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Abstract. SOCOS is a prototype tool for constructing programs and
reasoning about their correctness. It supports the invariant based pro-
gramming methodology by providing a diagrammatic environment for
speci�cation, implementation, veri�cation and execution of procedural
programs. Invariants and contracts (pre- and postconditions) can be eval-
uated at runtime, following the Design by Contract paradigm. SOCOS
can also generate correctness conditions for static program veri�cation
based on the weakest precondition semantics of statements. To verify
the program the user can attempt to automatically discharge these con-
ditions using the Simplify theorem prover; conditions which were not
automatically discharged can be proved interactively in the PVS theo-
rem prover.

1 Introduction

This paper presents tool support for an approach to program construction, which
we refer to as invariant based programming [1,2]. This approach di�ers from most
conventional programming paradigms in that it lifts speci�cations and invariants
to the role of �rst-class citizens. The programmer starts by formulating the spec-
i�cations and the internal loop invariants before writing the program code itself.
Expressing the invariants �rst has two main advantages: �rstly, they are imme-
diately available for evaluation during execution to identify invalid assumptions
about the program state. Secondly, if strong enough, invariants can be used to
prove the correctness of the program. To mechanize the second step, we have
previously developed a static checker [3], which generates veri�cation conditions
for invariant based programs and sends them to an external theorem prover. In
this paper we continue on the topic by presenting the SOCOS tool, an e�ort to
extend this checker into a fully diagrammatic programming environment.

The syntax of SOCOS programs is highly visual and based on a precise
diagrammatic syntax. We use invariant diagrams [1], a graphical notation for
describing imperative programs, to model procedures. The notation is intuitive
and shares similarities with both Venn diagrams and state charts�invariants



are described as nested sets and statements as transitions between sets. As a
means for constructing programs, the notation di�ers from most programming
languages in that invariants, rather than control �ow blocks, serve as the primary
organizing structure.

SOCOS has been developed in the Gaudi Software Factory [4], our experimen-
tal software factory for producing research software. The tool is being developed
in parallel with the theory for incremental software construction with re�nement
diagrams [5], and the project has undergone a number of shifts in focus to ac-
commodate the ongoing research. By using an agile development process [6] we
have been able to keep the software up to date with the changing requirements.

1.1 Related Work
Invariant based programming originates in Dijkstra's ideas of constructing the
program and its proof hand in hand [7]. Invariant based programming (Reynolds
[8], Back [9,2] and van Emden [10]) takes this approach one step further, so that
program invariants are determined before the program code or even the control
structures to be used have been determined.

There exists a number of methods and tools for formal program veri�cation,
some with a long standing tradition. Veri�cation techniques typically include a
combined speci�cation and programming language, supported by software tools
for veri�cation condition generation and proof assistance. For the construction
of realistic software systems, a method for reasoning on higher levels of ab-
straction becomes crucial; some approaches, such as the B Method [11], support
correct re�nement of abstract speci�cations into executable implementations.
This method has had success in safety-critical and industrial applications and
shows the applicability of formal methods to software systems of realistic scales.

Equipping software components with speci�cations (contracts) and assertions
is the central idea of Design by Contract [12]. This method is supported either
by add-on tools or, as in the case of Ei�el, is integrated into the language. Most
languages and tools which support Design by Contract do not, however, provide
static correctness checking.

A host of tools have been developed for Java and the JML speci�cation
language, for both runtime and static correctness checking [13]. In particular,
ESC/Java2 [14] enables programmers to catch common errors by sending veri�-
cation conditions to an automatic theorem prover. However, it is fully automatic
and thus not powerful enough for full formal veri�cation. The LOOP tool [15],
on the other hand, translates JML-annotated Java programs into a set of PVS
theories, which can be proved interactively using the PVS proof assistant. An-
other tool called JACK, the Java Applet Correctness Kit [16], allows the use of
both automatic and interactive provers from an Eclipse front end.

