
Including Model-Based Statistical Testing in the
MATERA Approach

Andreas Bäcklund, Fredrik Abbors, and Dragos Truscan

Åbo Akademi University, IT Dept., Joukahaisenkatu 3-5B, 20520, Turku, Finland
Andreas.C.Backlund@abo.fi, Fredrik.Abbors@abo.fi,

Dragos.Truscan@abo.fi

Abstract. In this paper, we present a Model-Based Testing (MBT) approach in
which statistical data contained in Unified Modeling Language (UML) models
are used to prioritize test cases. The models are used by a test derivation tool for
automatic generation of test cases. The statistical data included in the models is
used by the tool to determine the order of the resulting test cases before being
implemented and executed. The test outputs are analyzed and information about
requirement coverage is gathered. Based on the gathered statistics, the results
are automatically fed back to the UML models to prioritize those sections of the
system where failures are frequent.

1 Introduction

The complexity of software systems is constantly increasing. Hence, the amount of
tests needed to properly test a software system is also increasing. Software companies
usually do not have enough time to run all their test cases, and are therefore forced
to prioritize them in such a way that the test cases cover as much functionality of the
system as possible [1].

Especially in the telecommunications domain, which we target in this paper, the
amount of test cases needed to be executed against the System Under Test (SUT) is
rather large, and in practice only a part of these tests can be executed. Thus, there is a
need to be able to order the test cases based on their importance. By determining the
priority-specific paths within the system, it is possible to order the test cases in such
a way that test cases of statistically higher priority are executed before others. In this
way, specific sections of the system can be given higher priority, resulting in earlier
execution of test cases running the highest prioritized paths of the system.

There are several benefits with using statistical testing [2, 3]. One of the main ben-
efits is that more testing effort can be put into the most important sections of SUT,
while less important section can be left less tested. Another benefit of conducting sta-
tistical testing is that statistical data from previous iterations of the testing process can
be included in latter iterations, in order to target the test execution towards the system
sections that are more important or yielded more failures.

Model-Based Testing (MBT) [4] is a testing approach that addresses some of the
shortcomings in traditional testing by using an abstract representation (a model) of the
system for automatic generation of test cases. The models can be implemented either
as program code representations or as graphical representations using graphical speci-
fication languages, such as the Unified Modeling Language (UML) [5] or various tool



specific languages. The main idea with MBT techniques is to automatically generate
tests by applying algorithms that are able to explore paths through the model.

According to [1], statistical testing can be integrated into the development process
at the point when requirements have been gathered and approved. In other words, sta-
tistical testing can be initialized at the same phase as the model construction in MBT.
Combining this with the benefits of using models to prioritize certain sections of the
SUT, makes statistical testing beneficial when used in a MBT process.

There are several advantages of using MBT in a software development process.
One advantage is that large amounts of tests can be generated in a short amount of
time when there exists an appropriate model representation of the system. This adds
additional value especially to conducting regression testing in the end of the software
development project. Another advantage is that models are usually easier to modify
than manually created test cases, which especially benefits projects where requirements
are changing frequently. The third advantage is that the modeling of the system can
be initiated immediately when the requirements have been specified. This means that
a testing process using MBT can already be initiated in the design phase. Since the
test model in MBT is typically an abstract representation of the system, it is easier to
maintain it compared to manually written test cases.

2 Related Work

Previous research on combining statistical testing and MBT has been done under the
acronym Model-based Statistical Testing (MBST). For instance, Prowell [6] presents an
approach in which the transitions of a test (usage) model are annotated with probability
of occurrence information that is later used during test generation by the JUMBL tool.
A similar approach, targeted at telecommunication protocols, is presented in [7]. An
operational profile (a Markov process) is used to describe the usage and behavior of
the SUT. The probabilities included in the operational profile are later on used during
test generation. In our approach we will use a test model describing the behavior of
the system. The generated test cases will be ordered after test generation based on
the statistical information, and information resulted from test reporting will be used to
update the priorities for the generated test cases. In addition, requirements of the system
are modeled and traced throughout the testing process.

Other similar work on MBST is presented in [8–10]. For instance, the author of [8]
uses UML activity diagrams to express high level requirements. The nodes and edges in
the activity diagram are assigned with weights indicating priority, based on complexity
and possibility of occurrence of defects. The activity diagram is later translated into a
tree structure, from which prioritized test scenarios are generated.

Work related to statistical testing has also been preformed in the context of the
MaTeLo tool [11, 12]. In MaTeLo, test cases are generated from statistical models of
the SUT expressed using Markov chains usage models. However, while MaTeLo-based
approaches utilize a usage model for describing the SUT, our approach utilizes a system
model to represent the SUT.

