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Abstract. In most computer science curricula, formal reasoning about program
correctness is taught separately from practical programming, and is thus by most
students considered a purely theoretical activity. It has been a challenge to con-
vince students of the practical applicability of formal methods. We present here
an effort to apply Invariant Based Programming (IBP), a visual and practical
program construction and verification methodology, in an introductory formal
methods course as part of a pilot study at Åbo Akademi University. The course
introduces a minimum of notational overhead, and allows the student to reason
about correctness using mathematical concepts with which they are already fa-
miliar (such as set theory). We have used a programming environment with the-
orem prover support (SOCOS) to increase student confidence in the correctness
of the program components that they construct. We evaluate the course using a
mixed method approach, and provide data which show that IBP is well suited for
teaching introductory formal methods.

1 Introduction

In 1989, Edsger Dijkstra called for giving formal methods a higher profile in the com-
puter science (CS) curriculum [18]. His proposal was the starting shot for an extensive
debate on CS education and the role of formal methods in it. Some scientists agreed
with Dijkstra’s suggestion, whereas others disagreed [16]. Two years later, David Gries
followed with basically the same message, stating that undergraduates should learn for-
mal methods as a fundamental topic [24]. Ever since, CS academics have debated the
importance of encouraging formal practices in CS education.

In this paper, we present a practical invariant based approach to introducing cor-
rectness in undergraduate CS courses. The approach is highlighted by a diagrammatic
notation and emphasizes formal reasoning. Introducing correctness early in the CS cur-
riculum and the particular approach we have used naturally raise some basic questions:

– How do students experience learning formal methods using this approach?
– How applicable is the use of tool support in the course?
– What difficulties do students encounter when learning formal methods using this

approach?



The contribution of this paper lies in addressing these questions as well as in de-
scribing the invariant based approach and presenting a model for how it can be used in
education. We begin by discussing the role of formal methods in education in section
2, after which section 3 describes the invariant based approach. In section 4, we present
the educational setting. The study is presented in section 5, and the results are put for-
ward in section 6. After discussing the findings in section 7, we conclude the paper with
some final observations and suggestions for future work in section 8.

Although this study takes place in the context of CS education, we believe that for-
mal methods play an important role for software engineers as well. In our opinion, the
mathematical foundations of programming and knowledge about how mathematics can
be used to improve reliability and robustness are essential for anyone designing and cre-
ating software, regardless of whether they have a degree in CS or software engineering.

2 Formal Methods in Education

Many attempts to introduce program correctness to novice CS students have been made
(e.g. [1, 15, 26, 33, 37, 38]), but convincing students of the value of formal methods is a
challenge. Formal techniques are commonly perceived as difficult and requiring math-
ematical sophistication. Moreover, ’[t]he computing education community has adopted
a curriculum strategy of dividing curricula elements into areas of ”theory” and ”prac-
tice”. This causes both faculty and students to view the theory of computing as separate
and distinct from the practice of computing.’ [1, p. 79] As an effect of this separation
students get only little exposure to correctness concepts.

When formal verification is taught as an activity independent from the program-
ming process [27], the students get the impression that the formal approach is merely
applicable in theoretical courses. Students are more likely to be motivated by gaining
skills that they know are relevant, bring immediate benefits and are valued in industry.
These preferences are also used by CS faculty as arguments against teaching formal
methods [31]. If such teachers do teach something related to the topic, they will most
likely not be enthusiastic or show a true interest in what they are teaching. And a ”I
don’t really believe in this, I just have to teach it” mentality hardly goes far in having a
positive impact on students’ attitudes to or experiences of the topic at hand.

The nature of software construction may also reduce the experienced need for for-
mal methods. It is completely possible to break design rules when constructing software
and still end up with a working program, and it has become more or less the norm in
industry to release buggy software. When well-known companies can get away with not
writing correct programs, it is not easy to convince novice CS students that they need
to do it.

