
Reasoning about Pointers in Refinement Calculus

Ralph-Johan Back
Department of Computer Science

Åbo Akademi University and
Turku Centre for Computer Science
DataCity, Lemminkäisenkatu 14A

Turku 20520, Finland

Xiaocong Fan
School of Information Science and Technology

The Pennsylvania State University
University Park, PA 16802

Viorel Preoteasa
Department of Computer Science

Åbo Akademi University and
Turku Centre for Computer Science
DataCity, Lemminkäisenkatu 14A

Turku 20520, Finland

Abstract

Pointers are an important programming concept. They
are used explicitely or implicitly in many programming lan-
guages. In particular, the semantics of object-oriented pro-
gramming languages rely on pointers. We introduce a se-
mantics for pointer structures. Pointers are seen as indexes
and pointer fields are functions from these indexes to val-
ues. Using this semantics we turn all pointer operations
into simple assignments and then we use refinement calcu-
lus techniques to construct a pointer-manipulating program
that checks whether or not a single linked list has a loop. We
also introduce an induction principle on pointer structures
in order to reduce complexity of the proofs.

1. Introduction

Pointers provide an efficient and effective solution to
implementing some programming tasks. Moreover, object-
oriented languages rely explicitly (e.g. C++, Pascal), or im-
plicitly (e.g. Java, Python, C#, Eiffel) on pointers. How-
ever, pointer-manipulating programs are notoriously prone
to errors due to pointer dangling, pointer aliasing, null-
pointer accessing, and memory leaking. Some languages
offer certain mechanisms to prevent the above-mentioned
problems from occurring. For instance, the garbage collec-
tion mechanism frees the programmer from manually dis-
posing memory and solves the problem of memory leak-
ing. The problem of pointer dangling could be alleviated

by always instantiating pointer members of objects with
null, and combining it with garbage collection. However, a
powerful while relatively simple pointer calculus is highly
needed for refining specifications into executables leverag-
ing the flexibility and efficiency of pointers, and for laying
a basis for mechanically proving the correctness of exist-
ing pointer-manipulating programs using theorem proving
systems such as HOL [13], PVS [20], etc.

In this paper, we develop such a formal framework for
pointer structures in higher-order logic [10]. The goal of the
calculus is to add support to refinement calculus [2] for rea-
soning about pointer programs. We first introduce a gen-
eral theory about pointers, where the pointer fields of an
object are modeled as functions from objects to objects.
The assignment to a pointer field is seen as an update of
the corresponding function. We also keep track of all allo-
cated pointers in a subset P of the set of all objects. Allocat-
ing a new pointer means updating the set P to include the
new element, and disposing an allocated pointer means re-
moving it from P . With the semantics that we propose, all
pointer operations become simple assignments, and this en-
able us to extend the refinement calculus to support pointer
and object-oriented constructs.

However, such treatment also brings in complexity in
manipulating programs because we are now dealing with
functions rather than simple types, which complicates the
formulas to be proved. To reduce such complexity, we in-
troduce a principle of induction over the set of pointers ac-
cessible from a given starting pointer. Here, we say that a
pointer is accessible, only if all the pointers in the corre-

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

sponding path starting from the initial pointer are allocated.
We then specialize the theory for single linked lists. As

an illustrative example, we completely refine a specification
for testing whether a single linked list is linear (i.e., leads to
null) or has a loop (i.e., the last element points to some el-
ement of the list) into a program using an in-place algo-
rithm to reverse the list. In this example, we specify how
the algorithm reverses a list by means of a recursive defini-
tion. As a result, we get the properties that the loop invari-
ant should satisfy for free. We also prove that by reversing
a single linked list twice, we can get the initial list.

2. Related work

There have been many formal treatments of pointer
structures; here we concentrate on a few that we found
most relevant to our work.

Reynolds [23] describes an axiomatic [14, 12] program-
ming logic for reasoning about correctness of pointer pro-
grams. This logic is based on early ideas of Burstall [7],
and combines ideas from [19, 22, 15]. He uses a simple
imperative programming language with commands for ac-
cessing and modifying pointer structures, and for allocation
and deallocation of storage. The assertion language is used
to express heap properties; in particular, a “separating con-
junction” construct express properties that hold for disjoint
parts of the heap. Neither the programming language nor the
assertion language refers explicitely to the heap. However,
as the author notes, the logic is in practice incomplete – new
inference rules may be needed for new problems. Moreover,
in order to use refinement calculus techniques, we need to
refer explicitly to the heap in an assignment specification
statement [2]. Contrary to Reynolds’s approach, we allow
explicit references to the “heap”, both in programs and in
assertions.