1.2 Contribution
Many tools for verifying programs work by implementing a weakest precondi-
tion calculus for an existing language. Due to complex language semantics, the



proof obligations generated for invariant-enriched existing languages often be-
come quite elaborate. This can make it di�cult to know which part of the code a
condition was generated from, and to see the relationship between code and proof
obligation. Rather than adding speci�cations and invariants to an existing lan-
guage, we start with a simpler notation for programs and their proofs, invariant
diagrams with nested invariants. Our belief is that an intuitive notation where
the proof conditions are easily seen from the program description decreases the
mental gap between programming and veri�cation. Since the notation requires
the programmer to carefully describe the intermediate situations (invariants),
invariant based programs provide as a side e�ect automatic documentation of
the design decisions made when constructing the program, and are thus easier
to inspect than ordinary programs.

We describe here a tool to support invariant based programming, the SOCOS
environment, which supports the construction, testing, veri�cation and visualiza-
tion of invariant based programs by providing an integrated editor, debugger and
theorem prover interface. An invariant based program is developed in SOCOS
in an incremental manner, so that we continually check that each increment
preserves the correctness of the program built thus far. Both light-weight and
heavy-weight techniques are used to verify the correctness of a program exten-
sions. In the early phases of development, exercising the behavior of the program
with test cases is an e�cient way to detect invariant violations. To achieve higher
assurance, the programmer can perform automated static correctness analysis
to prove that some part of each invariant holds for all input. Total correctness is
achieved by proving that remaining parts of the invariants hold, using an interac-
tive proof assistant. Our preliminary experience indicates that the tool is quite
useful for constructing small programs and reasoning about them. It removes
the tedium of checking trivial veri�cation conditions, it automates the run-time
checking of contracts and invariants, and it provides an intuitive visual feedback
when something goes wrong.

The remainder of this paper is structured as follows. In Section 2 we describe
the diagrammatic notations used to implement SOCOS programs and give an
overview of the SOCOS invariant diagram editor. In Section 3 we describe how
programs are compiled, executed and debugged. In Section 4 we discuss the
formal semantics of SOCOS programs and the generation of proof conditions.
Section 5 provides a use case of SOCOS as we demonstrate the implementation
of a simple sorting program. Section 6 concludes with some general observations
and a summary of on-going research.

2 Invariant Diagrams

Invariant based programs are constructed using a new diagrammatic program-
ming notation, nested invariant diagrams [1], where speci�cations and invariants
provide the main organizing structure. To illustrate the notation we will con-
sider as an example a naive summation program which calculates the sum of



the integers 0..n using simple iteration, accumulating the result in the program
variable sum. An invariant diagram describing this program is given in Figure 1.

Fig. 1. Summation program

Rounded boxes in the diagram represent situations. A situation describes the
set of program states that satisfy the predicate inside the box. When multiple
predicates are written on consecutive lines, all are assumed to hold. Furthermore,
nested situations inherit the predicates of enclosing situations. Inside the largest
box in Figure 1, variables n and sum are of type integer and n is greater than
or equal to 0. Due to nesting this is also true in the middle-sized box, and
additionally the variable k is an integer between 0 and n, and the variable sum
has the value 0 + 1 + 2 + ... + k. In the smallest situation, all these predicates
hold and in addition k = n.

A transition is a sequence of arrows that start in one situation and end in
the same or another situation. Each arrow can be labeled with:

1. A guard [g], where g is a Boolean expression - g is assumed when the tran-
sition is triggered.

2. A program statement S - S is executed when the transition is triggered. S
can be a sequence of statements, but loop constructs are not allowed.

To simplify the presentation and logic of transitions, we can add intermediate
choice points (forks) to branch the transition. However, joins and cycles between
choice points are not allowed. The transitions described by the tree are all the
paths in the tree, from the start situation to some end situation. A choice point
in the tree can be seen as a conditional branching statement.

It should be noted that the nesting semantics of invariant diagrams that apply
to situations do not apply to transitions. The program state is not required to
satisfy any situation while executing a transition, even if the arrow itself is drawn
inside a situation box.



In general, any situation that does not have an incoming transition is con-
sidered an initial situation. Conversely, we will consider a situation without out-
going transitions a terminal situation.

