
Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

Using Ant Colony System to Consolidate Multiple
Web Applications in a Cloud Environment

Adnan Ashraf∗†‡, Ivan Porres∗†
∗ Department of Information Technologies, Åbo Akademi University, Turku, Finland.

Email: aashraf@abo.fi, iporres@abo.fi
† Turku Centre for Computer Science (TUCS), Turku, Finland.

‡ Department of Software Engineering, International Islamic University, Islamabad, Pakistan.

Abstract—Infrastructure as a Service (IaaS) clouds provide
virtual machines (VMs) under a pay-per-use business model,
which can be used to create a dynamically scalable cluster of
servers to deploy one or more web applications. In contrast
to the traditional dedicated hosting of web applications where
each VM is used exclusively for one particular web application,
the shared hosting of web applications allows improved VM
utilization by sharing VM resources among multiple concurrent
web applications. However, in a shared hosting environment,
dynamic scaling alone does not minimize over-provisioning of
VMs. In this paper, we present a novel approach to consolidate
multiple web applications in a cloud-based shared hosting envi-
ronment. The proposed approach uses Ant Colony Optimization
(ACO) to build a web application migration plan, which is then
used to minimize over-provisioning of VMs by consolidating web
applications on under-utilized VMs. The proposed approach is
demonstrated in discrete-event simulations and is evaluated in a
series of experiments involving synthetic as well as realistic load
patterns.

Keywords-Web applications; consolidation; metaheuristic; ant
colony optimization; cloud computing; shared hosting

I. INTRODUCTION

Web applications are often deployed in a three-tier computer
architecture, where the application server tier usually uses a
computer cluster to process a large number of concurrent user
requests. Traditionally, these clusters are composed of a fixed
number of computers and are dimensioned to serve a prede-
termined maximum number of concurrent users. However, In-
frastructure as a Service (IaaS) clouds, such as Amazon Elastic
Compute Cloud (EC2)1, currently offer computing resources
such as network bandwidth, storage, and virtual machines
(VMs) under a pay-per-use business model. Thus, the IaaS
clouds enable the creation of a dynamically scalable server
tier, where VMs can be added and removed to dynamically
provide a good trade-off between cost and performance.

Determining the number of VMs to provision for a dynami-
cally scalable cluster is an important problem. The exact num-
ber of VMs needed at a specific time depends upon the user
load and the Quality of Service (QoS) requirements. Under-
provisioning leads to subpar service, while over-provisioning
results in increased operation costs. There are several research
works [1], [2], [3], [4], [5], [6], [7], [8], [9], [10] as well
as some vendor-specific commercial solutions, such as AWS

1http://aws.amazon.com/ec2

Elastic Beanstalk2, which provide dynamic VM provisioning.
However, a common characteristic of these solutions is that
they use dedicated hosting [11], where each VM is exclusively
used for one particular application. This is a reasonable
approach if an application has enough user load to keep at least
one VM sufficiently well-utilized. However, in many cases,
dedicated hosting may introduce unnecessary overhead and
cost due to under-utilization of servers.

The under-utilization of VMs becomes even more pertinent
when a Software as a Service (SaaS) or a Platform as a
Service (PaaS) provider wants to leverage an IaaS cloud to
cost-efficiently deploy a large number of web applications of
varying resource needs. The solution to this problem is to cre-
ate a dynamically scalable application server tier that manages
multiple applications simultaneously, while using shared host-
ing [11] to deploy multiple applications on a VM [12], [13].
A similar fine-grained resource sharing approach was used
in Mesos [14]. However, it provides a platform for multiple
cluster computing frameworks rather than web applications.
In our previous works, we presented a reactive [12] and a
proactive [13] VM provisioning approach for the application
server tier. These approaches provide dynamic scaling of
multiple web applications on a given IaaS cloud in a shared
hosting environment. However, dynamic scaling alone does not
guarantee cost-efficient deployment of multiple web applica-
tions. Thus, it is difficult to provide a good trade-off between
cost and performance, which minimizes over-provisioning of
VMs.

In this paper, we present a novel approach to consoli-
date [15], [16], [17], [18] multiple web applications in a cloud-
based shared hosting environment. We propose an application
consolidation algorithm that uses a metaheuristic [19], [20]
approach called Ant Colony Optimization (ACO) [21], [22]
to build a web application migration plan, which is then used
to minimize over-provisioning of VMs by consolidating web
applications on under-utilized VMs. The proposed approach is
demonstrated in discrete-event simulations and is evaluated in
a series of experiments involving synthetic as well as realistic
load patterns.

We proceed as follows. Section II provides background
and discusses important related works. Section III presents

2http://aws.amazon.com/elasticbeanstalk/

the system architecture of the cloud-based shared hosting
environment and sets the context for the proposed application
consolidation algorithm. The proposed algorithm is presented
in Section IV. In Section V, we describe experimental design
and setup. The results of the experimental evaluation are
presented in Section VI. Finally, we present our conclusions
in Section VII.

