
Contracts and Games in Controller Synthesis for Discrete Systems

Ralph-Johan Back Cristina Cerschi Seceleanu
Åbo Akademi University and Turku Centre for Computer Science (TUCS),

Lemminkäisenkatu 14, FIN-20520 Turku, Finland
{backrj,ccerschi}@abo.fi

Abstract

This study proposes a method for constructing reliable
controllers for arbitrarily large discrete systems. The con-
troller is synthesized by finding a winning strategy for spe-
cific games defined by contracts. The discrete system model
is an action system, and the requirement is a temporal prop-
erty. We use the extended action system notation that al-
lows both angelic and demonic nondeterminism, such that
the game reduces to a competition between the angel, that
is, the controller, and the demon, that is, the plant, which
try to prevent each other from achieving their respective
goals. If the synthesis is possible, that is, if the angel has a
way to enforce the required property, the process ends with
finding the winning strategy of the angel, by propagating
backwards the computed precondition of the demon, with
respect to that property. This technique guarantees the cor-
rectness of the derived program. We illustrate our method
on a producer-consumer application.

1. Introduction

Controller synthesis amounts to developing a framework
for designing controllers that meet the requirements. Al-
though there are several solutions to solve this task for
discrete systems, most of them employ algorithmic tech-
niques [1, 11]. Model-checking, as an exhaustive verifi-
cation method, has proved efficient for small systems, but
rather difficult to apply for large systems, as it is expensive
in machine resources.

In general, verification requires a complete system
model, often deterministic, which is verified toward satis-
fying a set of properties. In contrast, synthesis starts with
an open model of the system, possibly nondeterministic.
This model acts as the high-level system description, use-
ful when the designer deals with complex requirements.

Our contribution stays mainly in constructing a method
for designing reliable discrete control software for arbitrary
systems, starting from a nondeterministic model.

We address the synthesis of the controller by represent-
ing the system as a game between two players, the con-
troller, called the angel, and the plant, called the demon.
Each of the players tries to achieve some specific goal at
the end of the game, and at the same time tries to prevent
the other from establishing its respective goal. Hence, con-
troller synthesis reduces to finding a strategy for the angel
to carry out control events, such that its goal is guaranteed
in spite of the nondeterministic demonic moves. The high-
level model is an action system [3] that allows each player to
take turns and sequentially make choices that determine the
next state of the system. The choices are regulated by a con-
tract [4]. Back and von Wright defined temporal properties
in the extended predicate transformer framework [7]. We
adapt their result and capture the requirement, or the goal
of the angel, as a safety property, modeled by an “always”
(�) temporal property. We show that the property holds, by
proving an invariant. In principle, the safety property does
not hold for every possible execution of the system, but it
should be enforceable by the angel. This is the first step of
the synthesis, that is, checking whether the angel is able to
play such that it enforces the required behavior. In fact, this
leads to the synthesis of controllers for invariance (that have
to keep the system inside a safe set of states). Controllers
for reachability (that have to lead the system to a set of de-
sired states) can also be synthesized within our framework
[2].

If we pass the first step described above, we aim fur-
ther to extract and implement the respective solution. We
show that moving toward an implementation of the an-
gel, with respect to the enforced property, reduces to de-
creasing, or sometimes even eliminating its nondetermin-
ism, with regard to that property. Pursuing our goal, we
rewrite the angelic contract by propagating backwards, the
computed weakest precondition of the demon, with respect
to the proved invariant. In this way, we remove the angelic
choices that, if taken, would violate the invariant. Thus, we
force the angel to choose only from the possibilities given
by the propagated information. Hence, we derive a control
strategy, or, in some cases, a wrapper of all possible con-

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

trol strategies, which guarantees a win for the angel with
regard to the property that we have considered, no matter
what moves it makes during the game. All this time, the
behavior of the demon remains unchanged. We work in the
framework of the refinement calculus [5, 13], hence, on the
way, we apply specific rules that guarantee the correctness
of the extracted strategy.

