
Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

Stream-Based Admission Control and Scheduling
for Video Transcoding in Cloud Computing

Adnan Ashraf∗†‡, Fareed Jokhio∗§, Tewodros Deneke∗†, Sébastien Lafond∗†, Ivan Porres∗†, Johan Lilius∗†
∗ Department of Information Technologies, Åbo Akademi University, Turku, Finland.

Email: {aashraf, fjokhio, tdeneke, slafond, iporres, jolilius}@abo.fi
† Turku Centre for Computer Science (TUCS), Turku, Finland.

‡ Department of Software Engineering, International Islamic University, Islamabad, Pakistan.
§ Quaid-e-Awam University of Engineering, Science & Technology, Nawabshah, Pakistan.

Abstract—This paper presents a novel approach for stream-
based admission control and job scheduling for video transcoding
called SBACS (Stream-Based Admission Control and Schedul-
ing). SBACS uses queue waiting time of transcoding servers to
make admission control decisions for incoming video streams.
It implements stream-based admission control with per stream
admission. To ensure efficient utilization of the transcoding
servers, video streams are segmented at the Group of Pictures
level. In addition to the traditional rejection policy, SBACS also
provides a stream deferment policy, which exploits cloud elasticity
to allow temporary deferment of the incoming video streams. In
other words, the admission controller can decide to admit, defer,
or reject an incoming stream and hence reduce rejection rate.
In order to prevent transcoding jitters in the admitted streams,
we introduce a job scheduling mechanism, which drops a small
proportion of video frames from a video segment to ensure
continued delivery of video contents to the user. The approach
is demonstrated in a discrete-event simulation with a series of
experiments involving different load patterns and stream arrival
rates.

Index Terms—Video transcoding; cloud computing; admission
control; scheduling; segmentation; resource allocation

I. INTRODUCTION

Streaming of digital videos is increasingly common among
the Internet users. Video streaming of a large number of videos
may require a lot of resources on the server-side. Therefore,
for efficient use of storage and transmission media, digital
videos are often stored and transmitted in compressed formats,
such as MPEG-4 [1] and H.264 [2]. Client-side devices that
are used to stream and play videos usually support only a
subset of the existing video formats. A video on the server-
side may be stored in a different format than those supported
by a target device. Therefore, the video must be converted
into a format that is supported by the target device [3]. The
process of converting a video from one compressed format into
another compressed format is known as video transcoding [4].
It involves re-encoding according to new requirements of
frame resolution, bit rate, frame rate, and video format.

Video transcoding for an on-demand video streaming ser-
vice needs to be done on-the-fly in realtime [5]. Since video
transcoding is a compute-intensive operation, transcoding of a
large number of video streams requires a large-scale cluster-
based distributed system. Infrastructure as a Service (IaaS)
clouds, such as Amazon Elastic Compute Cloud (EC2) [6],

provide all necessary resources for creating a dynamically
scalable tier of transcoding servers. In our previous work [7],
we presented a prediction-based dynamic resource allocation
approach to scale video transcoding service on a given IaaS
cloud. However, resource allocation alone does not prevent
servers from becoming overloaded [8]. Therefore, resource
allocation should be augmented with an admission control
mechanism with the goal to prevent servers from becoming
overloaded by restricting incoming load on them.

In this paper, we present the SBACS (Stream-Based Ad-
mission Control and Scheduling) approach for a dynami-
cally scalable tier of video transcoding servers. It provides
video stream-based admission control on a per stream level.
SBACS uses queue waiting time of transcoding servers to
make admission control decisions. For preemptive control, it
uses a two-step load prediction approach [9], which predicts
queue waiting times on individual servers. In addition to the
traditional load rejection policy, SBACS also provides a stream
deferment policy, which allows to temporarily defer an arrived
stream until a new virtual machine (VM) is provisioned to
start another transcoding server or an existing server becomes
less loaded. To ensure efficient utilization of the transcoding
servers, server resources are shared among admitted streams
by performing video segmentation at the Group of Pictures
(GOP) level. The video segments are then sent to the servers
via a load balancer. SBACS also provides a job scheduling
algorithm, which aims to prevent transcoding jitters in the
admitted streams by dropping a small proportion of video
frames to ensure continued delivery of video contents to the
users. We proceed as follows. Section II discusses important
related works. Section III outlines the main tasks and the most
important characteristics of the proposed approach. Section IV
presents the system architecture. The proposed admission con-
trol and job scheduling algorithms are described in Section V.
In Section VI, we present simulation results before concluding
in Section VII.

II. RELATED WORK

The existing works on admission control for web-based
systems can be classified according to the scheme presented
in [10]. For instance, [11] and [12] are control-theoretic ap-
proaches, while [13] and [14] use machine learning techniques.

Similarly, [15], [10], [16], [17], and [8] are utility-based
approaches.

Cherkasova and Phaal [15] proposed an admission control
approach that uses the traditional on-off control. It measures
server loads during predefined time intervals and uses them
to compute the new predicted load for the next interval. If
the predicted load exceeds certain threshold, the admission
controller rejects new incoming load in the next time interval
and serves only the already admitted users. Once the predicted
load drops below its threshold, the server changes its policy
for the next time interval and begins to accept new load again.
Almeida et al. [10] presented a joint resource allocation and
admission control approach for a virtualized platform hosting a
number of web applications, where each VM runs a dedicated
web service application. The optimization objective is to max-
imize the provider’s revenue, while satisfying the customers’
Quality of Service (QoS) requirements and minimizing the
cost of resource utilization. The approach dynamically adjusts
the fraction of capacity assigned to each VM and limits the
incoming workload by serving only the subset of requests that
maximize profits.