As a result of the general lack of interest in formal methods, it is common that
students do not apply what they have learnt in the theoretical courses when doing actual
programming. Instead, novices learning to program go about it in a manner resembling
a ”trial and error” activity, resorting to ”endless debugging” with the approach being
”try it and see what happens” [12, p. 63]. Although testing and debugging certainly
have their place when learning to program, it is essential that CS students learn that



these approaches can never prove that a program is correct, and that other methods are
available for that purpose. In the following, we outline one such approach.

3 Invariant Based Programming

Invariant based programming (IBP) is an approach to constructing correct programs,
where not only pre- and postconditions, but also loop invariants are written before the
actual code. IBP is not new — it was studied already in the 1970s by one of the authors
[4, 5] and similar ideas were proposed by for instance Reynolds [29] and van Emden
[35]. In 2004, Back [6] revisited the topic and has since then worked on developing IBP
into a more practical hands-on method.

In IBP, a program is constructed and verified at the same time. The notion of an
invariant is generalized to a situation. Each situation is a collection of constraints and
describes the set of states that satisfy these constraints. Thus, a loop invariant is a sit-
uation, as well as a precondition or a postcondition. An invariant based program may
have many different situations and is not restricted to single-entry, single-exit control
structures.

In essence, IBP provides a visual representation of a program. A variety of graphi-
cal programming/pseudocode formats have been proposed in the literature [13, 30], and
all of these have one common goal: “to provide a clear picture of the structure and
semantics of the program through a combination of graphical constructions and some
additional textual annotations.” [30, p.3] To our knowledge, all of these have, however,
focused on representing control flow and data flow. IBP, on the other hand, describes
programs from another perspective as it emphasizes the invariant properties of the pro-
gram data structures, and thus makes it possible to reason about the correctness of the
constructed program in a rather straightforward manner. This is all accomplished with-
out sacrificing either clarity or expressiveness of the diagrams.

3.1 An Illustrating Example

We will here exemplify the work flow for developing invariant based programs by con-
structing a program that implements the selection sort algorithm. We use a cursor to
traverse an array from left to right, and for each position we find the smallest element
to the right of the cursor and swap that element with the one pointed at by the cursor.
After each swap the cursor is advanced, and the array is sorted when the entire array
has been traversed.

We start the process by drawing figures illustrating the basic data structures involved
and how they will change during execution of the algorithm. Drawing the figures is
an essential step of the IBP work flow, as the figures describe the algorithm at work
and thus help the programmer get a feeling for the behavior of the algorithm. As this
example illustrates, the figures also aid in identifying the situations (invariants) of the
program.

The first figure (Fig. 1) illustrates the specification (the pre- and postcondition),
which helps us identify the initial and final situations. As situations are considered
sets of states, the final situation is a subset of the initial situation where an additional



constraint, Sorted(A, 1, n), is satisfied. We use a Venn-like diagram, a nested invariant
diagram, to represent the program and the strengthening of situations. Our first diagram
is shown in Fig. 2. Due to the nesting, all constraints in an outer set implicitly also
hold in all of its subsets and need therefore not be repeated (for instance, n : integer
holds in both the initial and the final situation). Dashed arrows are used to indicate
the computation that we want to define and are labeled with a potential guard and the
variables that may be changed in the computation.

A

1 2 3 n

Permutation(A,A0 )

A

1 2 3 n

Permutation(A,A0 )

sort the array

changing only A

Sorted(A,1,n)

n: integer
A: array 1..n of integer
1 ≤ n
Permutation(A,A0 )

Sorted(A,1,n)

A

Fig. 1. Visualization of the specification Fig. 2. Corresponding invariant diagram illus-
trating the initial and final situations

In the same manner as the final situation was identified as a subset of the initial one,
we introduce new situations by adding new constraints to the ones present in the more
general situations. We further develop the figure of the algorithm at work by introducing
the intermediate situation (Fig. 3). As is shown in the corresponding diagram (Fig. 4),
this newly inserted situation is a subset (i.e. a constrained version) of the initial situation.
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A: array 1..n of integer
1 ≤ n
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Sorted(A,1,i-1)
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[j = n]