Viewing a reactive system as a two-player game is not
a new idea, it can be traced back to Ramadge and Wonham
[15], and Pnueli and Rosner [14]. They developed synthesis
algorithms for finite-state discrete systems, and showed that
finding a winning strategy for the game was equivalent to
synthesizing a controller that satisfied the requirements.

Recently, on-the-fly algorithms have been proposed to
solve the issue of controller synthesis for discrete and
dense-time systems, method restricted to finite-state sys-
tems [16]. The algorithms are fully on-the-fly, that is, a
strategy is returned as soon as it is found, thus the state
space does not necessarily have to be entirely generated. In
comparison, our general method can be applied as such, to
both infinite and finite systems. In both cases, the synthesis
relies on the same proof theory.

Asarin et al. also apply game techniques to construct
discrete controllers, and the system is modeled by a timed
automaton with trivial continuous dynamics [1]. The au-
thors develop fixpoint algorithms in order to compute the
maximal strategy. The method uses a “predecessor” oper-
ator that might imply a resource-consuming implementa-
tion, and also the exploration of possibly unreachable states.
Similar algorithms suited for model-checking are proposed
by Maler, Pnueli and Sifakis, who give a simple solution
to the problem, without generating lengthy automata trees
[12].

In the rest of the paper, we introduce our method for
solving the synthesis task, and we illustrate it on a producer-
consumer system.

2. Example: A Producer - Consumer Applica-
tion

Let us assume that we are given the task of designing
a controller for a First-In-First-Out (FIFO) memory buffer
(or stack) to which a specific producer process adds data,
while a particular consumer takes away data from the buffer,
yet respecting some predefined constraints. This kind of
pipelined controller could be useful, for instance, in the de-
sign of certain hardware devices.

Our goal is to ensure that the producer can always pro-
vide at least one new input to the buffer, that is, the buffer
is never full after the consumer has finished its round. We
choose to show our proposed methodology on a parame-
terized model, where the parameter is the capacity of the
buffer.

In the example that we present, we suppose that the pro-
ducer places items at one end of the buffer, and the con-
sumer removes items at the other end (Figure 1 a)). How-
ever, this is just a modeling point of view, since the method-
ology applies also if they operate at the same end of the
buffer (Figure 1 b)).

Producer

Consumer

Producer Consumer

a) b)

Figure 1. The producer-consumer example:
a) FIFO, b) Stack

The first step is to model the system. We start by imagin-
ing a game between the controller, represented by the con-
trollable variables, and the plant, modeled by the uncontrol-
lable ones. The players take turns and make moves with
respect to given rules. For instance, each time the system
executes, the controller has to change the input, by adding
at most two items at a time, into the virtual buffer. Hence, as
a first constraint, we impose the fact that, at each round, the
controller is compelled to throw “data” into the buffer (that
is, add one or two items), thus it can not skip. Similarly,
the disturbance, or the plant, may choose to remove at most
two items at a time, or leave the system state unchanged.
Another constraint, this time for the plant, is the fact that
the latter is not allowed to skip unless it has removed one
item from the buffer, in the immediate previous step. Also,
if the plant did not remove any item in the current round,
it has to remove two items, next round. Similarly, after the
consumer has removed two items, it is mandatory that it
removes only one item next time. Last but not least, if the
consumer removes one item in the current round, it can non-
deterministically choose to remove one or two items from
the buffer, or leave it unchanged. The players move sequen-
tially, and the observer sees the start of each round and the
end of it, without noticing the intermediate states.

The rules of the game are those described above, and the
goal of the controller is to find a way to keep some required
property true, during the execution of the system. In section

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

4 we model the mentioned behavior, formally.
The variables that describe the state of the system are as

follows:
• C : Nat - models the content of the buffer as updated

by the consumer, at the end of each round of the game; it
represents the value that is apparent to the external observer;

• r : {0,1,2} - represents the quantity removed by the
consumer, from the buffer;

• cap : Nat- models the capacity of the buffer, yet not
less than 4 locations (cap ≥ 4), for the buffer to be suffi-
ciently large.