To prove the correctness of a program described by an invariant diagram,
we need to prove consistency and completeness of the transitions, and that the
program cannot start an in�nite loop. A transition from situation I1 to situation
I2 using program statement S is consistent if and only if I1 ⇒ wp.S.I2 where
wp is Dijkstra's weakest-precondition predicate transformer [17]. The program
is complete if there is at least one enabled transition in each state, with the ex-
ception of terminal situations. We show that a program terminates by providing
a variant, a function which is bounded from below and which is decreased by
every cycle in the diagram. In the summation example the variant is indicated
in the upper right corner of the situation box.

The notion of correctness for invariant diagrams is further discussed in Sec-
tion 4 where we consider formal veri�cation of SOCOS programs. For a more
general treatment of invariant diagrams and invariant based programming we
refer to [1].

2.1 Invariant Diagrams in SOCOS
Figure 1 shows an example of a purely conceptual invariant diagram. SOCOS
diagrams, which we will use in this paper, are annotated with some additional
elements. Some restrictions have also been introduced to simplify the implemen-
tation. Figure 2 shows the equivalent summation program implemented as a
SOCOS procedure. Sumk:Intconstn:Intresultsum:IntPRELOOPPOSTn≥00≤k∧k≤nsum=natsum(k)n�ksum=natsum(n)k,sum:=0,0[k=n][k≠n]k:=k+1;sum:=sum+k

Fig. 2. Summation program, SOCOS syntax

Compared to the conceptual notation, the main di�erences are:

� The outer situation is a procedure box, which represents a procedure decla-
ration with a procedure name, parameters and local variables.



� Each situation is labeled with a descriptive name, such as LOOP for a re-
curring situation. The name is used as a general situation identi�er in error
reports and generated proof conditions.

� For simplicity the variant is assumed to be a function to natural numbers,
so in SOCOS we write just n− k since the lower bound (zero) is implicit.

� In general, it is only necessary for one transition in a cycle to strictly decrease
the variant. Such transitions are rendered in the diagram as thicker arrows.
This is further discussed in Section 4.

� We provide an initial and a terminal situation representing the entry and
exit point of the procedure, respectively. These situations constitute the
contract of the procedure. The precondition situation is called PRE and is
additionally marked with a thick outline, while the postcondition is called
POST and marked with a double outline. Note that in the example POST is
not nested within LOOP, but instead part of the invariant is repeated. Since
the contract constitutes an external interface to other procedures, it must
not constrain the local variable k.

� Local variables have procedure scope and it is presently not possible to in-
troduce new variables in nested situations.

� SOCOS supports declaration of global predicates and functions. In this case
we assume that natsum has been de�ned to give the sum from 0 up to its
argument, e.g. based on a recursive de�nition or using the direct formula
k(k+1)

2 .

The procedure is the basic unit of decomposition in SOCOS. A procedure con-
sists of two parts: an externally visible interface, and a hidden implementation.
The interface can further be divided into a signature and a contract. A signature
is a list of formal input and output parameters and describes the name, type
and quali�er of each parameter. Five primitive types (natural numbers, inte-
gers, Booleans, characters, strings) along with one composite type (array) are
presently supported; the four available parameter quali�ers are listed in Table 1.
The contract de�nes the obligations and bene�ts of the procedure as a pre- and
postcondition pair. Recursive procedures are supported. As in the case of cyclic
transitions, all procedures in a recursion cycle must provide a common variant
as part of their interfaces.

The implementation de�nes the structure of the internal computation that
establishes the contract. It consists of a transition diagram from the precondition
to the postcondition. Each transition can be labeled with a statement according
to the syntax:

S::= magic | abort |
x1,...,xm:=v1,...,vm |
S0;S1 |
[b] | {b} |
P (a1,...,an)

Here magic is the miraculous statement, which satis�es every postcondition.
abort represents the aborting program, which never terminates. The assignment



Table 1. Parameter quali�ers

Quali�er Role Keyword Description
Value In - Can be read and updated by the

implementation, but updates are not
re�ected back to the caller

Constant In const Can only be read by the implementation
Value-result In, out valres Can be read as well as updated by the

implementation. Updates are not re�ected
back to caller until the procedure returns