A, i 

Fig. 3. Sorting program with one loop Fig. 4. Invariant diagram with the intermediate
situation inserted



Whereas dashed arrows illustrate what we want to accomplish, we use solid ones
to indicate computations that we have already planned and defined. We call these solid
arrows transitions. Each transitions is labeled with a potential guard and the program
statements executed when the transition is carried out. We have to check that each tran-
sition preserves the situations as follows: assume that we initiate execution in the source
situation of a transition and that all the constraints hold for the starting state. Also as-
sume that we reach some target situation after executing the statements for the transition
(there may be more than one possible target situation). Then all the constraints of the
target situation must hold for the final state. We say that a program is consistent if each
transition preserves all situations. Consistency is checked for each new transition that
we add to the diagram, i.e. we make sure that the newly added transition preserves all
situations.
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A[i],A[k):= A[k],A[i]

i:= i+1

j,k:= i,i

Fig. 5. Complete algorithm at work

We still need one more loop to find the smallest element in the remainder of the
array. Again, we use figures as a tool to help us get an idea of how the algorithm works
(Fig. 5). The corresponding invariant diagram (Fig. 6) represents our final program.

When all situations and transitions have been added to the diagram, we still need
to check that no infinite execution loops exist, i.e. that the program terminates. We
introduce a termination function (one for each loop), usually an integer function that
is bounded from below and whose value is decreased before re-entering the situation.
Moreover, the termination functions must be chosen so that no inner loop modifies the
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Fig. 6. Final invariant diagram

value of the termination function of an outer loop. The termination functions are written
in the right upper hand corner of the respective invariant (Fig. 6).

Finally, we must check that the program is live, i.e. that termination only occurs in
final situations. In practice, this means that we must make sure that for all situations
in the diagram (except for the final ones) the available out-going transitions cover all
possibilities.

An invariant based program is correct if it satisfies the three criteria above, i.e. it 1)
is consistent, 2) terminates and 3) is live. For a more in-depth presentation of IBP as a
method, see [6–8].

3.2 Tool Support for IBP

Invariant based programs can be constructed using only pen and paper, and in many
cases this is the best way for initially drafting a program. However, even small programs
generate a large number of verification conditions, many of which are rather trivial and
can be automatically proved or greatly simplified by state of the art theorem provers.
Additionally, the (considerable) risk of human error in manual proofs and specifications
can be mitigated with proper tool support. Finally, we want to be able to execute the
diagrammatic representation directly, without first having to hand translate it into some
existing programming language.

SOCOS [9] is a graphical programming environment for the construction and verifi-
cation of invariant based programs (Fig. 7). It analyzes invariant diagrams semantically,
and generates correctness conditions which are sent to external proof tools (currently
Simplify [17] and PVS [32] are supported). SOCOS also compiles invariant diagrams
to executable Python code.



Fig. 7. The SOCOS IBP Environment.

4 IBP in Education

4.1 Motivation

The invariant property and the benefits from using it were presented in quite a natural
and easily understandable way already in the original articles by Floyd [21] and Naur
[28] on proving the correctness of computer programs. Introducing invariants early in
the CS curriculum has been studied previously [2, 3, 20, 23], and the main message in
all of these studies is that program correctness and loop invariants can be introduced at
an early stage of CS education provided that the way in which it is done is adapted to
the level of the students.

Starting in 2004, the development of IBP has been intertwined with informal experi-
ments on teaching the method to see how it could be made more applicable in education.
We have organized and observed 14 sessions with, in most cases, two CS students or
academics having no prior experience of IBP. Each session started with an introduc-
tion to the approach, after which the participants were to solve a given problem using
IBP on the blackboard. In spring 2005, a course on IBP was given to CS PhD students.
These experiments have provided us with valuable feedback on the approach (positive
experiences, difficulties, places for improvements etc) and two years later, the approach
was deemed to be mature enough to be introduced at undergraduate level for the first
time.