II. BACKGROUND AND RELATED WORK

Most of the existing works on VM provisioning for web-
based systems can be classified into two main categories:
Plan-based approaches and control theoretic approaches [8],
[9], [10]. Plan-based approaches can be further classified
into workload prediction approaches [1], [2] and performance
dynamics model approaches [3], [4], [5], [6], [7]. For web
application hosting in a cloud-based environment, the existing
works tend to use dedicated hosting on the VM level. It
provides the desired level of isolation to safely host multiple
third-party applications, which should not interfere with each
other. However, the main drawback of dedicated hosting is
that it prohibits sharing of VM resources among multiple
concurrent applications. This is especially important when
deploying a large number of web applications of varying
resource needs, where most of the applications may have
very few users at a given time, while a few applications may
have many users. Therefore, in order to use shared hosting of
multiple third-party applications, there is a need for a way to
prevent applications from interfering with one other.

In our previous works [12], [13], [23], we presented a
cloud-based shared hosting approach where each virtualized
application server runs multiple Java Servlet-based web appli-
cations in the same Java Virtual Machine (JVM). However,
since Java lacks some important features needed to safely run
multiple third-party web applications in one JVM, we extended
and used a widely adapted OSGi specification [24], which
partly addresses this problem [23]. Thus, in this way, shared
hosting enables safe deployment of multiple concurrent third-
party web applications on each virtualized application server.
However, it is difficult to provide cost-efficient deployment
of multiple web applications in a cloud-based shared hosting
environment without consolidation of web applications on
under-utilized VMs.

The existing server consolidation approaches, such as [15],
[16], [17], [18] are used in data centers to minimize under-
utilization of physical machines and to optimize their power-
efficiency. The main idea in these approaches is to use live
VM migration to periodically consolidate VMs so that some
of the under-utilized physical machines could be released
for termination. In this paper, we propose to use a similar
technique to cost-efficiently consolidate multiple concurrent
third-party web applications in a cloud-based shared hosting
environment. Therefore, a key difference in our proposed
approach is that we consolidate applications on VMs, rather
than consolidating VMs on physical machines. Thus, our
prime concern is to release some of the under-utilized VMs for
termination so that the total number of provisioned VMs can

be reduced without compromising the overall performance.
Although the application consolidation problem has certain
similarities with the server consolidation problem, an impor-
tant difference is that the application consolidation problem
is intrinsically more dynamic. This is because, based on the
user load, web applications keep on changing their resource
demands. On the other hand, the existing server consolidation
approaches assume that the VMs are static in nature [16], that
is, they do not change their resource demands. Thus, one of
the challenges in the application consolidation problem is to
reduce the computation time of the consolidation algorithm so
that the dynamic nature of web applications and their changing
resource demands can be accommodated.

Since cost-efficient application consolidation is a combina-
torial optimization problem, we apply a highly adaptive online
optimization [20] approach called Ant Colony Optimization
(ACO) [21], [22] to find a near-optimal solution. ACO is a
multi-agent approach to difficult combinatorial optimization
problems, such as, travelling salesman problem (TSP) and
network routing [21]. It is inspired by the foraging behavior
of real ant colonies. While moving from their nest to the
food source and back, ants deposit a chemical substance on
their path called pheromone. Other ants can smell pheromone
and they tend to prefer paths with a higher pheromone
concentration. Thus, ants behave as agents who use a sim-
ple form of indirect communication called stigmergy to find
better paths between their nest and the food source. It has
been shown experimentally that this simple pheromone trail
following behavior of ants can give rise to the emergence
of the shortest paths [21]. It is important to note here that
although each ant is capable of finding a complete solution,
high quality solutions emerge only from the global cooperation
among the members of the colony who concurrently build
different solutions. Moreover, to find a high quality solution,
it is imperative to avoid stagnation, which is a premature
convergence to a suboptimal solution or a situation where
all ants end up finding the same solution without sufficient
exploration of the search space [21]. In ACO metaheuristic,
stagnation is avoided mainly by using pheromone evaporation
and stochastic state transitions.

There are a number of ant algorithms, such as, Ant Sys-
tem (AS), Max-Min AS (MMAS), and Ant Colony System
(ACS) [21], [22]. ACS [21] was introduced to improve the
performance of AS and it is currently one of the best perform-
ing ant algorithms. Therefore, in this paper, we apply ACS to
the web application consolidation problem.

One of the earlier works on applying ACO to the general
resource allocation problem include [25]. The authors in [25]
applied ACO to the nonlinear resource allocation problem,
which seeks to find an optimal allocation of a limited amount
of resources to a number of tasks to optimize their nonlinear
objective function. A more recent work by Feller et al. [16]
applied MMAS to the server consolidation problem in the
context of cloud computing. However, to the best of our
knowledge, currently there are no existing works on using
ACO metaheuristic to consolidate multiple web applications

in a cloud-based shared hosting environment.

III. SYSTEM ARCHITECTURE

The proposed application consolidation algorithm is part
of a larger project that aims at providing an open-source
PaaS integrated solution for web application development,
deployment, and dynamic scaling in a shared hosting environ-
ment [23]. In this context, it provides a cost-efficient scaling
down algorithm for the PaaS clouds. The system architecture
of the cloud-based shared hosting environment consists of the
following components, as shown in Figure 1: global controller,
admission controller, application server, local controller, load
predictor, application repository, cloud provisioner, HTTP
load balancer, and entertainment server. In this paper, our
primary focus is on the global controller, which implements
VM provisioning and application consolidation algorithms.