Result Out result Like value-result, but may not occur in
preconditions

statement assigns a list of values v1, ..., vm to a list of variables x1, ..., xm. The
; operator represents sequential composition of two statements S0 and S1. An
assume statement [b] means that we can assume the predicate b at that point in
the transition, while an assert statement {b} tells us that we have to show that
b holds at that point in the transition. A procedure call P (a1,...,an) stands for a
call to procedure P with the actual parameters a1,...,an. The type of an actual
parameter ai depends on how the parameter type is quali�ed: for unquali�ed and
const parameters, an expression is accepted. For result and valres parameters, the
actual must be a simple variable. The formal weakest precondition semantics of
these statements are the standard ones [18].

2.2 Diagram Editor

Programs are constructed in the SOCOS invariant diagram editor. A program is
represented by a collection of procedure diagrams. A screen shot of the diagram
editor is shown in Figure 3. The highlighted tab below the main toolbar indicates
that an invariant diagram is currently being edited. On the left is an outline
editor for browsing model elements, and the bottom pane holds property editors
and various communication windows.

The SOCOS diagram editor is implemented on top of another project devel-
oped in the Gaudi software factory, the Coral modeling framework [19]. Coral
is a metamodel-independent toolkit which can easily be extended to custom
graphical notations.

3 Run-time Checking of Invariant Diagrams

3.1 Compilation

A SOCOS invariant diagram is executed by compiling it into a Python pro-
gram which is executed by the standard Python interpreter. We selected a very
simple approach for code generation; the generated program is e�ectively a goto-
program. Each situation is represented by a method. The body of a situation's



Fig. 3. Invariant diagram editor of SOCOS

method executes the transition statements and returns a reference to the next
method to be executed as well as an updated environment (a mapping from
variable names to values). The main loop of the program is simply:

while s:
s,env = s(env)

where s is the currently executing situation and env is the environment.
If run-time checking is enabled, invariants and assertions are evaluated during

execution of a situation's method. For situations that are part of a cycle, the
variant is compared to its lower bound, as well as to its value in the previous
cycle to ensure that it is decreasing. If any of these checks evaluate to false, an
exception is raised. While SOCOS automatically evaluates only a pre-de�ned
subset of all expressible invariants (namely arithmetic expressions and Boolean
expressions containing only bounded quanti�ers), it is possible to extend the
dynamic evaluation capabilities for special cases by adding a side-e�ect free
Python script to perform the evaluation.

3.2 Translating Conditions to Python

SOCOS uses a set of translation rules to produce an executable Python program.
In order to make the compilation easily extensible we provide the user with the



capability to de�ne new translations. The translation of a mathematical expres-
sion is done through simple rewrite rules. The user may de�ne new translation
rules. Here are a few of the prede�ned translation rules:

rule Py00[group=python] python(>) ≡ True.
rule Py03[group=python] python(a ∧ b) ≡ python(a) and python(b).
rule Py13[group=python] python(m + n) ≡ python(m) + python(n).

All translation rules are similar in shape. They push a translation function
(python above) through the expression to be translated. The translation of an
expression e is performed by repeatedly applying the rewrite rules to the expres-
sion python(e) until the function symbol python does not occur in the resulting
expression. Compilation succeeds if all expressions of the program are translated
successfully.

3.3 Debugging

SOCOS provides a graphical debugger for tracking the execution of invariant
diagrams. A program can be run continuously or stepped through transition
by transition. During execution the current program state, consisting of the
procedure call stack, the values of allocated variables and the current situation,
can be inspected. It is possible to set breakpoints to halt the execution in speci�c
situations.

Program execution is visualized by highlighting diagram elements in the ed-
itor. Active procedures, i.e. procedures on the call stack, as well as the current
situation and the currently executing transition are highlighted. The values of
local variables in each stack frame are displayed in a call stack view. Invariants
are evaluated at run-time and are highlighted in red, green or gray depending
on the result: for invariants that evaluate to true the highlight color is green, for
invariants that evaluate to false it is red, and if SOCOS is unable to evaluate
the invariant it is gray. The program execution is halted whenever an invariant
evaluates to false.