In order to deal with assignments involving pointer vari-
ables, Morris [18] generalizes the Hoare axiom of assign-
ment correctness [14] by allowing for pointer fields to be
treated as regular program variables. The substitution is
done by replacing all aliases of the pointer field with the
corresponding expression.

The treatment of pointer-structure fields as global func-
tions from pointers to values can be traced back at least to
Burstall [7]. Similar ideas are used prevalently in [16, 4,
6, 9, 17, 5]. Most of these approaches have developed ax-
iomatic semantics for pointer programs.

Butler [8] uses a data refinement mechanism to translate
recursive specifications on abstract trees to imperative algo-
rithms on pointer structures. In comparison, we add the in-
duction mechanism directly to the pointer structures, which
leads to simpler refinement proofs.

Paige, Ostroff, and Brooke [21] introduce a semantics
for reference and expanded types in Eiffel. The theory is

expressed in the PVS specification language. References
(pointers) are organized in equivalence classes of references
to the same object. Creating a new object means creating a
new singleton equivalence class that contains a reference
to the new object. Assigning to a reference variable means
moving this reference from one equivalence class to an-
other. However, in this work we could not see how diffi-
cult is to solve a real problem, due to lack of practical ex-
amples.

3. Preliminaries

In this section we introduce the programming language
we are working with and the refinement rules.

3.1. Data types

We assume that we have a collection of basic data types.
Among them we have int, bool, nat, Ω. The set Ω repre-
sents the set of all possible pointers (objects). We assume
that Ω is an infinite type. We also assume the existence of
the function type. The type A → B denotes the type of all
functions from type A to type B. For a type A we denote
with Pf .A the type of all finite subsets of A.

We assume that we have all the usual operations (e.g.,
+,−,≤,∧) defined on int, bool, and nat. We denote with
true and false the two values of bool, but also the con-
stant predicates on some type A (functions from A to bool).
In addition we also assume that some other operations are
available. If A is a type and if p is a predicate on A then we
denote by εp some arbitrary but fixed element a of A such
that p.a is true. If p is false then εp is some arbitrary ele-
ment of A.

If e is an expression of type A where the variable x of
type B may occur free, then we denote by e[x := e′] the
substitution of x with e′ in e. We denote by (λx • e) the
function that maps b ∈ B to e[x := b] ∈ A. If f ∈ A → B
and a ∈ A then f.a denotes the application of f to a.

For a function f from A to B, a ∈ A and b ∈ B, we
define the update of f in a to b, denoted f [a ← b], by (λx :
A • if x = a then b else f.x fi)

Lemma 1 The update of f satisfies the following proper-
ties:

1. f [x ← y].x = y

2. f [x ← y][x ← z] = f [x ← z]

3. f [x ← f.x] = f

4. x �= z ⇒ f [x ← y].z = f.z

5. x �= y ⇒ f [x ← z][y ← u] = f [y ← u][x ← z]

Although we use a similar syntax for substitution and up-
date, they are different concepts.

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

3.2. The programming language

We will use a simple programming language that con-
tains the basic imperative programming constructs. Our lan-
guage has program variables of data types that we have de-
scribed so far. The program expressions are built from pro-
gram variables and constants using the operators that are
available for the data types. Although we call it a program-
ming language, this language contains constructs that are
not executable. These constructs can be used to specify what
the result of the computation should be. This allows us to
represent specifications as programs and then refine them to
executable programs.

The abstract syntax of the language is given by structural
induction. If x, and x′ are distinct program variables of the
same type, b is a boolean expression, e is a program expres-
sion of the same type as x and S, and S′ are programs, then
the following constructs are programs too:

i. {b} – assertion

ii. [x := x′ | b] – specification assignment

iii. if b then S else S′ fi – if statement

iv. while b do S od – while statement

v. S ;S′ – sequential composition

The statements if, while, and sequential composition are the
usual statements that can be found in all imperative pro-
gramming languages. The assertion {b} does nothing if b
is true in the current state, and behaves as abort (it does
not terminate) otherwise. The specification assignment up-
dates the variable x to a value x′ that makes b true. If for all
x′, b is false then it behaves as magic (establishes any post-
condition) [2]. The variable x′ is bounded in [x := x′ | b].