Fig. 1. System architecture of the cloud-based shared hosting environment

An application server instance runs on a dynamically provi-
sioned VM. Each application server runs multiple web appli-
cations in an OSGi [24] environment. In such an environment,
each application runs as an OSGi component called a bundle.
OSGi also introduces the dynamic component model, which
allows dynamic loading and unloading of bundles. In addition
to the web applications, each application server also runs a
local controller. The local controller monitors and logs server
resource utilizations. It also controls the OSGi environment
for loading and unloading of web applications. Web appli-
cations are stored in an application repository, from where
they are loaded onto application servers. For applications
under the OSGi environment, we use Apache Felix OSGi
Bundle Repository (OBR)3. The global controller implements
VM provisioning and application consolidation algorithms
along with the session-to-server allocation and application-to-
server allocation policies [12]. These policies and our VM
provisioning algorithms are described in detail in [12], [13].

The cloud provisioner refers to the cloud provisioner in
an external IaaS cloud, such as the provisioner in Amazon
EC2. While the VM provisioning and termination decisions
are made by the global controller, the actual lower level

3http://felix.apache.org/site/apache-felix-osgi-bundle-repository.html

tasks of starting and terminating VMs are done by the cloud
provisioner. The HTTP requests are routed through a high
performance HTTP load balancer and proxy. For this, we
use HAProxy4, which balances the load of requests for new
user sessions among the application servers. For its functions,
HAProxy maintains a configuration file containing information
about application servers and application deployments on each
server. As a result of the VM provisioning and termination
operations, the configuration file is frequently updated with
new information.

When a new session request arrives, the admission con-
troller [26] obtains measured resource utilizations of individual
servers from the global controller and likewise the predicted
resource utilizations from the load predictor. Based on the
measured and predicted resource utilizations, it updates the
server states. At any given time, an application server can
be in one of three states: open, closed, or overloaded. The
open state implies that the server is open for new sessions.
Similarly, the closed state means that the server does not accept
new sessions. The overloaded is an undesirable state, which
is characterized by very high utilization of the bottleneck
server resource that may result in deteriorated performance.
The admission controller uses these server states to make
decisions for new session requests. If the admission controller
finds at least one open server, the new session is admitted.
If it cannot find an open server, the session is deferred onto
the entertainment server. However, if the entertainment server
also becomes closed or overloaded, the new session request is
rejected. All deferred sessions are automatically redirected to
an application server in a FIFO (First In, First Out) order as
soon as a new server is provisioned or a closed server becomes
open. When admitting a mix of deferred and new sessions,
deferred sessions are given priority over new sessions. Our
admission control and load prediction algorithms are described
in detail in [26].

IV. ACO-BASED CONSOLIDATION OF WEB APPLICATIONS

The pseudocode of the proposed web application consol-
idation algorithm is given as Algorithm 1. For the sake of
clarity, the concepts used in the algorithm and their notations
are tabulated in Table I.

In the cloud-based shared hosting environment presented
in Section III, each virtualized application server hosts one
or more web applications from the set of applications A.
Moreover, since frequently used applications are often con-
currently run on multiple VMs, if a particular application
a1 ∈ A is concurrently hosted by two VMs (v1 ∈ V
and v2 ∈ V), then each deployment of a1 is considered
a separate application instance. An application instance not
only contains a web application a ∈ A, but also the
user sessions that belong to it. Furthermore, for the sake of
application migration, each VM is a potential source VM. Both
the source VM and the application instance are characterized
by their resource utilizations, such as CPU load average and

4http://haproxy.1wt.eu/

TABLE I
SUMMARY OF CONCEPTS AND THEIR NOTATIONS

A set of web applications
Av set of applications running on a VM v
MS a set of migration plans
T a set of tuples
Tk a set of tuples not yet traversed by ant k
V set of VMs
VR a set of VMs that are released when M is enforced
a application instance in a tuple
CVde total capacity vector of the destination VM Vde
M a migration plan
M+ the global best migration plan
Mk ant-specific migration plan of ant k
Mm
k ant-specific temporary migration plan of ant k

N a neighborhood of VMs
q a uniformly distributed random variable
RTv remaining time of a VM v with respect to the renting hour
S a random variable selected according to (6)
Scrk thus far best score of ant k
Ua used capacity vector of the application instance a
UVde used capacity vector of the destination VM Vde
UVso used capacity vector of the source VM Vso
Vde destination VM in a tuple
Vso source VM in a tuple
η heuristic value
τ amount of pheromone
τ0 initial pheromone level
∆+
τs additional pheromone amount given to the tuples in M+

q0 parameter to determine relative importance of exploitation
α pheromone decay parameter in the global updating rule
β parameter to determine the relative importance of η
γ parameter to determine the relative importance of |VR|
ρ pheromone decay parameter in the local updating rule
nA number of ants that concurrently build their migration plans
nI number of iterations of the main loop in the algorithm
RTL remaining time lower threshold
RTU remaining time upper threshold

memory utilization. Likewise, an application instance can be
migrated to any other VM located in any neighborhood N .
The neighborhoods of VMs are mutually exclusive subsets of
V . Therefore, every other VM within as well as outside the
neighborhood of the source VM is a potential destination VM,
which is also characterized by its resource utilizations. Thus,
the proposed ACO-based algorithm makes a set of tuples T ,
where each tuple t ∈ T consists of three elements: source
VM Vso, application instance a, and destination VM Vde

t := (Vso, a, Vde) (1)