4.2 Undergraduate IBP Course

In spring 2007, an elective course covering the basics of IBP was developed and given
to CS students at Åbo Akademi University (Turku, Finland). Our main motivation was



to address the common issues discussed in section 2 aiming at 1) changing the image
of formal methods as being difficult (requiring highly advanced mathematics), uninter-
esting and of no use in practice and 2) showing that formal reasoning about program
correctness can in fact be done in a practical manner with only fundamental logic skills.
The goal of the course was for students to develop their programming and algorithmic
thinking skills at the same time as learning about program correctness and formal rea-
soning. Another main design criteria was to make the course interesting and accessible
so that it would inspire and motivate students to learn about correctness concepts.

The course is part of a project at our department aiming at designing a three course
“course bundle” that would give all students a solid foundation in both the theory and
practice of programming already during their first study year. The bundle includes,
in the following order, a course covering “traditional” practical programming using a
“simple” language (in our case, Python), a course on logic, and one that covers the math-
ematical foundations of programming (the IBP course). Together with the introductory
course in mathematics (which introduces set theory that is needed for understanding
the diagrammatic notation), the two former courses provide the students with all the
background knowledge they need in order to successfully complete the IBP course.

The course on logic introduces structured derivations, which is a calculational proof
format developed by Ralph-Johan Back and Joakim von Wright [10, 11]. They have
extended the derivational style approach to proofs as presented by Dijkstra [19] and
van Gasteren [36] by adding nested derivations (subderivations), allowing inferences
to be presented at different levels of detail. The approach provides simple yet precise
rules for how to write mathematical derivations and proofs that are easy to read as each
step in the proof is clearly motivated. The goal of the course on logic is for students to
learn 1) a clear format for writing well structured proofs that they know how to apply in
practice and 2) basic propositional and first-order logic. Structured derivations are well
suited for constructing proofs for invariant based programs, and using the same format
in the IBP course was a natural choice.

Course Syllabus The course was given in an interactive format, emphasizing student
activity throughout the course. All in all, the course included 17 sessions (90 minutes
each) out of which 11 were used for lectures, and six for practical exercise. The main
part of the course was taught without tool support; the SOCOS environment was only
used in the four final sessions.

During each practice session, the students were to solve a set of IBP-related tasks,
such as constructing a program, proving a certain transition or checking the correct-
ness of a given program. Three of the assignments were reviewed collectively in class,
whereas three were handed in and checked by the teacher who then gave detailed indi-
vidual feedback for all tasks.

Integrating SOCOS in the Course Although the main part of the course was given
without tool support, we felt a need to include SOCOS as the burden of organizing
proofs quickly becomes noticeable even for relatively simple programs. Also, CS stu-
dents are accustomed to using specialized software (e.g. compilers, interpreters, editors)
in course work, and may regard programs and proofs constructed with pen and paper as



mere academic exercises. Actually being able execute the program may give the student
some additional sense of accomplishment and thus act as a motivating factor.

Incorporating SOCOS in the course also made it possible for us to evaluate it in the
context of teaching introductory formal methods, as well as to identify potential issues.
The students were not expected to be familiar with PVS (mechanical theorem proving
requires a separate course), so only the automatic prover was used in the course. In
situations where the prover failed, students were required to complement the solution
with a manual proof. The goal was to reduce the busy-work of proving simple, repetitive
conditions, so that we were able to give more complex programs as exercises.

Examination The course examination consisted of active class participation, passed
assignments and a final exam. The exam included programming problems similar to the
ones in the assignments as well as questions that tested the students’ understanding of
invariant based programs. The students did not have access to the SOCOS environment
on the exam.