Chen et al. [16] proposed admission control based on
estimation of service times (ACES). That is, to differentiate
and admit requests based on the amount of processing time
required by a request. In ACES, admission of a request is
decided by comparing the available computation capacity to
the predetermined delay bound of the request. Shaaban and
Hillston [17] presented cost-based admission control (CBAC),
which uses a congestion control technique. Rather than reject-
ing user requests at high load, CBAC uses a discount-charge
model to encourage users to postpone their requests to less
loaded time periods. However, if a user chooses to proceed
with the request in a high load period, then an extra charge is
imposed. The model is suitable only for e-commerce web sites
when more users place orders that involve monetary trans-
actions. Ashraf et al. [8] proposed a session-based adaptive
admission control approach for virtualized application servers
called ACVAS. It uses per session admission control [13] with
a load deferment mechanism to reduce the number of rejected
sessions.

Muppala and Zhou [13] proposed the coordinated session-
based admission control approach (CoSAC), which provides
admission control for multi-tier web applications with per
session admission control. CoSAC also provides coordination
among the states of tiers with a machine learning technique
using a Bayesian network. Huang et al. [14] proposed admis-
sion control schemes for proportional differentiated services.
The paper proposes two admission control schemes to enable
proportional delay differentiated service (PDDS) at the ap-
plication level. Each scheme is augmented with a prediction
mechanism, which predicts the total maximum arrival rate and
the maximum average waiting time for each priority class.
When a user request belonging to a specific priority class
arrives, the admission control algorithm uses the time series
predictor to forecast the average arrival rate of the class for
the next interval, computes the average waiting time for the

class for the next interval, and determines if the incoming user
request should be admitted.

Voigt and Gunningberg [11] proposed admission control
based on the expected resource consumption of the requests,
including a mechanism for service differentiation that guar-
antees low response time and high throughput for premium
clients. The approach avoids over-utilization of individual
server resources, which are protected by dynamically setting
the acceptance rate of resource-intensive requests. The adap-
tation of the acceptance rates (average number of requests
per second) is done by using proportional-derivative (PD)
feedback control loops. Robertsson et al. [12] proposed an
admission control mechanism for a web server system with
control-theoretic methods. It uses a control-theoretic model
of a G/G/1 system with an admission control mechanism
for nonlinear analysis and design of controller parameters
for a discrete-time proportional-integral (PI) controller. The
controller calculates the desired admittance rate based on the
reference value of average server utilization and the estimated
or measured load situation. It then rejects those requests that
could not be admitted.

All existing admission control approaches described above
were originally proposed for web applications. To the best of
our limited knowledge, there are no existing admission control
approaches for video transcoding servers. However, there are
a few research works on some of the related topics, such
as, video transcoding service in cloud computing [18], video
segmentation for distributed video transcoding [19], [20], and
dynamic resource allocation for video transcoding [7].

III. SBACS APPROACH

The main tasks of the proposed approach are to make
admission control and job scheduling decisions for a scalable
tier of transcoding servers, in which each server runs on a
virtual machine. The most important characteristics of the
proposed approach are as follows.

A. Stream-Based Admission Control with Per Stream Admis-
sion

Cherkasova and Phaal [15] used the traditional on-off con-
trol in their admission control approach. In on-off control,
acceptance of new user load is turned on or off for an entire
admission control interval. The admission control decisions
are made at the interval boundaries and can not be changed
inside an interval. Therefore, on-off control may lead to over-
admission, especially when handling a bursty load, which can
result in overloading of servers. Some of the recent admission
control approaches for web applications, such as [13], [8], use
per session admission control. SBACS uses a similar approach
for video streams. It implements a per stream admission con-
trol, which reduces over-admission by making an admission
control decision for each incoming stream.

B. Stream Deferment Mechanism

Most of the traditional admission control approaches rely
only on load rejection policy to prevent server overloading.

SBACS uses a simple mechanism to defer new video streams
that would otherwise be rejected [8]. Such streams are deferred
on an entertainment server until a new server is provisioned
or an existing server becomes less loaded. However, if the en-
tertainment server also approaches its capacity limits, the new
streams are rejected. Therefore, for each new video stream, the
admission controller makes one of the three possible decisions:
admit the stream, defer the stream, or reject the stream.

C. Job Scheduling Based on Queue Waiting Time

One of the main characteristics of the proposed approach
is that in addition to an admission control mechanism, it
also features a job scheduling algorithm. The algorithm uses
queue waiting time of individual transcoding servers to further
prevent servers from becoming overloaded and to prevent
transcoding jitters in the admitted video streams. For overload
prevention on a sufficiently utilized server, it starts dropping
a small proportion of video frames from each subsequent
transcoding segment on the server. Likewise, for preventing
jitters in a video stream, it computes the estimated delivery
deadline, the estimated transcoding time, and the estimated
response time of each video segment. If it finds a deadline
violation, the violation is prevented by dropping some video
frames in proportion to the degree of violation.