The goal of the producer (controller) is a postcondition
formalized as an “always” temporal property:

�Q = �(0 ≤ C < cap),

that is, the controller loses the game if the consumer man-
ages to leave the buffer full, after its respective update. By
enforcing �Q, we ensure that there is a continuous activity
at the producer end of the buffer.

In spite of the partly nondeterministic moves of the con-
sumer (disturbance), the producer should be able to enforce
�Q. Having a way to keep it true during the entire execu-
tion of the system is equivalent to synthesizing a controller
for invariance.

In this paper, we focus on synthesizing such a controller,
within the mentioned setup.

3. Background

In this section, we give an overview of contracts, and in-
troduce action systems as a special kind of contract. The no-
tation and the main concepts are taken from previous work
of Back and von Wright [5, 6, 7, 8].

Our reasoning framework, refinement calculus, uses
higher-order logic as the underlying logic. We model pro-
gram statements by contracts. A contract S is built accord-
ing to the syntax below:

〈f〉 |{p} | [p] | S1 ; S2 | {x : = x′ | b} | [x : = x′ | b]
Here, p ranges over state predicates (Σ → Bool), f over

state transformers (Σ → Γ), and x : = x′|b over state rela-
tions (Σ → Γ → Bool), where Σ is the polymorphic type
of the program state. We write f.x for function f applied to
x.

The functional update, 〈f〉 changes the state according
to the state transformer f (for example, 〈x : = e〉 is a spe-
cial kind of update where the state transformer is expressed
as an assignment). We use the name skip for the identity
update. The assertion {p} leaves the state unchanged if p
holds and aborts otherwise, whereas the assumption [p] also
leaves the state unchanged if p holds, but terminates mirac-
ulously otherwise. In the sequential composition S1 ; S2,
contract S1 is first carried out, followed by S2.

The angelic nondeterministic assignment or angelic up-
date, {x : = x′ | b}, lets the angel choose the final state,
among those that satisfy the boolean condition b, whereas
in the demonic nondeterministic assignment (demonic up-
date), [x : = x′ | b], the choice is demonic. If no such state
exists, then the angelic update is aborting (i.e., it estab-
lishes no postcondition, not even true), while the demonic
update is miraculous (i.e, it establishes any postcondition,
even false). A sequence of an angelic and a demonic update
is interpreted as a game with the angel and the demon as
players.

A predicate transformer is a function that maps predi-
cates to predicates. We want the predicate transformer S
to map postcondition q to the set of all initial states σ from
which S is guaranteed to end in a state of q. Thus, S.q is the
weakest precondition of S to establish postcondition q. The
intuitive description of contract statements can be used to
justify the following definition of the weakest precondition
semantics:

(S1 ; S2).q = S1.(S2.q) (1)

{x : = x′ | b}.q = (∃x′ • b ∧ q[x : = x′]) (2)

[x : = x′ | b].q = (∀x′ • b ⇒ q[x : = x′]) (3)

These definitions are consistent with Dijkstra’s original
semantics for the language of guarded commands [10], and
with later extensions to it. We say that the angel has a strat-
egy to win an angel-demon game, if and only if the angel
has a way of making its choices inside S such that the pred-
icate q holds in the final state, regardless of how the demon
makes its choices.

Our language also permits recursive statements, in form
of (µ X • S) or (ν X • S), depending on whether contract
X can be invoked a finite number of times, or infinitely,
respectively. An important particular case of recursion is
the do−od loop, which is defined in the usual way: do g →
S1 od

∧= (µ X • if g then S1 ; X else skip fi).
In this paper, we consider the special case of an action

system, as a contract of the form

Sys(y) ∧= begin var x • S0 ; do g → S1 od end (4)

Here, Sys contains an initialization statement S0 and the
action statement S, which has a guarded form, S = g →
S1, where g is a boolean condition called the guard, and
S1 is the body of S. The initialization statement typically
introduces some local variables, x, for the action system,
and initializes these. Variables y are global to the action
system, and they are also assigned initial values by S0. The
action S is enabled, thus the action body S1 is executed,
when the guard g holds. Termination is normal if the exit
condition ¬g holds.