4 Proving Correctness of Invariant Diagrams

The SOCOS environment supports interactive and non-interactive veri�cation
of program diagrams. It generates the veri�cation conditions and sends them
to proof tools. At the time of writing two proof tools are supported: Simplify
[20] and PVS [21]. Simplify is a validity checker that su�ces to automatically
discharge simple veri�cation conditions such as conditions on array bounds. PVS
is an interactive proof environment in which the user may verify the correctness
of parts that Simplify is unable to check.



4.1 Veri�cation Condition Generation
SOCOS generates veri�cation conditions using MathEdit [3]. Three types of
veri�cation conditions are generated: consistency, completeness and termination
conditions. All of these use the weakest precondition semantics as their basis
[17]. The consistency conditions ensure that the invariants are preserved; com-
pleteness conditions that the program is live; and termination conditions that
the program does not diverge.

Consistency:
A program is consistent whenever each transition is consistent. A tran-
sition from I1 to I2 realized by program statement S is consistent i�

I1 ⇒ wp.S.I2

Completeness:
A program is complete whenever each non-terminal situation is complete.
A situation I is complete i�

I ⇒ wp.S∗.false

where S∗ is the statement that we get from the transition tree from I
when each branching with branches [b1];S1, . . . , [bk]; Sk is treated as an
if b →1S1 [] . . . [] b →kSk fi statement and each leaf statement is replaced
with magic 34.

Termination:
A program does not diverge if the program graph can be divided into
subgraphs, such that the transitions in between the subgraphs constitute
an acyclic graph and each subgraph is terminating. A subgraph of the
program diagram is terminating if (i) it is acyclic or (ii) has a bounded
variant that decreases on each cycle within that subgraph.5

3 A single guard statement [b]; S1 without an alternative branch has also to be written
as an if . . . fi statement, if b → S fi.

4 We disregard the statements at the leaves by replacing them with miracles. A simple
example may be useful here:

The completeness condition for I in this case is:
I ⇒ wp.(if g1 → (S; if h1 → magic []h2 → magic fi) [] g2 → magic fi). false,
which is equivalent to: I ⇒ (g1 ⇒ wp.S.(h1 ∨ h2)) ∧ (g1 ∨ g2)

5 SOCOS will automatically divide the program graph into the smallest possible sub-
graphs that constitute an acyclic graph and then require that the situations within
the subgraph are annotated with identical variants.



The cycles considered in case (ii) can consist of any number of transitions
that do not increase the subgraph's variant (v below)

I1 ∧ (v0 = v) ⇒ wp.S.(0 ≤ v ≤ v0) (1)

as long as each cycle contains one transition (indicated by the user) that
strictly decreases the subgraph's variant:

I1 ∧ (v0 = v) ⇒ wp.S.(0 ≤ v < v0) . (2)

The termination conditions are generated for the transitions that make
up cycles in the program graph.6

The interested reader is referred to [1] for a more detailed presentation of the
notion of correctness of invariant diagrams.

4.2 Interaction with External Tools

SOCOS communicates through MathEdit with external proofs tools. Interfaces
to PVS and Simplify are currently implemented in MathEdit. The interface
to Simplify is from the users point of view non-interactive. Behind the scenes
MathEdit runs an interactive session with Simplify. MathEdit sets up the log-
ical context and then checks the validity of each veri�cation in turn, splitting
the veri�cation conditions to pinpoint problematic cases. For a more detailed
description of the interaction with Simplify see [3].

Interaction with PVS is made simple. By clicking a button in SOCOS, MathEdit
produces a theory �le containing the veri�cation conditions and starts PVS which
opens the generated theory �le. A non-interactive mode for using PVS is also
supplied. In the non-interactive mode PVS is run in batch mode behind the
scenes. PVS applies a modi�ed version of the grind tactic to all veri�cation
conditions and reports success or failure for each veri�cation condition. The
output is shown to the user of SOCOS.

4.3 Translation of Veri�cation Conditions

The veri�cation conditions are translated using rewrite rules similar to those
used for compilation into Python code. The user may de�ne new translation
rules for translation into PVS and Simplify.