In order to manipulate programs and prove properties
about them we will also need a semantics for them. We use
a predicate transformer semantics [11]. The semantics of a
program is a function from predicates on states to predi-
cates on states. The intuition of a predicate transformer S
applied to a predicate q is the set of the initial states from
which the execution of S terminates in a state that satisfies
q.

The refinement relation on programs, denoted �, is the
pointwise extension of the partial order on predicates over
states, i.e. S � S′ if (∀q • S.q ⊆ S′.q).

The Hoare total-correctness triple [14] p {| S |} q is true,
if the execution of S from an initial state that satisfies p, is
guaranteed to terminate in a state that satisfies q. The in-
tuition behind the refinement relation can be explained in
terms of total correctness: S is refined by S′, if S′ is correct
with respect to a precondition p and postcondition q when-
ever S is.

We define some other programming constructs based on
the primitive ones.

1. skip = {true}
2. (x := e) = [x := x′ | x′ = e] where x′ is a variable

that does not occur free in e

3. if b then S fi = if b then S else skip fi.

If we write the sentences of a program on different lines
then we do not use the sequential composition operator. We
use indentation to emphasize the body of while or if state-
ments. When indentation is used, we do not use od or fi to
end the while and if statements.

3.3. Refinement rules

We list a set of refinement (equivalence) rules that we
use in our example. The rules are proven in [2, 3].

assertion introduction If x is not free in e then
(x := e) = (x := e; {x = e})

assertion refinement if α ⇒ β then {α} � {β}
assignment merge (x := e ; x := e′) = (x := e′[x := e])

multiple assignment If x is not free in f then
(x := e ; y := f) = (x, y := e, f)

relational assignment If x′ is not free in e then
[x := x′ |x′ = e] = (x := e)

assignment introduction If α ⇒ β[x′ := e] then
{α} ; [x := x′ |β] � x := e

moving assertion {x = x0 ∧ α} ; x := e �
x := e ; {x = e[x := x0] ∧ α[x := x0]}

using assertion – assignment If α ⇒ e = e′ then
({α} ;x := e) = ({α} ; x := e′)

adding specification variables If a is not free in S, and S ′

then S � S′ ⇔ (∀a : {a = e} ; S � S′)

introducing if statement {α} ; S � if α then S fi

unfolding while
while α do S od = if α then S ; while α do S od fi

merge while [3] while α do S od =
while α ∧ β do S od ; while α do S od

using assertion – while If α ⇒ (β = γ) then
{α} ; while β do S ; {α} od =
{α} ; while γ do S ; {α} od

while introduction If α ⇒ I and I ∧ ¬γ ⇒ β[x′ := x]
then

{α} ; [x := x′ |β]
�

{α}
while γ do

{I ∧ γ}
[x := x′ | I[x := x′] ∧ t[x := x′] < t]
{I}

{I ∧ ¬γ}

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

To handle local program variables [1] we assume that we
have two programming constructs add.x and del.x, which
add and delete a local program variable x. The two con-
structs commute with all programs where x does not
occur free. We assume that adding x, followed by set-
ting it to some arbitrary value and then deleting it is
equivalent to skip. Moreover we assume that the pro-
gram add.x; S; del.x; add.x; S′; del.x is refined by
add.x; S; S′; del.x. The following rule can be derived from
the properties of add and del.

local variable introduction If x is not free in α and S then
{α} ; S � add.x ; {α} ; [x := x′ |β] ; S ; del.x

In our example we will omit the statements add.x and del.x.

4. Dynamic data structures

In this section we show how to capture the basic notions
of dynamic data structures (pointers) without any substan-
tial extension of the logical basis as it is presented in [2].
The new programming constructs that we add are defined
in terms of the primitives we have already introduced.