The predicate transformer semantics is based on total
correctness. Here, p {|S|} q ≡ p ⊆ S.q denotes the to-

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

tal correctness of statement S with respect to precondition p
and postcondition q.

We say that contract S is refined by contract S’ (written
S � S′), if S′ preserves all the correctness properties of S,
which is equivalent to S � S′ ≡ (∀q • S. q ⊆ S′. q).

A refinement rule is an inference rule that allows us to
deduce that a certain refinement S � S′ is valid. Adding
choices to an angelic update and removing choices from a
demonic update are both valid refinements. Equality “=” of
contracts can be used as refinement.

We will use the rule of propagating an assertion back-
wards, into an angelic nondeterministic assignment, which
is given below:

{x : = x′ | b} ; {q} = {x : = x′ |b ∧ q[x : = x′]} (5)

4. The Producer-Consumer Model as an Ac-
tion System

The process of controller synthesis is gradual, since it
starts with a nondeterministic model of the system, which
has to be further adjusted correctly, in order to be brought
closer to the implementable level. This justifies our deci-
sion to specify the actions of the producer, as an angelic
nondeterministic assignment. Thus, the controller behavior
is described as follows:

Prod = {C : = C′ |C < C′ ≤ C + 2} (6)

The boolean condition of the assignment ensures that the
producer adds one or two items to the buffer. Should we not
require this condition to hold, the basic angelic behavior is
not enforced.

As the consumer is partly uncontrollable, it behaves de-
monically. In consequence, it is modeled by a demonic non-
deterministic assignment:

Cons = [r, C : = r′, C′ |(r = 0 ⇒ r′ = 2) ∧
(r = 1 ⇒ r′ ∈ {0, 1, 2})∧
(r = 2 ⇒ r′ = 1) ∧
C′ = C − r′]

= [r : = r′ |(r = 0 ⇒ r′ = 2) ∧
(r = 1 ⇒ r′ ∈ {0, 1, 2})∧
(r = 2 ⇒ r′ = 1)] ;
C : = C − r (7)

The contract Cons regulates the moves of the consumer,
as mentioned in section 2.

The producer is responsible to enforce the safety prop-
erty �Q, formalized previously, that is, at each turn, it
should choose an appropriate number of items to add to the
buffer, such that the latter can never be left fully occupied,

by the consumer. The property should be guaranteed, re-
gardless of the demonic nondeterministic moves.

Further, we model the producer and the consumer, to-
gether, as the action system below, where we substitute re-
lation (6) for Prod, and (7) for Cons. The system termi-
nates upon the completion of the process. This is decided
by an external device, modeled by contract Dev. However,
we choose here to model a non-terminating loop. At will,
the guard true can be replaced by a non-trivial one.

Buffer(r, C, cap : Nat) =
begin
r := 1 ; C := 6 ; cap := 8;

do true → Prod ; Cons ; Dev od
end

(8)

The discrete controller (that is, the producer) of the
buffer will result out of certain transformations of the non-
deterministic behavior of the angel, given by (6), into a
more deterministic one, such that the safety property �Q
is enforced. During the process, the demonic behavior stays
unchanged.

5. Synthesis of Logic Controllers for Discrete
Systems

As already mentioned, the process of controller synthesis
can be seen as a game between two players, the controller
and some disturbance. We assume that the behavior of the
disturbance is hostile, thus we would like the controller to
guarantee the requirements despite the action of the distur-
bance. Therefore, the controller is the angel, and the dis-
turbance or plant is the demon. During the game, the goal
of the angel is to force the system to remain inside a certain
“good” subset of the state space, whereas the demon’s goal
is to force the system to leave this same subset.