5 The Study

Methodology The aforementioned studies on loop invariants in education ([2, 3, 20,
23]) include no evaluation of the approaches presented. Our goal was not only to present
a new approach but also to evaluate its use and applicability in practice. We conducted a
descriptive case study aiming at addressing the research questions presented in section
1, at the same time gaining insight into whether, and in that case how, the course and
the method should be improved.

The study follows the principles of action research [14]. In action research, prac-
titioners in a field improve practice by doing or changing something and reflecting on
the results. The improvement can be in three areas: ”improving a practice; improving
the understanding of a practice [...] and improving the situation in which the practice
takes place” [14, p.106]. The main purpose is to collect data and experience that help in
gaining a better understanding of the practice.

Settings The undergraduate course was elective but still attracted 16 active participants
(students that handed in at least one assignment). Nearly half were first or second year
students with no background in formal methods. One of the students was absent for over
half of the course due to medical treatment. Ten students participated in the SOCOS part
of the course.

Data Collection Data were collected using pre- and post course questionnaires, obser-
vations, hand-in assignments and a final exam. Moreover, eight students were selected
for semi-structured interviews one month after the exam. In this paper we will focus
the analysis on the post course questionnaire, the assignments, the exam and the in-
terviews. This mixed method approach with triangulation [25] was used to arrive at a
multifaceted picture of the students’ opinions and attitudes about the course in general



as well as the applicability of SOCOS. The use of different research instruments also in-
creases the trustworthiness of the results, as it allows the researcher to look at the same
phenomenon from several perspectives and thus arrive at a more complete account.

The post course questionnaire included both multiple choice questions and open
ended ones asking the students about their opinions about the course in general as
well as about IBP and SOCOS. In the multiple choice questions, Likert-type scales
were used. Solutions to homework assignments were sent directly to the teacher by e-
mail. Grading for the SOCOS assignments was based on the correctness of the solution
(amount of verification conditions proved) and how precisely the pre- and postcondi-
tions were expressed.

The results reported on in this paper are based on the analysis of 12 post course
questionnaires, 8 interviews and 13 sets of assignments and exams.

6 Results

6.1 Questionnaire Data

The answers to each open-ended question were first read and categorized as either posi-
tive or negative. In cases where the answer included both positive and negative aspects,
the answer was divided into two parts accordingly. Next, all answers were reread and
classified according to common themes representing the overall views of the twelve stu-
dents (S1 - S12). The categories found with regard to what the students had experienced
as 1) beneficial and useful, and 2) difficult in the course are listed below. Each category
is exemplified with excerpts from the answers. The citations have been freely translated
from Swedish by one of the authors.

Experienced Benefits

1. Introduction to program correctness and formal verification
Knowledge about proofs and correctness will hopefully lead to better programs
(S2)
To learn a method for verifying programs formally (S7)
A good introduction to formal verification and how tools can be used in that
context (S9)
Helps remove errors in the algorithm that could lead to bugs (S7)

2. A practical method for introducing program correctness
IBP seems to be a more practical verification approach than other methods I have
seen (S4)
IBP summarizes the proof conditions in a good way (S4)
IBP is intuitive (S8)

3. Introduction to a more abstract view of programming
The course is about program design. You get a specification and design a correct
program based on that (S3)
Learning to think about how a program works in general, without resorting to a
given programming language (S3)



Learned to think about a program as states and transitions instead of merely as
transitions as is usually the case (S10)

4. More tangible overview of a program’s structure
Learning to draw a program makes it easier to see its structure (S12)
Makes it easy to keep track of the various parts [pre- and postconditions,
invariants] of a program (S4)

5. The course arrangements
Good teaching material, methods and lectures (S9)
The assignments helped me learn (S11)
All topics were thoroughly covered (S5)

6. New and useful contents
I learned something new (S8)
The things I learned in the course will be useful in the future, especially in further
studies (S9)

