MI 0.0204 0.98
c9: Thumbnailer 588 MI 0.0340 0.98
c10: Metadater 490 MI 0.0204 0.98
c11: File Typer 367 MI 0.0272 0.98
c12: Transcoder 7350 MI 0.0136 0.98
c13: Garbage Collector 245 MI 0.0408 0.98

TABLE III
SET OF VMS

VM Performance Availability Cost ($)
1 1000 MIPS 0.98 0.08
2 1000 MIPS 0.99 0.10
3 1200 MIPS 0.98 0.10
4 1200 MIPS 0.999 0.16
5 1500 MIPS 0.99 0.15
6 1500 MIPS 0.999 0.20
7 2000 MIPS 0.99 0.20
8 2000 MIPS 0.999 0.25
9 2500 MIPS 0.99 0.25
10 2500 MIPS 0.98 0.20

TABLE IV
ACS PARAMETERS IN THE PROPOSED APPROACH

α β ρ q0 nA nI
0.1 2.0 0.1 0.9 10 [100, 10000]

analyzed in terms of cost, performance, and availability. The
cost of a configuration was computed by aggregating the cost
of individual VMs in the configuration. The performance of a
configuration was computed in a similar fashion by aggregat-
ing the performance of individual VMs in the configuration.
Moreover, for availability of a configuration, we computed
the product of the availability levels of individual VMs in the
configuration. Finally, the MOACS-CoPeR solver produced a
set of Pareto-optimal deployment configurations P . The ACS
parameters used in the MOACS-CoPeR solver are given as
Table IV. These parameter values were obtained in a series
of preliminary experiments. The NSGA-II solver used the
following parameters: single point crossover (probability 0.9),
bit flip mutation adjusted for integer representation (proba-
bility 1.0/number of variables), binary tournament selection,
population size 100, and number of generations ∈ [10, 1000].
The chromosome structure in the NSGA-II solver was the
same as in [4]. The two solvers were run on an Intel Core
i7-4790 processor with 16 gigabytes of memory.

B. Results and Analysis

For a comprehensive comparison of the MOACS-CoPeR
and NSGA-II solvers, we report results with 1000, 10000,
and 100000 objective function evaluations. The number of



objective function evaluations in MOACS-CoPeR is computed
as the product of the number of iterations nI and the number
of ants nA. Similarly, in NSGA-II, it is computed as the
product of the population size and the number of generations.
The comparison of the results is based on the following
metrics [11].
• Overall true non-dominated vector generation (OTNVG)

count: counts the number of configurations in the cal-
culated Pareto set P that are also in the true Pareto set
Ptrue. Since Ptrue is not known in theory, we computed
an approximation of Ptrue by calculating a Pareto set
from all individual calculated Pareto sets P of all runs
of the two solvers. The approximated Ptrue comprises
922 non-dominated deployment configurations and is
presented in Figure 2.

• OTNVG percentage: percentage of the number of con-
figurations in the calculated Pareto set P that are also in
Ptrue. It is computed as OTNVG count

|Ptrue| · 100.
• Time: execution time of a solver in seconds.
• Combined Pareto set size: size of the combined Pareto

set of a solver. The combined Pareto set of a solver is
calculated from all individual calculated Pareto sets P of
all runs of the solver.

• Aggregated OTNVG count: sum of all individual OTNVG
counts of a solver from all runs.

• Aggregated OTNVG percentage: sum of all individual
OTNVG percentages of a solver from all runs.

• Aggregated OTNVG count to combined Pareto set size
ratio: computed as Aggregated OTNVG count

Combined Pareto set size .
• Error ratio: proportion of configurations in the combined

Pareto set of a solver that is not found in Ptrue. It is
computed as Combined Pareto set size−Aggregated OTNVG count

Combined Pareto set size .
Table V presents three example configurations along with

their hourly cost, performance, and availability. The configu-
rations in Table V are represented as a vector of 13 values,
in which each value is a VM number and the position of a
VM number in the vector corresponds with the component
number. For instance, the first configuration in Table V used
a total of four VMs and deployed five components c1, c2, c3,
c5, c7 on VM 8, three components c4, c8, c13 on VM 5, four

Fig. 2. Approximation of the true Pareto set Ptrue

TABLE V
PARTIAL PARETO SET (MOACS-COPER)

Cost ($) Performance Availability Configuration
0.58 5500 MIPS 0.9595 8 8 8 5 8 2 8 5 2 2 2 1 5
1.69 16400 MIPS 0.9014 5 8 9 4 8 6 7 3 1 10 5 2 9
0.7 6000 MIPS 0.988 9 8 9 9 6 6 9 8 9 9 8 8 9

TABLE VI
SUMMARY OF RESULTS

MOACS-CoPeR NSGA-II
Combined Pareto set size 698 674
Aggregated OTNVG count 612 310
Aggregated OTNVG percentage 66.38% 33.62%
Aggregated OTNVG count to
combined Pareto set size ratio

0.88 0.46

Error ratio 0.12 0.54

components c6, c9, c10, c11 on VM 2, and one component
c12 on VM 1.