D. Load Prediction Models

Existing admission control approaches, such as [13], [14],
[15], [17], [8], use a prediction of future load to improve ad-
mission control decisions by acting preemptively. Cherkasova
and Phaal [15] computed predicted load by assigning cer-
tain weights to the current and the past loads. Muppala
and Zhou [13] used the exponential moving average (EMA)
method. Huang et al. [14] used machine learning techniques
called support vector regression (SVR) and particle swarm
optimization (PSO) for time-series prediction. Shaaban and
Hillston [17] assumed a repeating pattern of workload over a
suitable time period.

For efficient runtime decision making, it is essential to
avoid prediction models that require intensive computation,
frequent updates to their parameters, or (off-line) training.
Ashraf et al. [8] extended and used a two-step load prediction
approach [9], which has been designed to predict future re-
source loads under realtime constraints. The two-step approach
consists of a load tracker and a load predictor. SBACS also
uses the extended two-step load prediction approach to predict
queue waiting time of individual transcoding servers. It uses
EMA for the load tracker and a simple linear regression
model [21] for the load predictor.

E. Criterion for Assessment of Admission Control Efficiency

The efficiency of an admission control mechanism may be
assessed in a number of different ways. Traditional admission
control approaches that are designed for a fixed number of
servers may be evaluated based on server overload prevention
and increase in the session throughput. Likewise, Cherkasova
and Phaal [15] used a QoS metric based on the number of

aborted and rejected connections. However, for dynamically
scalable server tiers, the efficiency of an admission control
approach should be based on the tradeoff between cost and
QoS. Therefore, Ashraf et al. [8] proposed a criterion for
the assessment of admission control efficiency based on the
tradeoff between the number of servers and six important QoS
metrics. SBACS adopts it for video transcoding servers by
defining QoS in terms of zero overloaded servers, maximum
achievable throughput, minimum deferred streams, zero re-
jected streams, minimum transcoding jitters, and minimum
dropped frames.

IV. SYSTEM ARCHITECTURE

The system architecture of the cloud-based video transcod-
ing service is shown in Figure 1. It consists of a streaming
server, a stream splitter, a stream merger, a video reposi-
tory, a dynamically scalable cluster of transcoding servers,
a load balancer, a master controller and resource allocator, a
load predictor, an admission controller, and an entertainment
server.

Fig. 1. System architecture

The streaming server accepts video requests from users and
checks if the required video is found in the video repository. If
it finds the video in the desired format, it starts streaming the
video. However, if it finds that the requested video is stored
only in another format or resolution than the one desired by
the user, it sends the video for segmentation and subsequent
transcoding. Then, as soon as it receives the transcoded video
from the merger, it starts streaming the video. To avoid
unnecessary repetition of transcoding operations, we store a
copy of each transcoded video in the video repository for a
certain amount of time, typically a few days.

The load balancer distributes load on the transcoding
servers. It implements the shortest queue waiting time policy,
which selects a server with the least waiting time. The master
controller and resource allocator provisions and releases VMs
from the cluster of transcoding servers. The resource alloca-
tion and deallocaiton is mainly based on the target play rate of
video streams and the predicted transcoding rate of transcoding
servers. Our resource allocation and load prediction algorithms
are described in detail in [7]. In this paper, our primary focus
is on admission control and job scheduling algorithms, which
are presented in Section V.

A compressed video consists of three different types of
frames namely, I-frames (intracoded frames), P-frames (pre-
dicted frames), and B-frames (bi-directional predicted frames).
Two consecutive frames of a video often have small dif-
ferences. Therefore, a frame can be stored using less bits
once inter-frame redundancy is removed. Figure 2 shows
a compressed MPEG-4 video stream consisting of different
types of frames. I-frames are key frames and they do not
use any other frames as a reference frame in the transcoding
process. A P-frame requires a past frame as a reference frame.
B-frames require both past and future frames as reference
frames [1]. An I-frame followed by B and P frames is termed
as a GOP. GOPs represent atomic units that can be transcoded
independently of one another [7].

Fig. 2. A compressed MPEG-4 video stream

The splitter is responsible for video segmentation at the
GOP level, while the merger merges the transcoded seg-
ments. The actual transcoding is performed by the transcoding
servers. They get compressed video segments, perform the re-
quired transcoding operations, and return back the transcoded
segments for merging. The entertainment server is used to
temporarily defer new video streams that would otherwise be
rejected.

V. ADMISSION CONTROL AND JOB SCHEDULING

In this section, we present the proposed admission control
and job scheduling algorithms. For the sake of clarity, we
provide the notations used in this section in Table I.

A. Admission Control

The main task of our SBACS approach is to make admission
control decisions for transcoding requests in a dynamically
scalable tier of transcoding servers, which consists of virtual-
ized servers. Since provisioning of a VM from a contemporary
IaaS provider is not instantaneous [8], the proposed admission
control approach provides a stream deferment mechanism to
handle VM provisioning delays.