In our approach, the discrete system is modeled by an ac-
tion system given by (4). We define the action of the loop,
as S

∧= g → A;D. Here, A contains angelic choices and D
demonic ones. The values of the variables are chosen either
by the controller or by the plant. The contract A that models
the controller is, in our case, an angelic nondeterministic as-
signment of the form {x: =x′ | cd}, which should be further
transformed into an implementable construct. The plant is
modeled by statement D, which describes the demonic be-
havior. The requirement is encoded as a safety property,
expressed as a subset of the state space.

The goal of the controller is to continually observe the
plant, and force control events at appropriate times, such
that the plant always remains within the safe set of states.

Given the action system (4), and assuming that at each
round of the game, sequential angelic and demonic choices
determine the next state of the game, we can intuitively split

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

the synthesis problem into two subproblems:
(a) Enforcing the safety (or liveness) property, equivalent

to calculating the largest set of initial states from which the
angel can always win with respect to that property;

(b) In case this set exists, constructing a controller that
renders it, equivalent to extracting a winning strategy, or a
set of winning strategies, for the angel.

5.1 Enforcing the Required Property

Designing a controller for invariance implies that we
specify some safety property that should be enforceable by
the angel during system execution. Here, we express this
property as an “always” (�) temporal property.

In the following, we show how we can compute the pre-
condition for the angel to enforce the property �q in the
action system Sys, given by (4), where the contract S is of
the form S = g → A ;D. Applying the result proved in [7],
to our case, we get the following:

p {|do g → A ; D od|} �q
≡ p ⊆ (νX • {q} ; [g] ; A ; D ; X).false

(9)

where ¬g is the exit condition, which is tested before enter-
ing the loop.

Formula (9) shows that we can reduce the question of
whether a temporal property can be enforced for an action
system, to the question of whether a certain goal can be
achieved. In this case, the goal false cannot really be es-
tablished, so success can only be achieved by miraculous
termination, or by non-termination caused by the demon.

In [2], we also introduce the method for synthesizing
controllers for reachability, within our framework. Then,
the angel has to guarantee liveness properties, modeled as
“eventually” (♦) properties.

Assuming the action system in a recursive form, Back
and von Wright show, in [7], how to prove enforcement of
temporal properties by using usual invariant-based methods,
rather than the more costly fixpoint computation algorithms.
Thus, in order to make the proof of a safety property practi-
cal, we adapt their result to our case, as shown in Lemma 1.
The corresponding rules for proving liveness properties are
given in [2].

Lemma 1 Assume the following action system:

Sys(y) = begin var x • S0 ; do g → A ; D od end

Then, always-properties can be proved using invariants:

p ⊆ I g ∩ I {|A ; D |} I I ⊆ q
p {| do g → A ; D od |} � q

where p, q are predicates. �

The rule states that proving the always property for the
loop of the action system Sys, with the precondition of the
loop established by the initialization, is in fact equivalent
to showing that a predicate I ⊆ q is an invariant of Sys.
Therefore, proving the safety property q by proving an in-
variance property subsumes the following obligations:

1. Invent a predicate I , such that I ⊆ q holds.
2. Prove that I is established by the initialization S0, that

is, p ⊆ I , where p is the predicate that holds after S0.
3. Prove that I is preserved by the action g → A ;D, that

is, g ∩ I ⊆ A.(D.I).
It then follows that, if the above conditions hold, the an-

gel has a winning strategy, A, thus a controller for invari-
ance can be synthesized.

5.2 Extracting the Control Strategy

After having established that the angel can enforce a cer-
tain behavior, the next step is to extract its respective win-
ning strategy.

In the following, we show how to reduce the angelic non-
determinism, with respect to the enforced property. This is
achieved by finding a statement A′ that contains fewer an-
gelic choices than A.