Experienced Difficulties

1. Syntax and notation
It is difficult to formulate one’s programs according to the standard (S8)
Since I have programmed previously, e.g. the Java way of expressing things is
quite ingrained (S3)
Formulating the conditions in a way that makes it easier to prove the program (S4)

2. Proofs
Proving programs by hand is very work intense (S4)
Proving complex programs (S1)
Proving programs ’honestly’, i.e. to realize that one has made a mistake and
correct it instead of trying to merely come up with explanations (S9)
The formal proof conditions should have been introduced earlier in the course
(S1)

3. Finding the appropriate conditions
Finding the correct postcondition is most difficult. The difficulty of finding the
invariant depends on how difficult it is to find the postcondition (S6)
Finding the invariant in complex programs (S7)

The quantitative data gathered in the questionnaire supported these qualitative find-
ings. For instance, the course was found useful, interesting, somewhat fun and of medium
difficulty level. On average, the data suggested that students found IBP rather easy to
learn and useful in practice. The difficulties in constructing proofs and finding the in-
variant for more complex programs were also pointed out in the multiple choice ques-
tions. All students but one stated that they had enough mathematical skills for taking—
and passing—the course.

Ten students attended the SOCOS part of the course and answered the related ques-
tionnaire. In line with our expectations the students preferred SOCOS over pen and
paper, as the automation increases productivity. One student commented that it was
“rather straightforward to understand the idea of the tool and how to apply it.” On the
question whether IBP could be a practicable method in realistic software construction



the answers were scattered but still predominantly positive. Finally, the idea of support-
ing a formal method with a practical tool in the same course was very well received. The
survey also indicates that unfamiliarity with the SOCOS syntax was the main cause of
difficulty. Unfortunately, SOCOS lacks a good reference manual so teaching was mainly
example-driven, and due to time constraints the students did not really achieve fluency
in the SOCOS syntax.

The SOCOS related answers to the open ended questions supports the above men-
tioned findings, indicating that the tool was found useful, but somewhat difficult to use
due to lack of time and an incomplete manual.

6.2 Assignments and Exam

The max score for the pen and paper assignments was 40, and the average was 25.5
(stdev 11.2). Seven students scored more than 30 points. Most errors were related to
syntax (e.g. using Java like syntax) or the proofs not following the given format. The
most common error related to program correctness was incomplete invariants, e.g. in
the form of a missing lower or upper bound for a variable. A couple of students had
problems with the algorithm, e.g. not updating variables to arrive at the result or writing
a correct program that, however, was not the program asked for in the assignment. Some
cases of using undeclared variables were also found. Merely one student seemed to have
problems with the diagrammatic notation, writing the statements inside the situations
instead of adjacent to the transition arrows. Only one “off by one” error was found.

Students who handed in solutions to the SOCOS assignments performed well. The
highest scoring student achieved 20/20 points, while the average score was 14/20 points.
Two students failed the exercise as a result of not handing in solutions—in one of
these cases the student had been absent from the introductory sessions and subsequently
lacked basic knowledge of the tool.

So far, 13 students have taken the exam,1 out of which 11 have passed the course
(four students with the highest grade). One of the two students who failed was the one
who was absent for over half the course. As the goal of this paper is to describe how
we have used IBP in education and report on the overall results, it does not contain any
in-depth analysis of the students’ assignment and exam answers.

6.3 Interviews

Eight students (I1-I8) were interviewed by the lecturer one month after the exam. The
interviewees were selected based on their course results in order for the interview data
to be as representative as possible of the entire student group.

We chose not to conduct the interviews directly at the end of course as we wanted
to have time to go through the other data first in order to construct interview questions
based on the difficulties and other interesting points found in the other data. The pro-
cess resulted in 12 broad questions that made it easy to ask follow-up questions when
needed. The students were, for instance, asked about what they had learned and what

1 At Åbo Akademi University, students have several alternative dates for taking the exam, and
are thus not obliged to take part in the first ones that are arranged.



they had found difficult. They were also to describe the process of how they solve a
problem using IBP and discuss how confident they are that the final program is correct.