A pointer structure declaration is:

pointer namei(fi,1 : Ti,1, . . . , fi,ni : Ti,ni) (1)

We can have as many pointer structure declarations as we
need. The field types Ti,1, . . . , Ti,ni can be any basic types,
except Ω, or any pointer structure names that have been al-
ready declared or that are going to be declared. For all field
types Ti,j we define typeof.Ti,j by

typeof.Ti,j =
{

Ti,j if Ti,j is a basic type
Ω if Ti,j is pointer structure name

A declaration of the pointer structures name1 to namek

corresponds to the following declarations in terms of basic
program constructs.

var name1, . . . , namek : Pf .Ω
var f1,1 : Ω → typeof.T1,1

. . .
var fk,n : Ω → typeof.Tk,nk

name1 := ∅
. . .
namek := ∅
nil := (εx : Ω • false)
new(var p : Ω, var A : Pf .Ω) :

p := (εx : Ω • x �= nil ∧ x �∈ ⋃
i namei)

A := A ∪ {p}
dispose(val p : Ω, var A : Pf .Ω) :

A := A − {p}

(2)

To allocate and dispose a pointer we have defined the
procedures new and dispose. The procedure new has two

reference parameters: p for the newly allocated pointer, and
A for the set of all allocated pointers of some type. We cre-
ate a new pointer of type namei and assign it to p by call-
ing new(p, namei).

The access of a field f of some pointer p, denoted p→f ,
is in our case f.p. The update of a field (p→f := q) is f :=
f [p ← q].

With these definitions all pointer operations becomes
simple assignments and we can use the assignment refine-
ment rules for them.

For the rest of this section we assume that we have a
program that declares the pointer structures name1, . . .,
namek. For any pointer structure field fi,j we denote by
ai,j the tuple (fi,j , namei, Ti,j). We use the notation
ai,j for both, the tuple, and its first component. We refer
to the second element of ai,j by dom.ai,j and to the third
by range.ai,j . We denote by A the set of all ai,j for which
Ti,j is a pointer structure name, and by A∗ the free monoid
generated by A. We denote with 1 the empty word. For
α, β ∈ A∗ we denote α ≤ β iff α is a prefix of β and
α < β iff α is a proper prefix of β. If α ≤ β, then we de-
note with α−1β the word obtained from β by removing the
prefix α, i.e. α−1β = γ where γ is such that β = αγ.

Let pstr be
⋃

i namei.

Definition 2 For α ∈ A∗ and p ∈ Ω. We define α.p by in-
duction on α:

1.p = p and aα.p = α.(a.p).

A straightforward consequence of the above definition is
that if α, β ∈ A∗ and p ∈ Ω then αβ.p = β.(α.p).

We define p
α�−→
A

q to be true if we can reach the pointer

q from p following the path α by accessing only proper (al-
located) pointers. Formally:

Definition 3 If p, q ∈ Ω, a ∈ A, and α ∈ A∗ then

1. p
1�−→
A

q if p = q and p ∈ pstr ∪ {nil}

2. p
a�−→
A

q if a.p = q ∧ p ∈ dom.a ∧
q ∈ range.a ∪ {nil}

3. p
aα�−→
A

q if (∃r ∈ Ω • p
a�−→
A

r ∧ r
α�−→
A

q)

When the set A is fixed, we will omit it from the notation

p
α�−→
A

q and in general from any notation that has A as a

parameter.

Definition 4 Let [p]A = {q | (∃α ∈ A∗ • p
α�−→
A

q) ∧
q �= nil} and |p|A = | [p]A|
Lemma 5 If α, β ∈ A∗ then

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

1. p
α�−→ q ∧ p

α�−→ r ⇒ q = r = α.p

2. q
αβ�−→ p ⇔ (∃r • q

α�−→ r
β�−→ p)

3. q
α�−→ p ∧ q

β�−→ r ∧ α ≤ β ⇒ p
α−1β�−→ r

4. p ∈ pstr ⇔ p ∈ [p]A

5. p ∈ pstr ⇔ [p]A �= ∅
Theorem 6 (Pointer Induction) If P is a predicate on Ω
then

P.p ∧ (∀q ∈ [p], a ∈ A, r ∈ Ω − {nil} •
P.q ∧ q

a�−→ r ⇒ P.r) ⇒ (∀q ∈ [p] • P.q)

Proof. If q ∈ [p] then exists α ∈ [p] such that p
α�−→
A

q and

q �= nil. We can prove P.q by induction on the length of α.

5. Single linked list

Single linked lists are pointer structures that contain an
info field of some type (integer in our example) and a next
field that gives for a pointer the next element in a list.

pointer plist (info : int, next : plist)

In the case of only one link (A = {(next, plist, plist)}),
the set A∗ is isomorphic with the set of natural numbers. We

will use the notation p
n�−→
A

q instead of p
nextn�−→

A
q. The

fact nextn ≤ nextm becomes n ≤ m and (nextn)−1nextm

becomes m − n. We will mention instead of the set in-
dex A just the components of A that changes. For exam-
ple if we have two next functions next and next0 we write

p
n�−→

next
q, and p

n�−→
next0

q instead of p
n�−→
A

q and p
n�−→

A0
q

where A0 = {(next0, plist, plist)}
Lemma 7 p ∈ [q] if and only if there is an unique i < |q|
such that q

i�−→ p.