Therefore, the VMs in the web application consolidation
problem are analogous to the cities in the TSP, while the
tuples are analogous to the edges that connect the cities. As
noted in Section II, the application consolidation problem
is intrinsically more dynamic than the server consolidation
problem. Therefore, it is imperative to reduce the computation
time of the consolidation algorithm, which is primarily based
on the number of tuples |T |. Thus, when making the set of
tuples T , the algorithm applies two constraints, which result
in a reduced set of tuples by removing some least important
and unwanted tuples. The first constraint ensures that only
under-utilized, close to the completion of renting hour VMs
are used as the source and destination VMs. In other words,

migrations from and to well-utilized VMs are excluded. The
rationale is that a well-utilized VM should not become part of
the consolidation process because migrating to a well-utilized
VM may result in its overloading. Similarly, migrating from
a well-utilized VM is less likely to result in the termination
of the source VM and thus it would not reduce the total
number of required VMs. Moreover, since some contemporary
IaaS providers, such as Amazon EC2, charge on hourly basis,
only those VMs participate in the consolidation process which
are close to the completion of their renting hour [27]. The
second constraint further restricts the size of the set of tuples
|T | by preventing inter-neighborhood migrations. Therefore,
an application instance can only be migrated to another VM
within the neighborhood of its source VM. By applying these
two simple constraints in a series of preliminary experiments,
we observed that the computation time of the algorithm was
significantly reduced without compromising the quality of the
solutions.

The output of the application consolidation algorithm is
a migration plan, which, when enforced, would result in a
minimal set of VMs needed to host all web applications
without compromising their performance. Thus, the objective
function for the proposed algorithm is

max f(M) := |VR|γ + |M | (2)

where M is the migration plan and VR is the set of VMs
that will be released when M is enforced. The parameter γ
determines the relative importance of |VR| with respect to |M |.
Since the ultimate objective in the cloud-based application
consolidation algorithm is to minimize VM provisioning cost,
which is a function of the number of provisioned VMs and
time, the objective function is defined in terms of number
of released VMs |VR|. Moreover, it prefers larger migration
plans because with a large set of web applications A in a
shared hosting environment, each VM v ∈ V typically hosts
a number of applications Av ∈ A, which makes it less likely
to find a feasible solution with a smaller migration plan. Later
on, when a migration plan is enforced, we apply a constraint
which reduces the number of actual migrations by restricting
migrations to only those VMs that are not included in the set
of released VMs VR, that is

∀ Vde ∈ V | Vde /∈ VR (3)

In our approach, a VM can only be considered released
when all the application instances are migrated from it, that
is, when the VM no longer hosts any applications. Moreover,
only those VMs should be terminated which are close to the
completion of their renting hour. Thus, the set of released VMs
VR is defined as

VR := {∀v ∈ V |Av = ∅ ∧RTL < RTv < RTU} (4)

where Av is the set of applications running on a VM v, RTv
is the remaining time of a VM v from the completion of its
renting hour, RTL is the remaining time lower threshold, and
similarly RTU is the remaining time upper threshold. Thus, a

VM can only be included in the set of released VMs VR when
it no longer hosts any applications and its remaining time RTv
∈ (RTL, RTU). The rationale is to terminate only those VMs
that are close to the completion of their renting hour, while
excluding any VMs that are extremely close and therefore it is
difficult to terminate them before the start of the next renting
hour [27].

Unlike the TSP, there is no notion of a path in the applica-
tion consolidation problem. Therefore, ants deposit pheromone
on the tuples defined in (1). Each of the nA ants uses a
stochastic state transition rule to choose the next tuple to
traverse. The state transition rule in ACS is called pseudo-
random-proportional-rule [22]. According to this rule, an ant
k chooses a tuple s to traverse next by applying

s :=

{
arg maxu ∈ Tk{[τu] · [ηu]β}, if q ≤ q0
S, otherwise

(5)

where τ denotes the amount of pheromone and η represents
the heuristic value associated with a particular tuple. β is a
parameter to determine the relative importance of the heuristic
value with respect to the pheromone value. The expression arg
max returns the tuple for which [τ] · [η]β attains its maximum
value. Tk ⊂ T is the set of tuples that remain to be traversed
by ant k. q ∈ [0, 1] is a uniformly distributed random variable
and q0 ∈ [0, 1] is a parameter. S is a random variable selected
according to the probability distribution given in (6), where the
probability ps of an ant k to choose tuple s to traverse next
is defined as

ps :=

[τs]·[ηs]β∑

u ∈ Tk

[τu]·[ηu]β , if s ∈ Tk

0, otherwise
(6)

The heuristic value ηs of a tuple s is defined in a similar
fashion as in [16] as

ηs :=

{
(|CVde − (UVde + Ua)|1)−1, if UVde + Ua ≤ CVde
0, otherwise

(7)
where CVde is the total capacity vector of the destination VM
Vde, UVde is the used capacity vector of Vde, and likewise Ua
is the used capacity vector of the application instance a in
tuple s. The heuristic value η is based on the multiplicative
inverse of the scalar-valued difference between CVde and
UVde + Ua. It favors application migrations that result in a
reduced under-utilization of VMs. Moreover, the constraint
UVde +Ua ≤ CVde prevents application migrations that would
result in the overloading of the destination VM Vde. In the
proposed algorithm, we assumed two resource dimensions,
which represent CPU load average and memory utilization.
However, if necessary, it is possible to add more dimensions
in the total and used capacity vectors.