The veri�cation conditions sent to Simplify and PVS di�er in more than just
syntax. PVS has a stronger input language, which among other things supports
partial functions well. Simplify's input language is untyped, which means that
some expressions require side conditions to ensure that they are well de�ned,
for example k div m requires the side condition m 6= 0. We cannot guarantee
6 Termination and consistency conditions are actually merged together so as to avoid
duplication of proof e�orts. Their structure allows them to be merged: I1 ∧ (v0 =
v) ⇒ wp.S.(I2 ∧ (0 ≤ v < v0)) and similarly for the case v ≤ v0.



that the generated side conditions are strong enough for user de�ned operands.
Hence we recommend that Simplify is used for spotting bugs early in the design
and PVS is used for formal veri�cation of the �nal components.

Please note that care must be taken while writing new translation rules for
the veri�cation conditions. Mistakes in the translation rules can jeopardize the
validity of the correctness proof.

5 Example: Sorting

In this section we demonstrate how a procedure speci�cation, consisting of a pro-
cedure interface and given pre- and postconditions, is implemented in SOCOS.
We choose a simple sorting algorithm as our case study. The focus is mainly on
the tool and how invariant based programming is supported in practice�for a
more detailed treatment of the methodology itself, we refer to [1].

5.1 Speci�cation

We start by introducing a procedure speci�cation consisting of a signature and
a contract. A standard sorting speci�cation is shown in Figure 4. The procedure
accepts one parameter, an integer array a with N elements. Indexes are 0-based;
the index of the �rst element is 0 and the index of the last element is N− 1. The
valres keyword indicates that a is a value-result parameter. Because a is updated
by the sorting routine, but should remain a permutation of the original array, the
postcondition relates the old and new values of a by the permutation predicate.
We use the convention of appending 0 to the parameter name to refer to the
original value of the parameter. The sorted predicate says that each element is
less than or equal to its successor in the array.Sortvalresa:Int[N]PREPOSTpermutation(a,a0)sorted(a,N)

Fig. 4. A speci�cation of a sorting procedure

A SOCOS integer array is modeled as a function from the interval [0, N)
to Int, where N is the size of the array. N is assumed to be a positive natural



number. Access to an array element at index i is de�ned as function application:
a[i] = a.i. We then de�ne the predicates sorted and permutation as follows:

sorted(a, n) =̂ (∀i : Int • 0 < i ∧ i < n ⇒ a[i− 1] ≤ a[i])
permutation(a, b) =̂ (∃f • bijective.f ∧ a = b ◦ f)

Some invariants are guaranteed by the system and thus implicit. The precondi-
tion as given above is empty, however, during veri�cation condition generation
the additional assumption a = a0 is added automatically. Furthermore, the type
invariant for nonempty arrays allows us to assume N > 0 in every situation in
Sort.

Given this speci�cation, the next task is to provide an executable program
which transforms any state in PRE to a state in POST.

5.2 Implementation

For brevity we implement a simple sorting algorithm, selection sort, which per-
forms in-place sorting in O(n2) time. Selection sort works by partitioning an
array into two portions, one sorted followed by one unsorted. Each iteration of
the main loop exchanges the smallest element from the unsorted portion with
the element immediately after the already sorted portion, thus extending the
sorted portion by one. The loop terminates when no elements are left in the
unsorted portion.

The implementation SelectionSort can be seen in Figure 5; the two helper
procedures, Min and Swap, are given in Figure 6. Min �nds the smallest element
in the subarray a[s..N) and returns its index, while Swap exchanges the two
elements at indexes m and n in the array a.SelectionSortk,m:Intvalresa:Int[N]PRELOOPPOSTpermutation(a,a0)0≤k∧k≤Nsorted(a,k)partitioned(a,k,N)N"kpermutation(a,a0)sorted(a,N)[k=N]k:=0[k<N]Min(a,k,m);Swap(a,k,m);k:=k+1