Corollary 8 [p] = {nexti.p | i < |p|}. If i, j < |p| and
i �= j then nexti.p �= nextj .p.

Definition 9 If n = |p|A then we define lastA.p ∈ plist by
lastA.p = nextn−1.p.

Definition 10 If q ∈ [p]A then we define

i. [p : q]A = {s | ∃i, j : p
i�−→
A

s
j�−→
A

q∧ i+ j < |p|A}

ii. [p : q)A = {s | ∃i, j : p
i�−→
A

s
j�−→
A

q ∧
i + j < |p|A ∧ 0 < j}

iii. (p : q]A = {s | ∃i, j : p
i�−→
A

s
j�−→
A

q ∧
i + j < |p|A ∧ 0 < i}

iv. (p : q)A = {s | ∃i, j : p
i�−→
A

s
j�−→
A

q ∧
i + j < |p|A ∧ 0 < i, j}

Lemma 11 If q ∈ [p] then

i. [p] = [p : last.p]

ii. [p] = [p : q) ∪ [q]

iii. s ∈ [p : q] ⇒ [p : q] = [p : s) + {s} + (s : q]

iv. s ∈ [p : q) ⇒ next.s ∈ (p : q] ∧ next.s �∈ [p : s]

v. p �= q ⇒ [p : q] = {p} + (p : q) + {q}
Where x = y+z denotes the fact that x = y∪z and y∩z =
∅.

Proof. Using Corollary 8.

Definition 12 If q ∈ [p]A then we define
|p : q|A = |[p : q]A|

Lemma 13 If q ∈ [p] and n = |p : q| then p
n−1�−→ q.

Theorem 14 (Length decreasing) If q ∈ [p] and
s ∈ [p : q) then |s : q| = |next.s : q| + 1.

Theorem 15 (List induction) If P is a predicate on Ω and
q ∈ [p] then

P.p ∧ (∀r ∈ [p : q) • P.r ⇒ P.(next.r)) ⇒
(∀r ∈ [p : q] • P.r)

Proof. By induction on |p : r|.
In the case of lists we can also introduce a principle of

definition by induction. In order to define a function f on
[p : q] it is enough to define f.p, and for all r ∈ [p : q) to
define f.(next.r) assuming that f.r is defined.

Definition 16 For all p ∈ plist we define linearA.p,
circularA.p, loopA.p, and listA.p ∈ bool by:

linearA.p = (next.(lastA.p) = nil)

circularA.p = (next.(lastA.p) = p)

loopA.p = (next.(lastA.p) ∈ [p]A)

listA.p = linearA.p ∨ loopA.p

Lemma 17 If linear.p then p
|p|�−→ nil.

Lemma 18 If linear.p and q ∈ [p] then q = last.p ⇔
next.q = nil.

Lemma 19 If circular.p then circular.(next.p),
[p] = [next.p], and last.(next.p) = p.

Lemma 20 If loop.p then circular.(next.(last.p)).

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

5.1. Partial reverse of a list

We define for the pointers p ∈ plist, q ∈ [p], and e ∈ Ω
a partial reverse of the list from p to q as in Figure 1. The
links from p to next.q (the arrows labeled with 1 in Fig-
ure 1) are replaced by links from q to p (the dashed arrows
in Figure 1). We also create a link from p to e. In differ-
ent contexts the pointer e will play different roles. For ex-
ample, to reverse a linear list we partially reverse it until the
last element and use nil as e.

qe p 1111

Figure 1. Partial reverse of a list

Definition 21 Suppose that q ∈ [p] and e ∈ Ω. We define
the function preverse.next.p.q.e of type Ω → Ω by induc-
tion on r ∈ [p : q]next.

• Case r = p:
preverse.next.p.r.e = next[p ← e]

• Case r ∈ [p : q)next:
preverse.next.p.(next.r).e =

(preverse.next.p.r.e)[next.r ← r]

When next, p, q and e are fixed we denote with f.r =
preverse.next.p.r.e for all r ∈ [p : q]next and next0 = f.q.