The admission control decisions are based on the states of
the transcoding servers. A server s is considered open for
existing as well as new incoming streams if its queue waiting
time Qtimes remains below a predefined lower threshold of
the queue waiting time QtimeLT

. However, if Qtimes exceeds
QtimeLT

, while it still remains below the upper threshold of
the queue waiting time QtimeUT

, the server is considered
closed for the new incoming streams. A closed server is a
sufficiently utilized server, which may become overloaded if
the admission controller continues to admit more streams.
Likewise, if Qtimes also exceeds QtimeUT

, the server is
considered overloaded. Overloaded is an undesirable state,

TABLE I
SUMMARY OF CONCEPTS AND THEIR NOTATION

DFj degradation factor of transcoding job j
DVj degree of violation of job j
EDj estimated deadline of job j
ERj estimated response time of job j
ETj estimated transcoding time of job j
j transcoding job j

ĵ job j after dropping frames
LAent load average of entertainment server
MUent memory utilization of entertainment server
NFj number of frames in job j

N̂F j number of frames in job j after dropping frames
Qtimes actual queue waiting time of server s
Q ˆtimes

predicted queue waiting time of server s
S set of transcoding servers
Sopen set of open transcoding servers
Streamd set of deferred video streams
Streamn set of newly arrived video streams
LAUT load average upper threshold
MUUT memory utilization upper threshold
QtimeLT

queue waiting time lower threshold
QtimeUT

queue waiting time upper threshold
admit(st) admit stream st
defer(st) defer stream st
dropF (j) calculate DVj and drop frames
pop(list) remove and return first element of the list
reject(st) reject stream st
schedule(j) schedule job j

which is characterized by very high waiting times and low
server throughput.

Algorithm 1 presents our admission control algorithm. The
algorithm is activated when a new video transcoding request
arrives at the admission controller or when it finds at least one
deferred transcoding request (line 2). For each new request,
the admission controller makes one of the three possible
decisions: admit the request, defer the request, or reject the
request. All requests are served on the First Come First
Served (FCFS) basis. However, to prevent deferred streams
from starvation, deferred streams are given priority over new
streams. Therefore, if the algorithm finds at least one open
server (line 4) and at least one deferred stream (line 5), it
admits a deferred stream (line 6). Otherwise, if there are no
deferred streams, it admits a new stream (line 8). However,
if it does not find an open server, it defers or rejects the new
streams based on the state of the entertainment server. That is,
if the entertainment server can accommodate more deferred
streams, the new streams are deferred (line 12). For each
deferred stream, the entertainment server sends a wait message
to the user. However, if the entertainment server also reaches
its capacity limits, the new streams are rejected (line 14).

B. Job Scheduling

As described in Section III-C, SBACS also provides a
job scheduling algorithm to prevent transcoding jitters in the
admitted streams. The job scheduling algorithm also comple-
ments the proposed admission control approach in preventing
overloading of the transcoding servers. Algorithm 2 presents
our job scheduling algorithm. For jitter prevention, it computes
estimated delivery deadline EDj , estimated transcoding time

Algorithm 1 Admission Control
1: while true do
2: if |Streamd| ≥ 1 ∨ |Streamn| ≥ 1 then
3: Sopen := {∀sεS|Q ˆtimes

< QtimeLT
}

4: if |Sopen| ≥ 1 then
5: if |Streamd| ≥ 1 then
6: admit(pop(Streamd))
7: else
8: admit(pop(Streamn))
9: end if

10: else if |Streamn| ≥ 1 then
11: if LAent < LAUT ∧MUent < MUUT then
12: defer(pop(Streamn))
13: else
14: reject(pop(Streamn))
15: end if
16: end if
17: end if
18: end while

ETj , and estimated response time ERj of each transcoding
job j (line 3). If it finds a deadline violation (line 4), it tries
to prevent the violation by dropping some video frames in
proportion to the degree of violation DVj (line 5), which is
computed by adding the current clock time currenttime and
ERj and then subtracting EDj

DVj = ERj + currenttime − EDj (1)

Dropping of frames in a video is termed as temporal resolution
reduction [4]. Figure 3 shows a video segment before and after
applying temporal resolution reduction. The main benefit of
temporal resolution reduction is that the transcoding time of
the video segment can be significantly reduced without greatly
compromising the video quality. Moreover, the computational
overheads of temporal resolution reduction are negligible,
especially when dropping B-frames.

Fig. 3. Temporal resolution reduction

The temporal resolution reduction is applied at the GOP
level, which consists of a certain number of frames. If a GOP
had NFj frames before applying temporal resolution reduction
and it has N̂F j frames afterwards, the video degradation factor
of job j, DFj , can be computed as the ratio of the dropped
frames and NFj

DFj =
NFj − N̂F j

NFj
(2)

Algorithm 2 Job Scheduling
1: for each job j arrived on a transcoding server s do
2: get EDj , ETj
3: ERj = ETj +Qtimes

4: if ERj violates EDj then
5: ĵ = dropF (j)
6: schedule(ĵ)
7: else
8: schedule(j)
9: end if

10: if Qtimes > QtimeLT
then

11: ĵ = dropF (j)
12: schedule(ĵ)
13: end if
14: end for

A higher number of dropped frames results in a higher value
of DFj , while a reduced number of dropped frames results in
a lower value of DFj . Therefore, our job scheduling approach
drops a reduced number of frames that satisfies estimated
deadline EDj .

The transcoding times of different types of video frames
vary from one another as shown in Figure 4. The transcoding
time of an I-frame is usually greater than that of a P-frame,
which is greater than the transcoding time of a B-frame.
The estimated transcoding time ETj of a GOP containing
NFj frames is the sum of the estimated transcoding times
of individual frames

ETj = α ∗ ETi + β ∗ ETp + γ ∗ ETb (3)

where ETi, ETp, and ETb represent estimated transcoding
time of an I, a P, and a B frame, while α, β and γ denote
number of frames of I, P, and B types respectively.