Given the fact that I is an invariant of the action system
Sys, as defined in Lemma 1, we know that the contract

S = {I} ; A ; {D.I} ; D ; {I}
can replace A ; D inside the body of the loop, since S
preserves the invariant, trivially. In consequence, we can
rewrite A by using the information supplied by {D.I}, such
that we force the angel to restrict its choices only to the ones
that establish I .

In our case, A = {x : = x′ | cd}, thus, we can assert
D.I after A, such that we get the contract A ; {D.I}. Next,
we use this assertion to further refine the new contract, by
propagating {D.I} backwards. In this way, we strengthen
the boolean condition inside the angelic nondeterministic
assignment. As a result, the angelic choices are restricted
according to the propagated information. We apply the re-
finement rule (5), as follows:

{x : = x′ | cd} ; {D.I}
= (10)

{x : = x′ |cd ∧ D.I[x : = x′]}
In principle, this is a transformation that does not actu-

ally favor our agent, it rather makes the demon happy, since
it decreases the set of final states that the angel can choose
from. The demon can still achieve its goals, while the an-
gel’s choice possibilities are being removed. However, the
refinement in the specified context makes the behavior of
the angel more predictable. Moreover, the transformation

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

given by (10) preserves the invariant I proved by means of
Lemma 1.

Further, we might need to refine A′ = {x : = x′ |cd ∧
D.I[x : = x′]} into a program. For this, we apply suitable
refinement rules [5], which guarantee that the implementa-
tion preserves the correctness of the model.

6. Applying the Synthesis Method

We return to our case-study, and start the controller syn-
thesis by checking whether the safety property �Q, given
in section 2, as �(0 ≤ C < cap), can be enforced by the
producer. In case this is possible, we move along the line
established above, to extract the control strategy.

Prod.(Cons.I)
≡ {substitute contract Cons}

Prod.([r : = r′ |
(r = 0 ⇒ r′ = 2)∧
(r = 1 ⇒ r′ ∈ {0, 1, 2})∧
(r = 2 ⇒ r′ = 1)] ; C = C − r).I

≡ {rules (1), (3)}
Prod.(∀r′ •

((r = 0 ⇒ r′ = 2)∧
(r = 1 ⇒ r′ ∈ {0, 1, 2})∧
(r = 2 ⇒ r′ = 1))

⇒ (I[C : = C − r])[r : = r′]
≡ {substitute contract Prod, simplify}

{C : = C′ |C < C′ ≤ C + 2}.
((r = 0 ⇒ 2 ≤ C ≤ cap)∧
(r = 1 ⇒ 2 ≤ C ≤ cap − 1)∧
(r = 2 ⇒ 1 ≤ C ≤ cap − 1))

≡ {rule (2)}
(∃ C′ • C < C′ ≤ C + 2∧

((r = 0 ⇒ 2 ≤ C′ ≤ cap)∧
(r = 1 ⇒ 2 ≤ C′ ≤ cap − 1)∧
(r = 2 ⇒ 1 ≤ C′ ≤ cap − 1)))

⊇
((r = 0 ∧ 0 ≤ C < cap)∨
(r �= 0 ∧ 0 ≤ C ≤ cap − 2))

Figure 2. Proof of the invariant

Given the system model as the action system Buffer de-
fined by (8), the steps that we take are as follows:

• A1) Firstly, we find a predicate I ⊆ Q. Thus, we
choose I as follows:

I = (r = 0 ∧ 0 ≤ C < cap) ∨
(r �= 0 ∧ 0 ≤ C ≤ cap − 2)

Proving that I ⊆ Q is straightforward.
• A2) Next, I has to be an invariant of the action system

Buffer. Note that the contract Dev preserves the invariant
(I{|Dev|}I holds), since it does not interfere with the vari-
ables mentioned in I . The invariant is trivially established

by the initialization statement:

p

=
r = 1 ∧ C = 4 ∧ cap = 8

⊆
I

Then, we prove that I is preserved by the action of the
loop, that is,

I ⊆ Prod.(Cons.(Dev.I)) ⇐ I ⊆ Prod.(Cons.I).