The stochastic state transition rule in (5) and (6) prefers
tuples with a higher pheromone concentration and which result
in a higher number of released VMs. The first case in (5) where
q ≤ q0 is called exploitation [22], which chooses the best tuple
that attains the maximum value of [τ] · [η]β . The second case,

called biased exploration, selects a tuple according to (6). The
exploitation helps the ants to quickly converge to a high quality
solution, while at the same time, the biased exploration helps
them to avoid stagnation by allowing a wider exploration of the
search space. In addition to the stochastic state transition rule,
ACS also uses a global and a local pheromone trail evaporation
rule. The global pheromone trail evaporation rule is applied
towards the end of an iteration after all ants complete their
migration plans. It is defined as

τs := (1− α) · τs + α ·∆+
τs (8)

where ∆+
τs is the additional pheromone amount that is given

only to those tuples that belong to the global best migration
plan in order to reward them. It is defined as

∆+
τs :=

{
f(M+), if s ∈ M+

0, otherwise
(9)

α ∈ (0, 1] is the pheromone decay parameter, and M+ is the
global best migration plan from the beginning of the trial.

The local pheromone trail update rule is applied on a tuple
when an ant traverses the tuple while making its migration
plan. It is defined as

τs := (1− ρ) · τs + ρ · τ0 (10)

where ρ ∈ (0, 1] is similar to α and τ0 is the initial
pheromone level, which is computed as the multiplicative
inverse of the product of the approximate optimal |M | and
|V |

τ0 := (|M | · |V |)−1 (11)

Here, any very rough approximation of the optimal |M | would
suffice [22]. The pseudo-random-proportional-rule in ACS and
the global pheromone trail update rule are intended to make
the search more directed. The pseudo-random-proportional-
rule prefers tuples with a higher pheromone level and a higher
heuristic value. Therefore, the ants try to search other high
quality solutions in a close proximity of the thus far global best
solution. On the other hand, the local pheromone trail update
rule complements exploration of other high quality solutions
that may exist far form the thus far global best solution. This
is because whenever an ant traverses a tuple and applies the
local pheromone trail update rule, the tuple looses some of
its pheromone and thus becomes less attractive for other ants.
Therefore, it helps in avoiding stagnation where all ants end up
finding the same solution or where they prematurely converge
to a suboptimal solution.

The pseudocode in Algorithm 1 makes a set of tuples T
using (1) and sets the pheromone value of each tuple to
the initial pheromone level τ0 by using (11) (line 2). The
algorithm iterates over nI iterations (line 3). In each iteration,
nA ants concurrently build their migration plans (lines 4–18).
Each ant iterates over |T | tuples (lines 6–16). It computes the
probability of choosing the next tuple to traverse by using (6)
(line 7). Afterwards, based on the computed probabilities and
the stochastic state transition rule in (5) and (6), each ant
chooses a tuple t to traverse (line 8) and adds t to its temporary

migration plan Mm
k (line 9). The local pheromone trail update

rule in (10) and (11) is applied on t (line 10), the used capacity
vectors at the source VM UVso and the destination VM UVde
in t are updated to reflect the impact of the migration (line 11),
the objective function in (2) is applied on Mm

k , and if it yields
a score higher than the ant’s thus far best score Scrk (line 12),
t is added to the ant-specific migration plan Mk (line 14).
Then, towards the end of an iteration when all ants complete
their migration plans, all ant-specific migration plans are added
to the set of migration plans MS (line 17), each migration plan
Mk ∈ MS is evaluated by applying the objective function
in (2), the thus far global best application migration plan M+

is selected (line 19), and the global pheromone trail update
rule in (8) and (9) is applied on all tuples (line 20). Finally,
when all iterations complete, the algorithm outputs the global
best migration plan M+.

Algorithm 1 Application consolidation algorithm
1: M+ := ∅, MS := ∅
2: ∀t ∈ T |τt := τ0
3: for i ∈ [1, nI] do
4: for k ∈ [1, nA] do
5: Mm

k := ∅,Mk := ∅, Scrk := 0
6: while |Mm

k | < |T | do
7: compute ps ∀s ∈ T by using (6)
8: choose a tuple t ∈ T to traverse by using (5)
9: Mm

k := Mm
k ∪ {t}

10: apply local update rule in (10) on t
11: update used capacity vectors UVso and UVde in t
12: if f(Mm

k) > Scrk then
13: Scrk := f(Mm

k)
14: Mk := Mk ∪ {t}
15: end if
16: end while
17: MS := MS ∪ {Mk}
18: end for
19: M+ := arg maxMk ∈MS{f(Mk)}
20: apply global update rule in (8) on all s ∈ T
21: end for