Table VII presents OTNVG count, OTNVG percentage, and
execution time results of the MOACS-CoPeR and NSGA-
II solvers. The results comprise three runs of each solver
with 1000, 10000, and 100000 objective function evalua-
tions. Moreover, we also report average results with respect
to 1000, 10000, and 100000 evaluations. The results show
that in eight out of nine runs, the MOACS-CoPeR solver
outperformed the NSGA-II solver in terms of OTNVG count
and OTNVG percentage. Moreover, in run 1 of 1000 eval-
uations, the two solvers produced Pareto sets with the same
OTNVG count. Therefore, the results show that in almost all
runs, the MOACS-CoPeR solver found more configurations
in the approximated Ptrue. The execution time results in
Table VII show that the NSGA-II solver executes faster than
the MOACS-CoPeR solver. This is because the MOACS-
CoPeR solver is currently not optimized in terms of execution
time. We plan to consider this enhancement to the MOACS-
CoPeR solver in our future work.

Table VI provides a summary of the results. It comprises
five metrics: combined Pareto set size, aggregated OTNVG
count, aggregated OTNVG percentage, aggregated OTNVG
count to combined Pareto set size ratio, and error ratio. The
results show that the MOACS-CoPeR solver outperformed the
NSGA-II solver with respect to all five metrics.

IV. CONCLUSION

In this paper, we presented a novel Multi-Objective Ant
Colony System algorithm to optimize Cost, Performance,
and Reliability (MOACS-CoPeR) in the cloud. The proposed
algorithm provides a metaheuristic-based approach for the
multi-objective cloud-based software component deployment
problem. It is based on a multi-objective ant colony sys-
tem (ACS) algorithm that simultaneously optimizes multiple
antagonistic objectives. MOACS-CoPeR explores the search-
space of architecture design alternatives with respect to several
generic architectural Degrees of Freedom (DoFs) and produces
a set of Pareto-optimal deployment configurations. The cur-
rently supported architectural DoFs in our proposed approach



TABLE VII
OTNVG COUNT, OTNVG PERCENTAGE, AND EXECUTION TIME OF MOACS-COPER AND NSGA-II SOLVERS

OTNVG Count OTNVG Percentage Time (seconds)
Evaluations MOACS-CoPeR NSGA-II MOACS-CoPeR NSGA-II MOACS-CoPeR NSGA-II
1000 Run 1 29 29 3.15% 3.15% 1.201 0.165

Run 2 35 23 3.80% 2.49% 1.217 0.034
Run 3 49 30 5.31% 3.25% 1.201 0.029
Average 37.67 27.33 4.09% 2.96% 1.206 0.076

10000 Run 1 93 35 10.09% 3.80% 15.078 0.170
Run 2 100 42 10.85% 4.56% 10.296 0.104
Run 3 96 29 10.41% 3.15% 10.506 0.089
Average 96.33 35.33 10.45% 3.84% 11.96 0.121

100000 Run 1 53 49 5.75% 5.31% 122.093 0.777
Run 2 100 36 10.85% 3.90% 109.512 0.768
Run 3 57 37 6.18% 4.01% 112.857 0.674
Average 70 40.67 7.59% 4.41% 114.821 0.740

are component allocation, virtual machine (VM) selection, and
number of VMs. In contrast to the existing software architec-
ture optimization approaches, our proposed approach is not
dependent on a particular modeling language and it does not
require an initial architecture configuration. Moreover, it takes
into account the performance and reliability requirements of
individual software components during solution construction
and uses them as heuristic information to guide the search
process, resulting in the elimination of undesired and infeasible
configurations at an early stage.

We also presented a Java-based implementation of our
proposed approach and compared its results with the Non-
dominated Sorting Genetic Algorithm II (NSGA-II). The ex-
perimental evaluation involved 13 software components and
10 VMs. The system under study was a cloud-based storage
service, which is loosely based on a real system. The results
showed that MOACS-CoPeR outperformed NSGA-II in terms
of number and quality of Pareto-optimal configurations found.
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