The proof is shown in Figure 2. We have also proved the
invariant in the Prototype Verification System (PVS) [9]. In
consequence, irrespective of the chosen value of r, the pro-
ducer has a way of enforcing �Q, hence to keep the buffer
not fully filled, at the end of each round of the game.

• B) In the following, we apply rule (10), to refine the
contract Prod, given by (6), by propagating backwards the
assertion

{Cons.I}
=

{(r = 0 ⇒ 2 ≤ C ≤ cap) ∧
(r = 1 ⇒ 2 ≤ C ≤ cap − 1) ∧
(r = 2 ⇒ 1 ≤ C ≤ cap − 1)},

such that all the possible choices, except for the ones that
establish I , are removed.

Below, we show the derivation that leads to the control
strategy of the producer, where any of its choices satisfies
I:

{C : = C′ | C < C′ ≤ C + 2} ; {Cons.I}
= {rule (10)}

{C : = C′ |C < C′ ≤ C + 2 ∧
(r = 0 ⇒ 2 ≤ C′ ≤ cap) ∧
(r = 1 ⇒ 2 ≤ C′ ≤ cap − 1) ∧ (11)

(r = 2 ⇒ 1 ≤ C′ ≤ cap − 1)}
=

Prodf

The contract Prodf , given by (11), represents the win-
ning strategy of the producer to always keep Q ≡ true, dur-
ing execution. Concretely, if one replaces C′ with C +1, or
C + 2, he/she knows exactly how to move next, that is, to
add one or two items to the buffer, depending on the value
of C, previously updated by the consumer. The strategy en-
sures a win for the angel, for whatever choices selected by
the demon.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

Thus, by strengthening the boolean condition of the
angelic nondeterministic assignment Prod, given by (6),
through the information that we have got by propagating
backwards the weakest precondition of contract Cons with
respect to postcondition I , we have eliminated the angelic
choices that would not establish I , such that, in its new
form, the producer can blindly select its moves, yet satis-
fying �Q, which has been our design target. Now, we can
safely replace Prod by Prodf in the action system Buffer.

An interesting extension of the analyzed example is to
try to keep the content of the buffer within certain specified
limits. In this case, additional information, which describes
the conditions at the other end of the buffer, should be also
formalized and propagated. Extending the ideas introduced
here to a more general producer-consumer problem would,
indeed, lead to the construction of a correct and reliable
template for such a class of systems, where not only the ca-
pacity, but also the number of inputs and outputs, that is, the
choices of the producer and the consumer, respectively, are
parameterized. Both issues are subjects of further studies.

7. Conclusions

In this paper, we have tackled the problem of discrete
controller synthesis, by modeling the system as an action
system, and the synthesis process as a two-player game.
The players are the controller, called the angel, and the
plant, called the demon, which make moves sequentially,
according to some contract statement. The goal of the an-
gel is a safety temporal property. The angel-demon game
formalization in the weakest precondition framework was
introduced by Back and von Wright [4].

In general, relationships between agents may involve
both cooperation and competition. To make the synthesis
possible, in our case, the angel competes with the demon.

We have started with an angelic nondeterministic assign-
ment as the model of the controller, and a demonic update
for the behavior of the plant. The synthesis subsumes two
main steps. Firstly, we check whether the angel can en-
force the required behavior (A1, A2 of section 6 show how
the first step is applied in practice). We use a certain in-
ference rule that reduces proving safety properties to in-
variance proofs. If this first step holds, we move toward
extracting the safe set of strategies, or, sometimes, toward
implementing a specific control strategy (step B in section
6).

In order to restrict the angelic choices to the ones that es-
tablish the safety property, we have propagated backwards
the assertion of the weakest precondition of the demon, to
establish the invariant, through the angelic nondeterministic
assignment. This method provides us with means of rewrit-
ing the angelic nondeterministic assignment, by using the
information that we obtain from the fact that the required

safety property is enforced on the initial model. Hence, we
replace the initial angelic update by a new contract that re-
fines the former, in this context. The end-result is a correct-
by-construction controller, tailored to the required behavior.