V. EXPERIMENTAL DESIGN AND SETUP

A convenient and quick way of testing new algorithms
and solutions involving complex environments is to write and
run software simulations [26]. A special kind of simulations
called discrete-event simulations are most appropriate for
simulating and evaluating cluster, grid, and cloud computing
environments and systems [28]. Therefore, we have developed
a discrete-event simulation for the proposed application con-
solidation approach. Also, for a comparison of the results,
we have developed a discrete-event simulation for a greedy
application consolidation algorithm, here referred to as the
baseline approach. The greedy consolidation algorithm is an
extension of our previous works in [12] and [13] and serves as
the base case for the comparison of the results. It periodically
performs web application consolidation whenever at least one

TABLE II
ACS PARAMETERS IN THE PROPOSED APPROACH

α β γ ρ q0 nA nI |N |
0.1 0.9 5 0.1 0.9 10 2 5

under-utilized VM is found. It marks each under-utilized VM
as a source VM Vso and similarly each well-utilized VM as a
destination VM Vde. Afterwards, it migrates each application
instance from each Vso to a Vde, which is chosen according to
the application-to-server allocation policy [12], and terminates
each Vso.

We considered two scenarios of interest in two separate ex-
periments. Scenario 1 in experiment 1 used synthetic workload
traces, while scenario 2 in experiment 2 used workload traces
derived from a real web-based system. In both experiments,
the ACS parameters that were used in the proposed approach
are tabulated in Table II. Moreover, the remaining time lower
threshold RTL was set to 2 minutes and similarly the re-
maining time upper threshold RTU was 15 minutes. These
parameter values were obtained in a series of preliminary
experiments.

1) Experiment 1: Synthetic Load Pattern: Experiment 1
used synthetic workload traces. It was designed to generate
a load representing a maximum of 10000 simultaneous user
sessions in two separate load peaks. In each peak, the sessions
were ramped up to 10000. After the ramp-up phase, the
number of sessions was maintained constant for a while and
then reduced back to 5000 in the first peak and to 0 in the
second peak. The two load peaks were similar, except that the
sessions in the first peak were ramped up twice as quickly as
in the second peak. Each session was randomly assigned to
one particular web application. The experiment used |A| = 10
simulated web applications of varying resource needs.

2) Experiment 2: Realistic Load Pattern: Experiment 2 was
designed to simulate a load representing a workload trace
from a real web-based system. The traces were derived from
SQUID access logs obtained from the IRCache5 project. As
the access logs did not include session information, we defined
a session as a series of requests from the same originating IP-
address, where the time between individual requests was less
than 15 minutes. We then produced a histogram of sessions per
second and used linear interpolation and scaling by a factor
of 300 to obtain the load pattern used in the experiment. As
in Experiment 1, each session was randomly assigned to one
particular web application out of |A| = 10.

VI. EXPERIMENTAL RESULTS

Now we compare the experimental results of the pro-
posed web application consolidation approach with that of
the baseline approach. Each result in Figure 2 to Figure 5
has the following plots: number of concurrent user sessions,
number of VMs, total number of VM hours, total application
migrations, CPU load average of all servers, and average
memory utilization of all servers. The ultimate objective is

5http://www.ircache.net/

TABLE III
EXPERIMENT 1 RESULTS

Baseline approach Proposed approach
maximum |V | 39 38
total VM hours 3575 2612
total migrations 443 610
CPU load average 79% maximum 83% maximum

TABLE IV
EXPERIMENT 2 RESULTS

Baseline approach Proposed approach
maximum |V | 39 28
total VM hours 4453 3170
total migrations 1004 700
CPU load average 78% maximum 98% maximum

to minimize VM provisioning cost while maintaining CPU
load average and average memory utilization below 100%.
Moreover, since the VM provisioning cost is a function of the
number of provisioned VMs and time, the comparison of the
results is primarily based on the total number of VM hours.

3) Experiment 1: Synthetic Load Pattern: The results of
the baseline approach are shown in Figure 2. The results show
a dynamically scalable application server tier, which consists
of a varying number of VMs. The baseline approach used a
maximum of 39 VMs. The total number of VM hours were
3575 and the total number of application migrations were 443.
The CPU load average and the average memory utilization
were always below 100%.

Figure 3 presents the results of the proposed approach from
experiment 1. The proposed approach used a maximum of
38 VMs. The total number of VM hours were 2612 and the
total number of application migrations were 610. The CPU
load average and the average memory utilization were always
below 100%. The results show that the proposed approach
used 26.94% less VM hours as compared to the baseline
approach. Thus, it provided a more cost-efficient solution for
web application consolidation in a cloud-based shared hosting
environment. Table III presents a summary of the results from
experiment 1.

4) Experiment 2: Realistic Load Pattern: Figure 4 presents
the results of the baseline approach from experiment 2. The

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60 70 80 90 100 110 120
 0

 20

 40

 60

 80

 100

 120

s
e
s
s
io

n
s

V
M

s

time (hours)

sessions
VMs

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0

 0.3

 0.6

 0.9

 1.2

 1.5

lo
a
d
 a

v
e
ra

g
e

m
e
m

o
ry

CPU load average
memory utilization

1.0

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0
 250
 500
 750
 1000
 1250
 1500
 1750

V
M

 h
o
u
rs

m
ig

ra
ti
o
n
s

total VM hours
total application migrations

Fig. 2. Experiment 1: baseline approach with synthetic load pattern

baseline approach used a maximum of 39 VMs. The total
number of VM hours were 4453 and the total number of
application migrations were 1004. The CPU load average and
the average memory utilization were always below 100%.