Lemma 22 (Partial reverse – properties) If q ∈ [p]next

then

1. ∀r ∈ [p : q]next • (f.r).p = e ∧ p ∈ [r]f.r ∧
[p : r]next = [r : p]f.r

2. ∀r ∈ [p : q]next • next0.r = (f.r).r
3. ∀r ∈ [p : q)next • next0.(next.r) = r

4. ∀r �∈ [p : q]next • next0.r = next.r

Proof. By list induction.

Lemma 23 (Partial reverse – commutativity) If q ∈
[p]next and q′ ∈ [p′]next such that [p : q]next∩[p′ : q′]next = ∅
then

1. ∀s �∈ [p : q]next •
preverse.(next[s ← e]).p.q.e′ =
(preverse.next.p.q.e′)[s ← e]

2. preverse.(preverse.next.p.q.e).p′.q′.e′ =
preverse.(preverse.next.p′.q′.e′).p.q.e

Lemma 24 (Partial reverse – split) If q ∈ [p]next then

∀r ∈ [p : q)next •
preverse.next.p.q.e =
preverse.(preverse.next.p.r.e).(next.r).q.r

Proof. If [p : q)next is empty there is nothing to prove. Oth-
erwise there exists q0 ∈ [p : q)next such that [p : q)next =
[p : q0]next. We prove the property above by induction on
r ∈ [p : q′]next.

Lemma 25 (Reverse twice) If q ∈ [p]next then

preverse.(preverse.next.p.q.e).q.p.(next.q) = next

Proof. We prove by induction on r ∈ [p : q]next that

preverse.(preverse.next.p.r.e).r.p.(next.r) = next

• Case r = p:

preverse.(preverse.next.p.p.e).p.p.(next.p)

= {preverse definition}
next[p ← e][p ← next.p]

= {Lemma 1}
next

• Case r ∈ [p : q)next, assume
preverse.(preverse.next.p.r.e).r.p.(next.r) = next and
denote next0 = preverse.next.p.r.e and next1 =
preverse.next.p.(next.r).e = next0[next.r ← r]

preverse.next1.(next.r).p.(next.(next.r))

= {Lemmas 23 and 24}
preverse.next1.(next1.(next.r)).p.(next.r)

[next.r ← next.(next.r)]

= {assumptions}
preverse.next1.r.p.(next.r)

[next.r ← next.(next.r)]

= {assumptions}
preverse.(next0[next.r ← r]).r.p.(next.r)

[next.r ← next.(next.r)]

= {Lemma 23}
preverse.next0.r.p.(next.r)[next.r ← r]

[next.r ← next.(next.r)]

= {assumptions and Lemma 1}
next

Lemma 26 If q ∈ [p]next and next0 = preverse.next.p.q.nil
then linearnext0 .q and p = lastnext0 .q

5.2. Linear lists

To reverse a linear list we have to partially reverse the
list from the head to the last element. We also have to end
the reversed list with nil. The head of the resulting list is the
last element of the initial list. Formally we have.

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

Definition 27 If linearnext.p then we define
reverse.(next, p) given by

reverse.(next, p) =
(preverse.next.p.(lastnext.p).nil, lastnext.p)

Theorem 28 If linearnext.p and
(next0, p0) = reverse.(next, p) then

i. linearnext0 .p0

ii. [p0]next0 = [p]next

iii. lastnext0 .p0 = p

iv. if |p|next > 1 then p �= p0

v. reverse2.(next, p) = (next, p)

The Theorem 28 states that if we reverse a linear list
twice we get the original list. It also says that if the list has at
least two elements then the head of the resulting list is dif-
ferent from the head of the original one. This fact will be
used in the final algorithm that decides whether the list has
a loop or not. The algorithm uses the fact that when revers-
ing a loop list, the new list has the same header as the orig-
inal one.

5.3. Loop lists

Reversing a loop list is equivalent to reversing the cir-
cular part of it. In Figure 2 we replace the arrows labeled
by 1 with dashed arrows. This, in turn, is equivalent to par-
tially reversing the list from h to q using q as e.

q

p h
11

1

1

Figure 2. Reverse of a loop list

Definition 29 If loopnext.p, q = lastnext.p and h = next.q
then we define reverse.(next, p) given by

reverse.(next, p) = (preverse.next.h.q.q, p)

Before giving the main theorem about the properties sat-
isfied by the reverse of a loop list we give some results about
reversing a circular list.