In [9] the author presents an approach for using MBST together with time durations
to test real-time embedded systems. The author’s approach differs slightly from ours,
since it uses statistical information to test the reliability of the system. In the approach,



reliability is tested by generating test cases from a model that represents the actual use
of the system. In our approach, statistical information about the system is not used to
test the intended usage of the system, but rather to order test cases according to weighted
probabilities calculated from statistics of requirement priority and use case probability.

The most similar approach is presented in [10]. Here the authors take advantage of
an approach in which they go from a requirements document, via a statistical model, to
a statistical test report. Similarly to our approach, their approach benefits from a high
degree of automation in each phase of the testing process.

3 Overview of MATERA

MATERA

MATERA process/toolchain

Requirements

Modeling

Validation

Transformation

Test generation

Test Report
Analysis

Test Execution

BackTracing

Fig. 1. MATERA process

MATERA (Modeling for Automated
TEst deRivation at Åbo Akademi) [13] is
an approach for integrating modeling in
UML and requirement traceability across
a custom MBT process (see Figure 1).
UML models are created from the sys-
tem requirements, using a UML mod-
eling tool. The models are validated by
checking that they are consistent and that
all the information required by the mod-
eling process is included. Consequently,
the models are transformed into input
for the test derivation tool. The resulting
test cases are executed (after being con-
cretized) using a test execution frame-
work. The results of the test execution are
analyzed and a report is generated. Re-
quirements are linked to artifacts at different levels of the testing process and finally
attached to the generated test cases. The approach enables requirements to be back-
traced to models in order to identify which test cases have covered different modeling
artifacts or from which part of the models a failed test case has originated.

4 Statistical Approach for MATERA

Our statistical approach relies on two sources of information: (1) that the functional-
ity of the system (use cases) has associated probability values, depicting the chances
for functionality to be invoked by the external user of the system during the use of the
SUT; (2) that the requirements of the system are classified based on their importance
(for testing) by associating them with priority values. The priorities and probabilities of
the system are considered to be given from external sources (e.g., system requirements
or stakeholder recommendations) and a priori to the first iteration of the testing process.
In latter test cycles, the priorities can be adjusted based on statistics of uncovered re-
quirements from previous test cycles for targeting the testing process towards a certain
part of the SUT.



There is a slight difference between probability and priority. Even though they both
mean that specific sections of the SUT are prioritized, it is important to recognize that
probability is part of the model, while requirement priority is a property for ordering
system requirements according to importance. Hence, UML use case elements are given
a probability value indicating the chance of the use case to be executed, whereas require-
ments are given a priority value indicating their importance for testing. The values are
manually assigned to each use case in part. The two types of values are then combined
in the test model from where test cases are generated. Each resulting test case will have
a weighted priority calculated based on the cumulative probabilities and priorities of
the test path in the model. The weighted priority will be used for determining the test
execution order. In the following, we delve into more details related to each phase of
the process.

4.1 Requirements Modeling

The process starts with the analysis and structuring of the informal requirements into a
Requirements Model. The requirements diagrams of the Systems Modeling Language
(SysML) [14] are used for this purpose. Requirements are organized hierarchically in
a tree-like structure, starting from top-level abstract requirements down to concrete
testable requirements. Each requirement element contains a name field which specifies
the name of the requirement, an id field, and a text field. For the purpose of statistical
testing, requirements are also given a priority value (see Figure 2). The priority
value is a property describing the importance of the requirement. During the modeling
process the requirements are traced to different parts of the models to point out how
each requirement is addressed by the models. By doing this we ensure the traceability
of requirements and that priority information is propagated to other model artifacts.

Fig. 2. Requirement Diagram with priorities



4.2 System Modeling

In this phase, the SUT is specified using UML. In our modeling process, we consider
that several perspectives of the SUT are required in order to enable a successful test
derivation process later on. A use case diagram is used to capture the main functional-
ity of the system. Sequence diagrams are used to show how the system communicates
with external components (in terms of sequence of messages) when carrying out differ-
ent functionality described in the use case diagram. A class diagram is used to specify
a domain model showing what domain components exist and how they are interrelated
through interfaces. A behavioral model describes the behavior of the system using state
machines. Data models are used to describe the message types exchanged between dif-
ferent domain components. Finally, domain configuration models are used to represent
specific test configurations using object diagrams. Each use case is given a probability
value which indicates the chance of the use case being executed (see Figure 3).

Fig. 3. Use case diagram with probability

The state model describing the expected behavior of the system is the pivotal artifact
for test generation. According to the MATERA approach, leaf requirements are linked
to transitions in the state machine to enable requirements traceability and requirements
coverage during test generation. Thus, the priority of each requirement will be asso-



ciated to the corresponding transition. Similarly, use case probabilities are manually
linked to the state model, as use cases are related with one or several starting points in
the state machine diagram (see Figure 4). This enables the test generation tool to deter-
mine the weighted probability of certain paths through the state model. Before the tests
are generated, the consistency of the UML models is checked using custom defined
Object Constraint Language (OCL) rules [15].