Fig. 5. Selection sort



Mink:Intconsta:Int[N]consts:Intresultm:Int CONSTRAINTSPRE0<N0≤s∧s<Ns≤m∧m<NLOOPPOST0<N0≤s∧s<N(∀i:Int"s≤i∧i<k→(a[m]≤a[i]))s≤k∧k≤NN%k(∀i:Int"s≤i∧i<N→(a[m]≤a[i]))m,k:=s,s [k=N][k<N][a[k]≥a[m]]k:=k+1m,k:=k,k+1[a[k]<a[m]]
Swap

valres a: Int[N]

const m, n: Int

POSTPRE

a[m] = a0[n]

a[n] = a0[m]

a0[0..N) = a[0..N) except m, n

permutation(a0,a)

0 
≤
 m < N ∧ 0 ≤ n < N

[�]
a := a[ m � a[n] ][ n � a[m] ]

Fig. 6. Utility procedures Min and Swap

5.3 Testing the Implementation

We can gain an understanding of how selection sort works by implementing
a simple test case and examining the transitions between program states by
single-stepping through the call to SelectionSort in the SOCOS debugger. Figure
7 shows such a debugging session.

The current situation is highlighted with a blue outline. The LOOP situation
has been marked as a breakpoint (indicated by a red dot in the upper left
corner). This causes the execution �ow to temporarily halt at this point, and
the current program state is shown in the pane to the right. Both the original
value of the array prior to the call, a0, and the partially sorted array, a, are
shown. Furthermore, invariants are evaluated and color-coded. In the absence of
a breakpoint, execution also halts whenever an invariant evaluates to false.

SOCOS can translate simple invariants automatically to Python based on
built-in rules. However, permutation is not automatically translatable, but we



Fig. 7. Stepping through a test case of selection sort

can add a Python function to check whether the array xs is a permutation of
the array ys:

def permutation( xs, ys ):
xs,ys = list(xs),list(ys)
xs.sort()
ys.sort()
return xs==ys

In addition to the code snippet we also need to provide a rewrite rule to make
SOCOS generate a call to this function whenever it encounters permutation dur-
ing evaluation of an invariant.

5.4 Verifying the Implementation

While dynamic checking of invariants is valuable in that it catches many common
programming errors, its e�ciency is highly dependent on good test cases. Since
we have put much e�ort into writing down the invariants, we can go one step
further and attempt formal veri�cation. In this mode, SOCOS generates veri-
�cation conditions for consistency, completeness and termination as described
in the previous section. The automatic correctness checking command, Verify .
Check Correctness (Simplify), employs Simplify to attempt automatic discharging
of veri�cation conditions. If we run this command on the example, SOCOS will
tell us that Simplify was able to discharge 99.7 percent of the conditions (Figure
8). While all conditions for SelectionSort and Max are discharged, problems occur
due to the use of permutation in Swap.



Veri�cation initiated for SelectionSort, Swap and Min.
99.7% of the veri�cations were proved automatically.
Condition: POST (Swap)
Assumptions:

0 < N
0 ≤ m
m < N
0 ≤ n
n < N
a0 = a

Imply:
permutation(a0, a[m 7→ a[n]][n 7→ a[m]])

Fig. 8. Remaining condition for Swap

SOCOS has pinpointed a speci�c veri�cation condition that we need to check.
However, since permutation is a higher-order property, we can not give a de�ni-
tion of permutation that Simplify can use. In this situation we have two options�
we can temporarily get rid of the error by adding assumptions: in the case of
Swap we would add an assumption statement, [permutation(a, a0)], following the
assignment statement in the transition from PRE to POST if we believe that
a[m 7→ a[n]][n 7→ a[m]] is indeed a permutation of a. This could correspond to
simple �belief�. During initial development of a procedure it is a useful way of
postponing proofs until the �nal structure of invariants has been established.
SOCOS will always warn that an assumption is being used.