Lemma 30 If circularnext.p, q = lastnext.p then

preverse.next.p.q.q = preverse.next.(next.p).p.p

Lemma 31 If circularnext.p, q = lastnext.p and
next0 = preverse.next.p.q.q then circularnext0 .p and
p = lastnext0 .q

Theorem 32 If loopnext.p, h = next.(lastnext.p) and
(next0, p0) = reverse.(next, p), then

i. p = p0

ii. loopnext0 .p0

iii. [p0]next0 = [p]next

iv. lastnext0 .p0 = next.h

v. reverse2.(next, p) = (next, p)

Proof. Using Lemmas 31, 30, and 25
Although the definition of reverse for a loop list is suf-

ficient for reasoning about its properties, it is not good for
implementation purposes. The pointer h is not known when
the program starts. We do not even know whether we have a
loop list. In the next theorem we show that reversing a loop
list is equivalent to reversing the elements from p to q (re-
versing the arrows labeled with 1 in Figure 3) and then re-
versing back the elements from h to p (reversing the arrows
labeled with 2). The final reversed list is given by the dashed
arrows in Figure 3.

pnil
1 11 1 1

1
1

222p

q

h

Figure 3. Compute reverse of a loop list

Theorem 33 (Compute reverse of a loop list)
If loopnext.p, q = lastnext.p, h = next.q and next0 =
preverse.next.p.q.nil then

i. linearnext0 .h

ii. p = lastnext0 .h

iii. preverse.next.h.q.q = preverse.next0.h.p.q

Proof. We prove the case p �= h. It follows that ex-
ists h0 ∈ [p : h)next such that next.h0 = h. It follows
next0.h0 = h.

preverse.next0.h.p.q

= {Lemmas 23 and 24}
preverse.next0.(next0.h).p.h[h ← q]

= {assumptions}
preverse.(preverse.next.p.q.nil).h0.p.h[h ← q]

= {Lemma 24}
preverse.(preverse.(preverse.next.p.h0.nil).

(next.h0).q.h0).h0.p.h[h ← q]

= {Lemma 23}

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

preverse.(preverse.(preverse.next.p.h0.nil).h0.p.h).
(next.h0).q.h0[h ← q]

= {assumptions}
preverse.(preverse.(preverse.next.p.h0.nil).h0.p.

(next.h0)).h.q.h0[h ← q]

= {Lemma 25}
preverse.next.h.q.h0[h ← q]

= {Lemmas 23 and 24}
preverse.next.h.q.q

5.4. Refining a program for checking if a list is lin-
ear or not

We first refine the partial reverse of a list to a while pro-
gram. Using this refinement then we refine the reversing of a
linear and a loop list to the same program. Finally we write
a program that tests whether or not a list has a loop and
prove that it is correct.

Lemma 34 (Refinement of preverse) If α is a formula that
does not contain the variables next, s, r free then for all pro-
gram expressions q that does not contain next, s, r free we
have

{next = next0 ∧ q ∈ [p]next0 ∧ α}
next, s := preverse.next0.p.q.e, q

�
next, s, r := next[p← e], p, next[p]
{q ∈ [p]next0 ∧ s ∈ [p : q]next0 ∧ r = next0.s ∧ α}
while s �= q do

next, s, r := next[r ← s], r, next.r
{q ∈ [p]next0 ∧ s ∈ [p : q]next0 ∧ r = next0.s ∧ α}

{s = q ∧ q ∈ [p]next0 ∧ r = next0.q ∧ α}
Moreover if linearnext0 .p and q = lastnext0 .p then the while
condition can be replaced by r �= nil.

Proof:

{next = next0 ∧ q ∈ [p]next0 ∧ α}
next, s := preverse.next0.p.q.e, q

� {local variable introduction}
{next = next0 ∧ q ∈ [p]next0 ∧ α}
[next, s, r := next′, s′, r′ |

next′ = preverse.next0.p.q.e ∧ s′ = s]

� {assignment merge}
{next = next0 ∧ q ∈ [p]next0 ∧ α}
next, s, r := next0[p ← e], p, next0.p
[next, s, r := next′, s′, r′ |

next′ = preverse.next0.p.q.e ∧ s′ = s]