The semi-structured interviews were transcribed and analyzed manually. All in all,
the interview data strengthened the results found in the questionnaires. Students gen-
erally considered the IBP course a practical theory course quite different from other
courses they had taken previously. The interactive nature of the class sessions was ap-
preciated and the course considered suitable for first year university students. The in-
terviewees were to describe how they typically solve a problem using IBP, and most of
the descriptions followed the work flow presented in the course. Most students also said
that they formally prove their programs after they have completed the diagram, whereas
they rely on informal reasoning while while constructing the diagram.

Although the students found the invariant based approach per se useful, clear and
simple, they did point out some difficulties, similar to those that were mentioned in the
questionnaires. SOCOS was considered a helpful tool that, however, needs better user
manuals and support. The students still pointed out the need for learning the fundamen-
tals of IBP using only pen and paper.

7 Discussion

7.1 The Course and IBP in General

The feedback on both the course and IBP was in general quite positive. Students felt
that IBP was easy to learn and the diagrammatic notation easy to understand. We were
pleased to find that many students had recognized our original motivation for develop-
ing this course, that is, to present a practical method for introducing formal reasoning
when constructing programs. Moreover, students also found that the approach made the
general structure of the program more comprehensible.

We acknowledge that success in assignments and on exams is not a direct indicator
of student learning, but we do feel that the programs written by the students on the exam
and in the assignments show that they had understood the idea behind IBP and were able
to construct and prove simple invariant based programs. These are the same students
out of which many were not even able to explain basic concepts like “precondition”
and “invariant” prior to the course.

The students clearly appreciated the diagrammatic notation of IBP. Studies [22, 34]
estimate that between 75% and 83% of all students are visual learners, and because of
their highly textual nature, the use of traditional programming languages or pseudocode
is not necessarily the single best way for expressing algorithms to the majority of our
first year students. As one of the IBP-students said in the post-course interview:“Nice to
see how a program really works. You saw it for yourself. And then you also understand
the algorithm better when you see it in front of you. It’s more difficult to see what a
program does directly from code.”

Another benefit of using the invariant based approach is that it provides good sup-
port for finding bugs during the program construction (instead of after). This was also
pointed out by the students in the interview. For example, we only found one single off
by one error in the assignment solutions. Some of the other errors were related to the



use of undeclared variables. One could assume that writing out the type for a variable
might easily be overlooked when writing the programs by hand as there is no compiler
to check that the programs are correct (the SOCOS tool would naturally point out such
errors). Thus, the students might simply have “forgotten” the declaration part when
introducing a new variable in the program.

We had expected the students to find identifying the invariants the most difficult
task, but this was not the case. Although some students mentioned the invariants, writing
proofs by hand still seems to have been most problematic as they required much time
and effort. The manual proofs do become rather long, for instance as all assumptions
are written in each step of the derivation, but it is still interesting to see that students
rate the difficulty of a given task based on how much time or effort it requires. Whether
that is a reasonable indicator for the difficulty level of the task can be questioned. The
format for the structured derivations has, however, been revised, and the modifications
will automatically make the manual proofs less repetitive.

The questionnaire data pointed out the need for a clear standardized syntax. Students
reported on sometimes finding it difficult to know how to express conditions and when
to write their own definitions. This was to some extent expected, as the students had
very little, if any, prior training in building their own domain theory. More practice and
information about how to define predicates and reason about common data structures
will therefore be included in the course from now on.

When designing the course, we thought it would be good to start by reasoning only
informally about the correctness of the programs, before going further to formal math-
ematical proofs. This did, however, not turn out to be the case; instead, the students
would have wanted the formal proof obligations to be introduced earlier. One expla-
nation could be that students who are not mathematically mature do not know how to
reason ”informally” but first need to learn a formal approach with a set of rules.