The results of the proposed approach from experiment 2 are
shown in Figure 5. The proposed approach used a maximum
of 28 VMs. The total number of VM hours were 3170 and
the total number of application migrations were 700. The
CPU load average and the average memory utilization were
always below 100%. The results from experiment 2 show
that the proposed approach used 28.81% less VM hours
as compared to the baseline approach. Thus, it provided a
more cost-efficient solution for web application consolidation
in experiment 2 as well. A summary of the results from
experiment 2 is presented in Table IV.

VII. CONCLUSION

In this paper, we presented a novel web application consoli-
dation approach for a cloud-based shared hosting environment.
Our proposed application consolidation algorithm uses Ant
Colony System (ACS) to build a web application migration
plan, which is then used to minimize over-provisioning of VMs
by consolidating web applications on under-utilized VMs. We
presented a discrete-event simulation of the proposed approach
along with an experimental evaluation involving synthetic as
well as realistic load patterns.

The evaluation and analyses compared the proposed ap-
proach against a baseline, greedy application consolidation
approach, which is based on an extension of our previous
works on VM provisioning algorithms. We considered two dif-
ferent scenarios in two separate experiments. The first scenario
used a synthetic workload pattern, while the second scenario
used workload traces derived from a real web-based system.
The results showed that the proposed approach provides a
cost-efficient solution for web application consolidation in a
cloud-based shared hosting environment. In comparison with
the baseline approach, it provided significant improvements in
terms of the total number of VM hours. In the first experiment
involving a synthetic load pattern, the proposed approach
used 26.94% less VM hours as compared to the baseline

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60 70 80 90 100 110 120
 0

 20

 40

 60

 80

 100

 120

s
e
s
s
io

n
s

V
M

s

time (hours)

sessions
VMs

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0

 0.3

 0.6

 0.9

 1.2

 1.5

lo
a
d
 a

v
e
ra

g
e

m
e
m

o
ry

CPU load average
memory utilization

1.0

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0
 250
 500
 750
 1000
 1250
 1500
 1750

V
M

 h
o
u
rs

m
ig

ra
ti
o
n
s

total VM hours
total application migrations

Fig. 3. Experiment 1: proposed approach with synthetic load pattern

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1 2 3 4 5 6 7
 0

 20

 40

 60

 80

 100

 120

s
e
s
s
io

n
s

V
M

s

time (days)

sessions
VMs

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0

 0.3

 0.6

 0.9

 1.2

 1.5
lo

a
d
 a

v
e
ra

g
e

m
e
m

o
ry

CPU load average
memory utilization

1.0

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0
 250
 500
 750
 1000
 1250
 1500
 1750

V
M

 h
o
u
rs

m
ig

ra
ti
o
n
s

total VM hours
total application migrations

Fig. 4. Experiment 2: baseline approach with realistic load pattern

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1 2 3 4 5 6 7
 0

 20

 40

 60

 80

 100

 120

s
e
s
s
io

n
s

V
M

s

time (days)

sessions
VMs

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0

 0.3

 0.6

 0.9

 1.2

 1.5

lo
a
d
 a

v
e
ra

g
e

m
e
m

o
ry

CPU load average
memory utilization

1.0

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0
 250
 500
 750
 1000
 1250
 1500
 1750

V
M

 h
o
u
rs

m
ig

ra
ti
o
n
s

total VM hours
total application migrations

Fig. 5. Experiment 2: proposed approach with realistic load pattern

approach. Similarly, it used 28.81% less VM hours in the
second experiment that was based on a realistic load pattern.

ACKNOWLEDGEMENTS

This work was supported by the Cloud Software Finland
research project and by an Amazon Web Services research
grant. Adnan Ashraf was partially supported by the Foundation
of Nokia Corporation and by a doctoral scholarship from the
Higher Education Commission (HEC) of Pakistan.

REFERENCES

[1] Y. Raivio, O. Mazhelis, K. Annapureddy, R. Mallavarapu, and
P. Tyrväinen, “Hybrid cloud architecture for short message services,” in
Proceedings of the 2nd International Conference on Cloud Computing
and Services Science. SciTePress, 2012, pp. 489–500.

[2] D. Ardagna, C. Ghezzi, B. Panicucci, and M. Trubian, “Service provi-
sioning on the cloud: Distributed algorithms for joint capacity allocation
and admission control,” in Towards a Service-Based Internet, ser.
Lecture Notes in Computer Science, E. Di Nitto and R. Yahyapour,
Eds. Springer Berlin / Heidelberg, 2010, vol. 6481, pp. 1–12.

[3] A. Wolke and G. Meixner, “TwoSpot: A cloud platform for scaling out
web applications dynamically,” in Towards a Service-Based Internet, ser.
Lecture Notes in Computer Science, E. di Nitto and R. Yahyapour, Eds.
Springer Berlin / Heidelberg, 2010, vol. 6481, pp. 13–24.

[4] Y. Hu, J. Wong, G. Iszlai, and M. Litoiu, “Resource provisioning for
cloud computing,” in Proceedings of the 2009 Conference of the Center
for Advanced Studies on Collaborative Research, 2009, pp. 101–111.