Fig. 4. Transcoding time of different types of frames

To complement overload prevention, the job scheduling
algorithm starts dropping a small proportion of video frames
from each subsequent transcoding segment on a closed server
(line 11). Therefore, the server can be prevented from becom-
ing overloaded by reducing the amount of required compu-
tation and the estimated transcoding time ETj of each new
transcoding segment.

VI. SIMULATION RESULTS

Software simulations are often used to test and evaluate
new algorithms involving complex environments [22]. We
have developed a discrete-event simulation for SBACS. The
simulation is written in the Python programming language and
is based on the SimPy simulation framework [23].

A. Experimental Design and Setup
We considered two different synthetic load patterns in two

separate experiments. Moreover, we repeated each experiment
for two significantly different stream arrival rates, yielding a
total of four different experiments. The load pattern 1, which
is used in experiment 1 and 2, consists of two load peaks,
while the load pattern 2, which is used in experiment 3 and
4, has six load peaks. The renting of VMs was based on the
hourly charge model of Amazon EC2.

The experiments used both SD (Standard-Definition) and
HD video streams. At present, 10% of videos available at
YouTube are in HD, while YouTube has more HD content
than any other video hosting site [24]. However, in the near
future, the ratio of HD versus SD is expected to increase.
Therefore, the load generation assumed 30% HD and 70%
SD video streams. The video segmentation was performed at
the GOPs level. The segmentation produced video segments,
which were sent to the transcoding servers for execution.
For HD videos, the average size of a video segment was 75
frames with a standard deviation of 7 frames. Likewise, for
SD videos, the average size of a segment was 250 frames with
a standard deviation of 20 frames. The total number of frames
in a video stream was in the range of 15000 to 18000, which
approximates to a video play time of 8 to 12 minutes.

The desired play rate for a video stream is often fixed: 30
frames per seconds (fps) for SD videos and 24 fps for HD
videos. Whereas, the transcoding rate depends on the video
contents, such as, frame resolution, type of video format,
type of frames, and contents of blocks. Different transcoding
mechanisms also require different execution times.

1) Experiment 1: Relatively Normal Load with Low Arrival
Rate: The objective of experiment 1 was to simulate a
relatively normal load with a low stream arrival rate. It was
designed to generate a load representing a maximum of 200
simultaneous video streams in two different load peaks. In the
first peak, the streams were ramped-up from 0 to 200, while
adding a new stream every 100 seconds. After the ramp-up
phase, the number of streams was maintained constant for 1
hour and then ramped-down to 100 streams.

The second peak ramped-up from 100 streams to 200
streams, while adding a new stream every 150 seconds. The
ramp-up phase was followed by a similar constant phase as in
the first peak. Then, the ramp-down phase removed all streams
from the system.

2) Experiment 2: Relatively Normal Load with High Arrival
Rate: The objective of experiment 2 was to simulate a rela-
tively normal load, but with a high stream arrival rate. It also
generated a load representing a maximum of 200 simultaneous
video streams in two different load peaks. However, a new
stream was added every 20 seconds in the first peak and every
30 seconds in the second peak.

3) Experiment 3: Highly Variable Load with Low Arrival
Rate: Experiment 3 was designed to simulate a load pattern of
a highly variable video demand. It generated a load represent-
ing a maximum of 290 simultaneous video streams consisting
of six different load peaks. In the first peak, the streams were

ramped-up from 0 to 170. Then, in the second peak from 110
to 290. Likewise, 210 to 280, 215 to 250, 120 to 200, and
100 to 170, respectively, in the third, fourth, fifth, and sixth
peaks. The stream ramp-up rate was 1 new stream per 150
seconds. Each ramp-up phase was followed by a ramp-down
phase. Finally, the last ramp-down phase removed all streams
from the system.

4) Experiment 4: Highly Variable Load with High Arrival
Rate: Experiment 4 used a load pattern similar to that used in
experiment 3, except that a new stream was added every 30
seconds.

B. Results and Analysis

In Figures 5, 6, 7, and 8, the number of servers plot shows
dynamic resource allocation for the cluster of transcoding
servers. The transcoding jobs plot represents the total number
of jobs in the system at a particular time instance. It includes
the jobs in execution on transcoding servers and the jobs that
are waiting in the queues. The queue waiting time plot shows
average queue waiting time of all transcoding servers. The
target play rate plot shows the sum of target play rates of
all video streams in the system. Likewise, the transcoding
rate plot represents the total transcoding rate of all servers.
The number of completed streams plot depicts how many
video streams were successfully played since the start of the
simulation, while the number of streams with jitter plot shows
the total number of streams that had at least one transcoding
jitter in them. Similarly, the number of transcoded frames
plot represents the total number of video frames that were
successfully transcoded since the start of the simulation, while
the number of dropped frames plot shows the total number of
dropped frames.