7.2 Use of SOCOS

Incorporating computer aided verification in an introductory course was not an entirely
uncontroversial choice. We were aware of the risk that students could apply the au-
tomatic prover as a magical tool and resort to a test-and-modify cycle (i.e., guess an
invariant, guess transitions, run the automatic theorem prover, modify if the proof fails,
ad nauseam). However, this risk was not manifested. Apparently the theoretical part of
the course had given the students sufficient insight into the difficulty of the verification
problem to realize that such testing would not converge into a correct program.

In line with Wing’s study [38], the students clearly appreciated the theory being
complemented by a tool such as SOCOS. Surprisingly, most students learned to use the
tool sufficiently well to solve the (non-trivial) exercises in the limited time available.
Syntactical issues were the main cause of difficulty, largely due lack of documentation
and occasional “rough edges” in the user interface. These usability issues are under-
standable and expected since the tool is experimental, and in our opinion do not indicate
a fundamental flaw in the work flow.

Based on the open ended feedback, we have realized that there is a definite need for
more extensive support in the form of documentation and manuals as well as personal
guidance. Also, two weeks is far too little time to introduce and familiarize a verification



tool, which by nature contains considerable complexity. Both of these issues will be
considered and rectified in sequel courses.

8 Conclusions and Future Work

Our initial experience from teaching IBP is positive, and we feel that our study has ad-
dressed the questions mentioned in section 1. The students appreciated learning about
program correctness and seeing the programming activity from another perspective. IBP
helps students further develop their programming skills at the same time as they learn
how to reason formally about their programs. As opposed to the traditional separation
between theoretical and practical courses that contrast formal and informal approaches,
IBP integrates mathematics with the presentation of software design. Teaching IBP im-
plies teaching all core topics in software design rather than a specific topic for which
a dedicated formalism or tool exists. Moreover, the material is presented with minimal
notational burden and builds upon students’ previous knowledge (e.g. set theory). The
use of SOCOS in the course was also appropriate; by automating trivial tasks, tool sup-
port enables the student to focus on difficult and interesting parts of the problem at hand.
Furthermore, provided that the basics of invariant based programming are well under-
stood, the exacting rigor of machine checked proofs considerably increases confidence
in the correctness of the solution.

The study also shed light on some issues that need to be addressed. The syllabus will
be modified according to the findings presented in this paper, for instance by including
the formal proof conditions early. Moreover, a small and simple domain theory for
array manipulation will be developed. In order to facilitate the construction of manual
proofs, the preceding course on logic will be redesigned to better support the IBP course
in providing the students with the skills needed to reason logically and write proofs
using structured derivations. The format for the structured derivations has also been
modified, and the changes will automatically shorten the proofs as all assumptions do
not have to be written in every step of the proof. Additionally, the usability of SOCOS
will be improved, the user manual will be further developed in order to become more
comprehensive, and the proportion of the SOCOS part of the course will be considered
and adjusted accordingly. The assignments and exam answers will also be thoroughly
analyzed in order to find any indications of difficulties or problems that need to be
considered.

Encouraged by the results from this pilot study, a course covering the basics of
IBP will be offered annually to CS students at our department starting in the upcoming
academic year (2007/2008), complementing the preceding courses on practical pro-
gramming and logic. Our aim is thus not to substitute IBP for traditional programming
courses. Quite on the contrary, we acknowledge the need for ”traditional” programming,
testing and debugging. We do not, however, see any reason for why these approaches
could—or should—not coexist. We recognize that one single course is not enough for
bridging the gap between theory and practice in the CS curriculum. If the students are
to truly benefit from the skills acquired in the IBP course, these should be built upon
in upcoming courses. A discussion with other CS faculty is thus essential in order to
guarantee that there is a joint agenda on this point. We are also planning on developing



followup courses on this topic, for instance covering mechanical verification and ap-
plication domain theory. By doing so, we aim at introducing a continuum in students’
exposure to formal reasoning throughout their education.
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