Alternatively we can start proving the remaining conditions interactively in
PVS. The prover to be used (PVS or Simplify) can be chosen on the level of single
transitions, with Simplify being the default. In this case the PVS language is
expressive enough to allow us to provide a higher-order de�nition of permutation:

index: type = {i:nat|i<N}
permutation( a:index, b:index ): bool =

exists(f:(bijective[index,index])): a = b o f

This de�nition is actually part of the SOCOS background theory which is auto-
matically loaded when PVS veri�cation is initiated.7 In addition the background
theory includes previously proved lemmas about arrays and permutations to fa-
cilitate new proofs. Given the PVS de�nition of permutation it is easy to prove
the remaining conditions in PVS by providing a bijection and applying built-in
lemmas from the PVS prelude; however, to conserve space we have not included
the actual proofs here.

7 A (much simpler) background theory is also sent to Simplify; part of this theory is
that permutation is re�exive�this property explains how Simplify was able to prove
the transition between PRE and LOOP in SelectionSort.



6 Conclusion and Future Work

We have here presented SOCOS, a tool to support diagrammatic invariant based
programming. SOCOS can currently be used to develop procedural programs.
In the early phases of development simple errors are found by testing. At a later
stage of development the programmer can prove, using formal reasoning, that
the program is error-free. All but the most trivial programs generate a large
number of lemmas to be proved. The tool translates these lemmas into the PVS
and Simplify input languages. Most of the generated lemmas are rather trivial
and automatically discharged by Simplify or the PVS grind tactic. For more
di�cult lemmas, the proofs can be completed interactively in PVS.

The SOCOS system is currently in early stages and the framework is still
being worked on. Most importantly, the issue of applicability and scalability
should be addressed. We have so far limited our focus to programming �in the
small�, which is indeed the main target for invariant based programming. How-
ever, to make SOCOS suitable for systems of realistic scales, support for classes
and other software decomposition mechanisms becomes critical. As a �rst step
we are currently adding support for object-orientation in SOCOS. Introducing
objects makes the veri�cation problem signi�cantly harder; the challenge here is
to equip a formalism for classes and objects with an intuitive diagrammatic no-
tation, and provide means for reasoning in terms of these diagrams. Re�nement
diagrams [5], a diagrammatic representation of lattice theory, will provide the
basis for the SOCOS class notation.

Another issue of key importance is performance; SOCOS is currently rather
slow�generating and checking (with Simplify) the proof conditions of the ex-
ample in Section 5 takes several seconds on a modern PC.8 Replaying PVS
proofs is even slower. This limits the use of SOCOS to simple programs. While
our implementation is in some cases sub-optimal, it is inevitable that automated
veri�cation of correctness conditions is computationally taxing. We are currently
working on background checking to alleviate this problem�instead of having a
separate veri�cation cycle, the proof checker runs continuously in the background
and discharges conditions as they are generated while the user is entering the
program, much like how many programming environments semantically analyze
programs as the user is typing.

We are carrying out a number of case studies in invariant based programming.
These case studies are conducted on two di�erent levels: �rstly, we are building a
larger example of higher complexity with many interacting components (a string
processing library); secondly, we are teaching invariant based programming to a
group of undergraduate students, using SOCOS as the programming tool. The
objective of the �rst experiment is to evaluate the scalability of the method
and its feasibility in construction larger programs. In the second experiment,
we explore the educational merits of invariant based programming�it is our
belief that the direct connection to logic, together with the use of diagrams and

8 2.8 GHz Intel Pentium 4 with 1 GB of random access memory.



visualization, will make it a useful method for teaching the use of formal methods
in programming.

SOCOS currently supports basic program proof management, but does not
provide adequate facilities for managing program proofs in a way that accom-
modates continuous change. PVS proofs must be managed by hand by the user,
and if a procedure is changed, however slightly, all proofs must be replayed. It
would be desirable if the tool kept track of dependencies between program ele-
ments, and in the event of a change, only replayed proofs of possibly invalidated
transitions. A nice feature of interactive provers like PVS is that advanced proof
strategies work on the high-level structure of a formula. So, in the case of slight
changes, chances are good that an existing proof is reusable.

Finally, there is a need for a way to make incremental software extensions
and reason about their correctness. Stepwise Feature Introduction [22], a sound
layered extension mechanism based on superposition re�nement, is intended to
be the main method by which a SOCOS program is extended with new func-
tionality.
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