1) Experiment 1: Relatively Normal Load with Low Arrival
Rate: Figure 5 presents results from experiment 1. It used a
maximum of 92 transcoding servers for a maximum of 200
simultaneous streams with 0 overloaded servers. There were a
maximum of 5052 jobs in the system at a particular time.
Moreover, a total of 13140 streams consisting of approxi-
mately 1.5× 106 transcoding operations and 1.8× 108 video
frames were transcoded in 13 hours and 3 minutes of simulated
time with 1576 deferred streams and 0 rejected streams.
Only 310 streams had jitters in them, which approximates
to 2.4% of the total number of streams. The job scheduling
algorithm dropped a total of 4×107 frames, which constitutes
18% of total frames. The results also show that the actual
transcoding rate was always close to the target play rate,
which was desirable for our resource allocation algorithm [7].
Therefore, the results indicate that the proposed admission
control and job scheduling algorithms prevent overloading of
transcoding servers, while at the same time provide a good
tradeoff between cost and QoS.

2) Experiment 2: Relatively Normal Load with High Arrival
Rate: Figure 6 presents results from experiment 2. It used a
maximum of 90 transcoding servers for a maximum of 200
simultaneous streams with 0 overloaded servers. There were
a maximum of 5119 jobs in the system at a particular time.

 0

 60

 120

 180

 240

 300

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000
 0

 60

 120

 180

 240

 300

s
tr

e
a
m

s

s
e
rv

e
rs

time (s)

number of simultaneous video streams
number of servers

 0

 1500

 3000

 4500

 6000

 7500

 0

 30

 60

 90

 120

 150

jo
b
s

q
u
e
u
e
 t
im

e
 (

s
)

transcoding jobs (video segments)
queue waiting time (s)

 0

 3000

 6000

 9000

 12000

 0

 3000

 6000

 9000

 12000

T
R

 (
fp

s
)

P
R

 (
fp

s
)

transcoding rate (TR)
target play rate (PR)

 0
 3000
 6000
 9000

 12000
 15000
 18000

 0
 3000
 6000
 9000
 12000
 15000
 18000

to
ta

l
c
o
m

p
le

te
d

w
it
h
 j
it
te

r

Number of completed streams
Number of streams with jitter

 0

 5e+007

 1e+008

 1.5e+008

 2e+008

 2.5e+008

 0

 5e+007

 1e+008

 1.5e+008

 2e+008

 2.5e+008

tr
a
n
s
c
o
d
e
d
 f
ra

m
e
s

d
ro

p
p
e
d
 f
ra

m
e
s

Number of transcoded frames
Number of dropped frames

Fig. 5. Experiment 1 results: relatively normal load with low arrival rate

Moreover, a total of 5372 streams consisting of approximately
6×105 transcoding operations and 7×107 video frames were
transcoded in 5 hours and 8 minutes of simulated time with
548 deferred streams and 0 rejected streams. Only 215 streams
had jitters in them, which approximates to 4% of the total
number of streams. The job scheduling algorithm dropped
a total of 1 × 107 frames, which constitutes 15.7% of total
frames. Therefore, in this experiment, the proposed admission
control and job scheduling algorithms prevented overloading
of transcoding servers, while at the same time maintained a
good tradeoff between cost and QoS under high arrival rates.

 0

 60

 120

 180

 240

 300

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000
 0

 60

 120

 180

 240

 300

s
tr

e
a
m

s

s
e
rv

e
rs

time (s)

number of simultaneous video streams
number of servers

 0

 1500

 3000

 4500

 6000

 7500

 0

 30

 60

 90

 120

 150

jo
b
s

q
u
e
u
e
 t
im

e
 (

s
)

transcoding jobs (video segments)
queue waiting time (s)

 0

 3000

 6000

 9000

 12000

 0

 3000

 6000

 9000

 12000

T
R

 (
fp

s
)

P
R

 (
fp

s
)

transcoding rate (TR)
target play rate (PR)

 0
 3000
 6000
 9000

 12000
 15000
 18000

 0
 3000
 6000
 9000
 12000
 15000
 18000

to
ta

l
c
o
m

p
le

te
d

w
it
h
 j
it
te

r

Number of completed streams
Number of streams with jitter

 0

 5e+007

 1e+008

 1.5e+008

 2e+008

 2.5e+008

 0

 5e+007

 1e+008

 1.5e+008

 2e+008

 2.5e+008

tr
a
n
s
c
o
d
e
d
 f
ra

m
e
s

d
ro

p
p
e
d
 f
ra

m
e
s

Number of transcoded frames
Number of dropped frames

Fig. 6. Experiment 2 results: relatively normal load with high arrival rate

3) Experiment 3: Highly Variable Load with Low Arrival
Rate: Figure 7 presents results from experiment 3. It used
a maximum of 125 transcoding servers for a maximum of
290 simultaneous streams with 0 overloaded servers. There
were a maximum of 6792 jobs in the system at a particular

time. Moreover, a total of 23620 streams consisting of ap-
proximately 2.7 × 106 transcoding operations and 3.3 × 108

video frames were transcoded in 18 hours and 31 minutes
of simulated time with 2432 deferred streams and 0 rejected
streams. Only 384 streams had jitters in them, which ap-
proximates to 1.6% of the total number of streams. The job
scheduling algorithm dropped a total of 5.9 × 107 frames,
which constitutes 15% of total frames. Therefore, the proposed
algorithms prevented overloading of transcoding servers, while
at the same time maintained a good tradeoff between cost and
QoS under highly variable load.