[5] T. Chieu, A. Mohindra, A. Karve, and A. Segal, “Dynamic scaling of
web applications in a virtualized cloud computing environment,” in e-
Business Engineering, 2009. ICEBE ’09. IEEE International Conference
on, oct. 2009, pp. 281–286.

[6] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive resource
provisioning for read intensive multi-tier applications in the cloud,”
Future Generation Computer Systems, vol. 27, no. 6, pp. 871–879, 2011.

[7] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight resource
scaling for cloud applications,” Cluster Computing and the Grid, IEEE
International Symposium on, pp. 644–651, 2012.

[8] X. Dutreilh, N. Rivierre, A. Moreau, J. Malenfant, and I. Truck, “From
data center resource allocation to control theory and back,” in Cloud
Computing, 2010 IEEE 3rd International Conference on, 2010.

[9] W. Pan, D. Mu, H. Wu, and L. Yao, “Feedback control-based QoS
guarantees in web application servers,” in High Performance Computing
and Communications, 10th IEEE International Conference on, 2008.

[10] T. Patikirikorala, A. Colman, J. Han, and L. Wang, “A multi-model
framework to implement self-managing control systems for QoS man-
agement,” in Proceedings of the 6th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems, 2011.

[11] B. Urgaonkar, P. Shenoy, and T. Roscoe, “Resource overbooking and
application profiling in a shared internet hosting platform,” ACM Trans.
Internet Technol., vol. 9, no. 1, pp. 1–45, Feb. 2009.

[12] A. Ashraf, B. Byholm, J. Lehtinen, and I. Porres, “Feedback control
algorithms to deploy and scale multiple web applications per virtual
machine,” in 38th Euromicro Conference on Software Engineering and
Advanced Applications. IEEE Computer Society, 2012, pp. 431–438.

[13] A. Ashraf, B. Byholm, and I. Porres, “CRAMP: Cost-efficient resource
allocation for multiple web applications with proactive scaling,” in 4th
IEEE International Conference on Cloud Computing Technology and
Science (CloudCom). IEEE Computer Society, 2012, pp. 581–586.

[14] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: a platform for fine-grained
resource sharing in the data center,” in Proceedings of the 8th USENIX
conference on Networked systems design and implementation, 2011.

[15] W. Vogels, “Beyond server consolidation,” ACM Queue, vol. 6, no. 1,
pp. 20–26, Jan. 2008.

[16] E. Feller, C. Morin, and A. Esnault, “A case for fully decentralized
dynamic VM consolidation in clouds,” Cloud Computing Technology
and Science, IEEE International Conference on, pp. 26–33, 2012.

[17] A. Murtazaev and S. Oh, “Sercon: Server consolidation algorithm using
live migration of virtual machines for green computing,” IETE Technical
Review, vol. 28, no. 3, pp. 212–231, 2011.

[18] M. Marzolla, O. Babaoglu, and F. Panzieri, “Server consolidation in
clouds through gossiping,” in World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2011 IEEE International Symposium on a, 2011.

[19] C. Blum, J. Puchinger, G. R. Raidl, and A. Roli, “Hybrid metaheuristics
in combinatorial optimization: A survey,” Applied Soft Computing,
vol. 11, no. 6, pp. 4135 – 4151, 2011.

[20] M. Harman, K. Lakhotia, J. Singer, D. R. White, and S. Yoo, “Cloud
engineering is search based software engineering too,” Journal of
Systems and Software, vol. 86, no. 9, pp. 2225 – 2241, 2013.

[21] M. Dorigo, G. Di Caro, and L. M. Gambardella, “Ant algorithms for
discrete optimization,” Artif. Life, vol. 5, no. 2, pp. 137–172, Apr. 1999.

[22] M. Dorigo and L. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” Evolutionary
Computation, IEEE Transactions on, vol. 1, no. 1, pp. 53–66, 1997.

[23] T. Aho, A. Ashraf, M. Englund, J. Katajamki, J. Koskinen, J. Lautamki,
A. Nieminen, I. Porres, and I. Turunen, “Designing IDE as a service,”
Communications of Cloud Software, vol. 1, pp. 1–10, 2011.

[24] The OSGi Alliance, OSGi Service Platform Core Specification, Release
4, Version 4.3, 2011.

[25] P.-Y. Yin and J.-Y. Wang, “Ant colony optimization for the nonlinear
resource allocation problem,” Applied Mathematics and Computation,
vol. 174, no. 2, pp. 1438 – 1453, 2006.

[26] A. Ashraf, B. Byholm, and I. Porres, “A session-based adaptive admis-
sion control approach for virtualized application servers,” in The 5th
IEEE/ACM International Conference on Utility and Cloud Computing,
2012, pp. 65–72.

[27] F. Jokhio, A. Ashraf, S. Lafond, I. Porres, and J. Lilius, “Prediction-
based dynamic resource allocation for video transcoding in cloud com-
puting,” in Parallel, Distributed and Network-Based Processing (PDP),
2013 21st Euromicro International Conference on, 2013, pp. 254–261.

[28] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Software: Practice and Experience, vol. 41, no. 1, pp. 23–50,
2011.