Fig. 4. UML state machine diagram

4.3 Test Case Generation

In the MATERA approach, the UML models are translated into a representation under-
stood by a test generation tool, namely Qtronic [16], using the transformation described
in [17]. During the translation, the priority and probability values are propagated to the
new model representation. Test cases are generated by the tool based on the selected
structural coverage criteria (e.g., state, transition, and requirement coverage, respec-
tively), without taking into account priority and probability annotations.

4.4 Test Case Ordering

After the test cases have been generated, the test generation tool can determine the gen-
eration order of test cases based on the annotated probability and priority values. For
each generated test case, a weighted probability is calculated based on the algorithm
implemented by the test generation tool described in [18]. The weighted probability is
calculated from both the use case probability and the requirement priority and deter-
mines the sequence in which test cases are ordered (see Figure 6). Test cases are finally
rendered into executable test scripts using an adapter for concertizing test cases into
executable scripts.



4.5 Test Execution

Test scripts are executed against the SUT using a test executor tool. The test scripts
are executed in the order determined by the test generation tool. If only a part of the
test suite can be executed, e.g. due to restricted testing time, ordering tests according
to probability and priority ensures that the most important tests are executed. The ex-
ecution of test scripts is monitored and the results are stored in log files. The log files
contain information about the test execution, e.g. messages sent and received by the
SUT, tested and untested requirements, used resources, etc. The log files together with
the test scripts serve as a source for the test results analysis.

4.6 Test Log Analysis

By parsing logs and scripts and comparing these against each other it is possible extract
statistical data from the test run. The extracted data describe requirements that have
been successfully tested, requirements that have been left uncovered, and during testing
of which requirements that failures have occurred.

The analysis of the test execution is presented in a HTML report (see Figure 5)
generated by the MATERA tool-set. The report consists of two sections, one for Gen-
eral Test Execution Statistics and one for Requirements Information. The General Test
Executions Statistics section contains information about the number of test cases that
passed and failed. The Requirements Information section contains information about
the requirement coverage. Finally, the test cases are presented in a Traceability Matrix.

4.7 Feedback Loop

In the feedback loop, the statistical information gathered in the test log analysis is used
to update priority of requirements that failed or were left uncovered during testing. The
feedback loop is implemented as a part of the MATERA tool-set and allows the modeler
to read in the analyzed statistics and update priority values for requirements in the UML
models without user intervention.

The feedback loop is the main actor for targeting the test execution towards the
parts of the system that had most failures. This is done by incrementally increasing the
priority of the failed and uncovered requirements, such that they will counterbalance
the effect that the probabilities of the use cases have on the ordering of tests. As testing
progresses and the process is iterated several times, the importance (priority) of require-
ments will change according to how well they have been tested. Providing a feedback
loop which updates the requirement importance automatically, will result in that the
failed and uncovered requirements are included in the test cases that are ordered first in
the test execution queue.

However, if requirement importance is changed due to external factors that can-
not be derived from statistics, the tester can choose to manually change the priority of
requirements directly in the models at any time.

The feedback module is executed from the MATERA menu in MagicDraw. When
initialized, the module collects test data from a user specified folder holding test logs
and test scripts from the last test execution. Based on these statistics, the priority values
for requirements that need to be tested more thoroughly in a subsequent test iteration are



Fig. 5. Statistical Report

incremented with a predefined coefficient and automatically updated in the requirement
models.

5 Tool Support

In our current approach we use No Magic’s MagicDraw [19] modeling tool for creating
and validating the UML models. The Graphical User Interface (GUI) of the MATERA
tool-set has been implemented as a plug-in for MagicDraw. The purpose of the MAT-
ERA tool-set is to extend the capabilities of MagicDraw for specifying system models
and using them as input for automatic test generation.

For automatic test case generation we use Conformiq’s Qtronic [16]. Qtronic is an
Eclipse based tool to automate the design of functional tests. Qtronic generates tests and



executable test scripts from abstract system models based on selected coverage criteria.
An example of a test case sequence ordered by probability is shown in Figure 6. The
models for Qtronic are expressed using the Qtronic Modeling Language (QML). QML
is a mixture of UML State Machines and a super set of Java, used as action language.
The UML state machines are used to describe the behavior of the SUT and QML is
used to represent data and coordinate the test generation. By using a custom Scripting
Backend (adapter), Qtronic generates executable test scripts for the Nethawk’s EAST
test executor framework [20].

Fig. 6. Test case sequence ordered by weighted probability in Qtronic

The EAST Scripting Backend in Qtronic is the main actor for rendering the test
scripts. When the abstract test cases are selected for execution, they are rendered to
test scripts, loaded into the EAST test executor, and executed against the SUT. The test
executor produces logs from the test case execution, which are used as source for the
statistical analysis in the MATERA tool-set.