 0

 70

 140

 210

 280

 350

 0 10000 20000 30000 40000 50000 60000
 0

 70

 140

 210

 280

 350

s
tr

e
a
m

s

s
e
rv

e
rs

time (s)

number of simultaneous video streams
number of servers

 0

 1500

 3000

 4500

 6000

 7500

 0

 30

 60

 90

 120

 150

jo
b
s

q
u
e
u
e
 t
im

e
 (

s
)

transcoding jobs (video segments)
queue waiting time (s)

 0

 3000

 6000

 9000

 12000

 15000

 0

 3000

 6000

 9000

 12000

 15000

T
R

 (
fp

s
)

P
R

 (
fp

s
)

transcoding rate (TR)
target play rate (PR)

 0

 6000

 12000

 18000

 24000

 30000

 0

 6000

 12000

 18000

 24000

 30000

to
ta

l
c
o
m

p
le

te
d

w
it
h
 j
it
te

r

Number of completed streams
Number of streams with jitter

 0
 7e+007

 1.4e+008
 2.1e+008
 2.8e+008
 3.5e+008
 4.2e+008

 0
 7e+007
 1.4e+008
 2.1e+008
 2.8e+008
 3.5e+008
 4.2e+008

tr
a
n
s
c
o
d
e
d
 f
ra

m
e
s

d
ro

p
p
e
d
 f
ra

m
e
s

Number of transcoded frames
Number of dropped frames

Fig. 7. Experiment 3 results: highly variable load with low arrival rate

4) Experiment 4: Highly Variable Load with High Arrival
Rate: Figure 8 presents results from experiment 4. It used a
maximum of 119 transcoding servers for a maximum of 290
simultaneous streams with 0 overloaded servers. There were
a maximum of 6674 jobs in the system at a particular time.
Moreover, a total of 5611 streams consisting of approximately
6.3× 105 transcoding operations and 8.4× 107 video frames
were transcoded in 4 hours and 54 minutes of simulated time
with 511 deferred streams and 0 rejected streams. Only 255
streams had jitters in them, which approximates to 4.5% of the
total number of streams. The job scheduling algorithm dropped
a total of 8.6 × 106 frames, which constitutes only 9.3% of
total frames. Therefore, the proposed algorithms prevented
overloading of transcoding servers, while at the same time
maintained a good tradeoff between cost and QoS under highly
variable load with high arrival rates.

VII. CONCLUSION

In this paper, we presented a stream-based admission control
approach and a job scheduling algorithm for video transcoding
called SBACS. It uses queue waiting time of individual
transcoding servers to make admission control decisions. For
preemptive control, SBACS implements a two-step load pre-
diction model, which predicts queue waiting time of individual
servers. To reduce over-admission, SBACS implements per

 0

 70

 140

 210

 280

 350

 0 2000 4000 6000 8000 10000 12000 14000 16000
 0

 70

 140

 210

 280

 350

s
tr

e
a
m

s

s
e
rv

e
rs

time (s)

number of simultaneous video streams
number of servers

 0

 1500

 3000

 4500

 6000

 7500

 0

 30

 60

 90

 120

 150

jo
b
s

q
u
e
u
e
 t
im

e
 (

s
)

transcoding jobs (video segments)
queue waiting time (s)

 0

 3000

 6000

 9000

 12000

 15000

 0

 3000

 6000

 9000

 12000

 15000

T
R

 (
fp

s
)

P
R

 (
fp

s
)

transcoding rate (TR)
target play rate (PR)

 0

 6000

 12000

 18000

 24000

 30000

 0

 6000

 12000

 18000

 24000

 30000

to
ta

l
c
o
m

p
le

te
d

w
it
h
 j
it
te

r

Number of completed streams
Number of streams with jitter

 0
 7e+007

 1.4e+008
 2.1e+008
 2.8e+008
 3.5e+008
 4.2e+008

 0
 7e+007
 1.4e+008
 2.1e+008
 2.8e+008
 3.5e+008
 4.2e+008

tr
a
n
s
c
o
d
e
d
 f
ra

m
e
s

d
ro

p
p
e
d
 f
ra

m
e
s

Number of transcoded frames
Number of dropped frames

Fig. 8. Experiment 4 results: highly variable load with high arrival rate

stream admission, which makes an admission control decision
for each incoming video stream. To ensure efficient utilization
of the transcoding servers, video streams are segmented at the
GOP level. It also provides a stream deferment mechanism,
which exploits cloud elasticity to temporarily defer some
new streams that would otherwise be rejected. In addition
to admission control, SBACS also features a job scheduling
algorithm, which complements admission control and prevents
transcoding jitters in the admitted streams. The algorithm
uses temporal resolution reduction transcoding, which drops
a small proportion of video frames in a video segment to
reduce the required transcoding time. We presented a discrete-
event simulation of the proposed approach along with exper-
imental results involving different load patterns and stream
arrival rates. The results showed that SBACS provides a good
tradeoff between cost and QoS. Moreover, it prevents servers
from becoming overloaded, reduces over-admission, reduces
rejected streams, and reduces jitters in the admitted streams
while dropping only a small proportion of video frames.

ACKNOWLEDGMENT

This work was supported by the Cloud Software Finland re-
search project and by an Amazon Web Services research grant.
Adnan Ashraf and Fareed Jokhio were partially supported
by the Foundation of Nokia Corporation and by doctoral
scholarships from the Higher Education Commission (HEC)
of Pakistan.

REFERENCES

[1] J. Watkinson, The MPEG Handbook: MPEG-1, MPEG-2, MPEG-4, ser.
Broadcasting and communications. Elsevier/Focal Press, 2004.