We believe that our method is particularly useful when
the discrete system is as much constrained as it is nondeter-
ministic. Moreover, the technique proved well suited for the
situations when the game lasts more than one round, that is,
neither the demon nor the angel have a one move strategy
to win the game.

An illustrative case-study has shown the application of
the proposed approach, in practice. Due to Lemma 1 and
the method described in section 5.2, we have synthesized
an invariance controller for a producer - consumer - like
system.

Distinctly from the fixpoint symbolic synthesis algo-
rithms proposed in [1, 11, 12], our games-based method is
fit for interactive theorem proving (PVS [9], HOL etc.). To
support this claim, we have proved the invariance property
of the producer-consumer system, in PVS. Thus, our ap-
proach works for models with unbounded variables, too.

Future research targets the development of games-based
synthesis techniques for real-time control systems, within
our framework.
Acknowledgments. The authors thank Viorel Preoteasa
and Tiberiu Seceleanu for their comments on this paper.

References

[1] R. Asarin, O. Maler, and A. Pnueli. “Symbolic con-
troller synthesis for discrete and timed systems”. In
P. Antsaklis, W.Kohn, A. Nerode, and S. Sastry, edi-
tors, Hybrid Systems II, volume 999, Lecture Notes in
Computer Science, Springer-Verlag, 1995.

[2] R. J. R. Back and C. Cerschi Seceleanu. “Games-
based Controller Synthesis for Discrete Systems”.
Technical Report nr. 594, TUCS, 2004.

[3] R. J. R. Back and K. Sere. “Stepwise refinement of
action systems”. Structured Programming, 12:17-30,
1991.

[4] R. J. R. Back and J. von Wright. “Games and
winning strategies”. Information Processing Letters,
53(3):165-172, 1995.

[5] R. J. R. Back and J. von Wright. Refinement Calculus:
A Systematic Introduction. Springer-Verlag, 1998.

[6] R. J. R. Back and J. von Wright. “Contracts, games
and refinement”. Information and Computation,
156:25-45, 2000.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

[7] R. J. R. Back and J. von Wright. “Enforcing behav-
ior with contracts”. Technical Report nr. 373, TUCS,
2000.

[8] R. J. R. Back and J. von Wright. “Verification and
refinement of action contracts”. Technical Report nr.
374, TUCS, 2000.

[9] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Sri-
vas. “A tutorial introduction to PVS”. In WIFT’95
Workshop on Industrial-Strength Formal Specification
Techniques, April 1995.

[10] E. W. Dijkstra. A discipline of programming.
Prentice-Hall International, 1976.

[11] G. Hoffmann and H. Wong-Toi. “Symbolic synthe-
sis of supervisory controllers”. In Proceedings of
the American Control Conference, Chicago, IL, pages
2789-2793, June 1992.

[12] O. Maler, A. Pnueli, and J. Sifakis. “On the synthesis
of discrete controllers for timed systems”. In Proceed-
ings of STACS’95, E. W. Mayr and C. Puech (Eds.),
volume 900 of Lecture Notes in Computer Science,
229-242, Springer-Verlag, 1995.

[13] C. Morgan. Programming from Specifications.
Prentice-Hall International, 1998.

[14] A. Pnueli and R. Rosner. “On the synthesis of a reac-
tive module”. In Proceedings of the 16th ACM Sympo-
sium on Principles of Programming Languages. 179-
190, 1989.

[15] P.J. Ramadge and W.M. Wonham. “Supervisory con-
trol of a class of discrete event processes”. SIAM Jour-
nal of Control and Optimization 25 206-230, 1987.

[16] S. Tripakis and K. Altisen. “On-the-fly controller syn-
thesis for discrete and dense-time systems”. In World
Congress on Formal Methods, FM’99, 1999.

Proceedings of the 11th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’04)
0-7695-2125-8/04 $ 20.00 © 2004 IEEE