6 Conclusions

In this paper, we have presented a model-based testing approach in which statistical
information is included in the system models and used for ordering of test cases. The
approach benefits from a highly integrated tool chain and a high degree of automa-
tion. To handle complexity, the system is described from different perspectives using a
different UML model for each perspective. Statistical information is described in use
case and requirement diagrams, via priority and probability annotations. Traceability
of requirements is preserved in each step of the testing process and can be gathered as
statistics for later test cycles.

During test generation, test cases are ordered based on the statistical information
contained in the models. After each test run, statistical information is gathered and fed
back to the models in a feedback loop. The statistical information serves as basis for
updating the information contained in the models to prioritize tests for those parts of
the system where failures are discovered.

Future work will be to extract additional information from test logs. Since the test
logs contain detailed information about messages sent and received from the SUT, this
information could be extracted and presented to the user. For example the HTML test



report could be extended to include sequence diagrams for each test case. The tester
could then examine failed tests in more detail, e.g. see what messages has been sent and
received and what values were used, to manually adjust priorities and probabilities in
the model. It could also facilitate the debugging of possible errors in the model.

References

1. Weber, R.J.: Statistical Software Testing with Parallel Modeling: A Case Study, Los Alami-
tos, CA, USA, IEEE Computer Society (2004) 35–44

2. Mills, H.D., Poore, J.H.: Bringing Software Under Statistical Quality Control. Quality
Progress (nov 1988) 52–56

3. Whittaker, J.A., Poore, J.H.: Markov analysis of software specifications. ACM Trans. Softw.
Eng. Methodol. (1) (1993) 93–106

4. Utting, M., Pretschner, A., Legeard, B.: A Taxonomy of Model-Based Testing. Technical
report (April 2006)

5. Object Management Group (OMG): OMG Unified Modeling Language (UML), Infrastruc-
ture, V2.1.2. Technical report (November 2007)

6. Prowell, S.J.: JUMBL: A Tool for Model-Based Statistical Testing. In: HICSS ’03: Proceed-
ings of the 36th Annual Hawaii International Conference on System Sciences (HICSS’03) -
Track 9, Washington, DC, USA, IEEE Computer Society (2003)

7. Popovic, M., Basicevic, I., Velikic, I., Tatic, J.: A Model-Based Statistical Usage Testing of
Communication Protocols. 13th Annual IEEE International Symposium and Workshop on
Engineering of Computer Based Systems (ECBS) (2006) 377–386

8. P.G., S., Mohanty, H.: Prioritization of Scenarios Based on UML Activity Diagrams. First
International Conference on Computational Intelligence, Communication Systems and Net-
works (2009) 271–276

9. Böhr, F.: Model Based Statistical Testing and Durations. In: 17th IEEE International Confer-
ence and Workshops on Engineering of Computer-Based Systems, IEEE Computer Society’s
Conference Publishing Services (CPS) (March 2010) 344–351

10. Bauer, T., Bohr, F., Landmann, D., Beletski, T., Eschbach, R., Poore, J.: From Requirements
to Statistical Testing of Embedded Systems. In: SEAS ’07: Proceedings of the 4th Interna-
tional Workshop on Software Engineering for Automotive Systems, Washington, DC, USA,
IEEE Computer Society (2007)

11. All4Tec: MaTeLo http://www.all4tec.net.
12. Dulz, W., Zhen, F.: MaTeLo - Statistical Usage Testing by Annotated Sequence Diagrams,

Markov Chains and TTCN-3. International Conference on Quality Software (2003) 336
13. Abbors, F., Bäcklund, A., Truscan, D.: MATERA - An Integrated Framework for Model-

Based Testing. In: 17th IEEE International Conference and Workshops on Engineering of
Computer-Based Systems (ECBS 2010), IEEE Computer Society’s Conference Publishing
Services (CPS) (March 2010) 321–328

14. Object Management Group (OMG): Systems Modeling Language (SysML), Version 1.1.
Technical report (November 2008)

15. Abbors, J.: Increasing the Quality of UML Models Used for Automatic Test Generation.
Master’s thesis, Åbo Akademi University (2009)

16. Conformiq: Conformiq Qtronic (2009) http://www.conformiq.com.
17. Abbors, F., Pääjärvi, T., Teittinen, R., Truscan, D., Lilius, J.: Transformational Support for

Model-Based Testing–from UML to QML. Model-based Testing in Practice 55
18. Conformiq: Conformiq Qtronic User Manual. (2009) 131–134

http://www.conformiq.com/downloads/Qtronic2xManual.pdf.
19. No Magic Inc: No Magic Magicdraw (2009) http://www.magicdraw.com/.
20. Nethawk: Nethawk EAST test executor (2008) https://www.nethawk.fi/.