[2] T. Wiegand, G. J. Sullivan, and A. Luthra, “Draft ITU-T recommenda-
tion and final draft international standard of joint video specification,”
in Technical Report, 2003.

[3] T. Shanableh and M. Ghanbari, “Heterogeneous video transcoding
to lower spatio-temporal resolutions and different encoding formats,”
Multimedia, IEEE Transactions on, vol. 2, no. 2, pp. 101 –110, 2000.

[4] A. Vetro, C. Christopoulos, and H. Sun, “Video transcoding architec-
tures and techniques: an overview,” Signal Processing Magazine, IEEE,
vol. 20, no. 2, pp. 18 – 29, mar 2003.

[5] K. Stuhlmuller, N. Farber, M. Link, and B. Girod, “Analysis of video
transmission over lossy channels,” IEEE Journal on Selected Areas in
Communications, vol. 18, pp. 1012–1032, 2000.

[6] “Amazon Elastic Compute Cloud.” [Online]. Available:
http://aws.amazon.com/ec2/

[7] F. Jokhio, A. Ashraf, S. Lafond, I. Porres, and J. Lilius, “Prediction-
based dynamic resource allocation for video transcoding in cloud com-
puting,” in Parallel, Distributed and Network-Based Processing (PDP),
21st Euromicro International Conference on, 2013.

[8] A. Ashraf, B. Byholm, and I. Porres, “A session-based adaptive admis-
sion control approach for virtualized application servers,” in Utility and
Cloud Computing (UCC), 5th IEEE/ACM International Conference on,
2012, pp. 65–72.

[9] M. Andreolini and S. Casolari, “Load prediction models in web-
based systems,” in Proceedings of the 1st international conference on
Performance evaluation methodolgies and tools, ser. valuetools ’06.
New York, NY, USA: ACM, 2006.

[10] J. Almeida, V. Almeida, D. Ardagna, I. Cunha, C. Francalanci, and
M. Trubian, “Joint admission control and resource allocation in virtual-
ized servers,” J. Parallel Distrib. Comput., vol. 70, no. 4, pp. 344–362,
Apr. 2010.

[11] T. Voigt and P. Gunningberg, “Adaptive resource-based web server
admission control,” in Computers and Communications, 2002. Proceed-
ings. ISCC 2002. Seventh International Symposium on, 2002, pp. 219 –
224.

[12] A. Robertsson, B. Wittenmark, M. Kihl, and M. Andersson, “Admission
control for web server systems - design and experimental evaluation,”
in Decision and Control, 2004. CDC. 43rd IEEE Conference on, vol. 1,
dec. 2004, pp. 531 –536 Vol.1.

[13] S. Muppala and X. Zhou, “Coordinated session-based admission control
with statistical learning for multi-tier internet applications,” Journal of
Network and Computer Applications, vol. 34, no. 1, pp. 20 – 29, 2011.

[14] C.-J. Huang, C.-L. Cheng, Y.-T. Chuang, and J.-S. R. Jang, “Admission
control schemes for proportional differentiated services enabled internet
servers using machine learning techniques,” Expert Systems with Appli-
cations, vol. 31, no. 3, pp. 458 – 471, 2006.

[15] L. Cherkasova and P. Phaal, “Session-based admission control: a mech-
anism for peak load management of commercial web sites,” Computers,
IEEE Transactions on, vol. 51, no. 6, pp. 669 –685, jun 2002.

[16] X. Chen, H. Chen, and P. Mohapatra, “ACES: An efficient admission
control scheme for QoS-aware web servers,” Computer Communica-
tions, vol. 26, no. 14, pp. 1581 – 1593, 2003.

[17] Y. A. Shaaban and J. Hillston, “Cost-based admission control for
internet commerce QoS enhancement,” Electronic Commerce Research
and Applications, vol. 8, no. 3, pp. 142 – 159, 2009.

[18] Z. Li, Y. Huang, G. Liu, F. Wang, Z.-L. Zhang, and Y. Dai, “Cloud
transcoder: Bridging the format and resolution gap between internet
videos and mobile devices,” in 22nd ACM Workshop on Network and
Operating Systems Support for Digital Audio and Video, 2012.

[19] F. Jokhio, T. Deneke, S. Lafond, and J. Lilius, “Bit rate reduction video
transcoding with distributed computing,” in Parallel, Distributed and
Network-Based Processing (PDP), 2012 20th Euromicro International
Conference on, feb. 2012, pp. 206 –212.

[20] F. A. Jokhio, T. Deneke, S. Lafond, and J. Lilius, “Analysis of video
segmentation for spatial resolution reduction video transcoding,” in
Intelligent Signal Processing and Communications Systems (ISPACS),
2011 International Symposiuml, Dec 2011, p. 6 pp.

[21] D. Montgomery, E. Peck, and G. Vining, Introduction to Linear Re-
gression Analysis, ser. Wiley Series in Probability and Statistics. John
Wiley & Sons, 2012.

[22] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Software: Practice and Experience, vol. 41, no. 1, 2011.

[23] N. Matloff, A Discrete-Event Simulation Course Based on the SimPy
Language. University of California at Davis, 2006.

[24] “35 mind numbing youtube facts, figures and
statistics infographic,” 2012/05/23. [Online]. Avail-
able: http://www.jeffbullas.com/2012/05/23/35-mind-numbing-youtube-
facts-figures-and-statistics-infographic/