� {moving assertion}

next, s, r := next[p ← e], p, next.p
{next = next0[p ← e] ∧ q ∈ [p]next0 ∧ s = p ∧

r = next0.s ∧ α}
[next, s, r := next′, s′, r′ |

next′ = preverse.next0.p.q.e ∧ s′ = s]

� {while introduction}
• Let I = q ∈ [p]next0 ∧ s ∈ [p : q]next0 ∧

r = next0.s ∧ next = preverse.next0.p.s.e ∧ α

• Let t = |s : q|next0

• next = next0[p ← e] ∧ q ∈ [p]next0 ∧ s = p ∧
r = next0.s ∧ α ⇒ I

• I∧s = q ⇒ next = preverse.next0.p.q.e∧q = s

next, s, r := next[p ← e], p, next.p
{I}
while s �= q do

{I ∧ s �= q}
[next, s, r := next′, s′, r′ |

I(next′, s′, r′) ∧ t(next′, s′, r′) < t]
{I}

{I ∧ s = q}
� {assignment introduction}

• I ∧ s �= q ⇒ I(next[r ← s], r, next.r) ∧
t(next[r ← s], r, next.r) < t

next, s, r := next[p ← e], p, next.p
{I}
while s �= q do

next, s, r := next[r ← s], r, next.r
{I}

{I ∧ s = q}
� {assertion refinement}

next, s, r := next[p ← e], q, next[p]
{q ∈ [p]next0 ∧ s ∈ [p : q]next0 ∧ r = next0.s ∧ α}
while s �= q do

next, s, r := next[r ← s], r, next.r
{q ∈ [p]next0 ∧ s ∈ [p : q]next0 ∧ r = next0.s ∧ α}

{s = q ∧ q ∈ [p]next0 ∧ r = next0.q ∧ α}
Lemma 35 (Refinement of reverse for linear lists) We
have:

{linearnext.p}
next, s :=reverse.next.p

�
next, s, r:=next[p ← nil], p, next.p
while r �= nil do

next, s, r:=next[r ← s], r, next.r

Lemma 36 (Refinement of reverse for loop lists) We
have:

{loopnext.p}
next, s := reverse.next.p

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

�
next, s, r := next[p ← nil], p, next.p
while r �= nil do

next, s, r := next[r ← s], r, next.r

Proof.

{next = next0 ∧ loopnext0 .p ∧ q = lastnext0 .p ∧
h = next0.q}

next, s := reverse.next0.p

= {Definition 32 and multiple assignment}
{next = next0 ∧ loopnext0 .p ∧ q = lastnext0 .p ∧

h = next0.q}
next, s := preverse.next0.h.q.q, p

= {Lemma 33}
{next = next0 ∧ loopnext0 .p ∧ q = lastnext0 .p ∧

h = next0.q}
next, s :=

preverse.(preverse.next0.p.q.nil).h.p.q, p

= {assignment merge}
{next = next0 ∧ loopnext0 .p ∧ q = lastnext0 .p ∧

h = next0.q}
next, s := preverse.next0.p.q.nil, q
next, s := preverse.next.h.p.q, p

� {assertion introduction and assertion refinement by
Lemma 33}
{next = next0 ∧ loopnext0 .p ∧ q = lastnext0 .p ∧

h = next0.q}
next, s := preverse.next0.p.q.nil, q
{linearnext.h ∧ p = lastnext.h}
next, s := preverse.next.h.p.q, p

� {Lemma 34}
{next = next0 ∧ loopnext0 .p ∧ q = lastnext0 .p ∧

h = next0.q}
next, s := preverse.next0.p.q.nil, q
next, s, r := next[h ← q], h, next.h
while r �= nil do

next, s, r := next[r ← s], r, next.r

� {Lemma 34 with α = loopnext0 .p ∧ h = next0.q}
next, s, r := next[p ← nil], p, next.p
{q ∈ [p]next0 ∧ s ∈ [p : q]next0 ∧ r = next0.s ∧ α}
while s �= q do

next, s, r := next[r ← s], r, next.r
{q ∈ [p]next0 ∧ s ∈ [p : q]next0 ∧ r = next0.s ∧ α}

{q ∈ [p]next0 ∧ s = q ∧ r = next0.s ∧ α}
next, s, r := next[h ← q], h, next.h
while r �= nil do

next, s, r := next[r ← s], r, next.r

� {assertion refinement}

• q ∈ [p]next0 ∧ s ∈ [p : q]next0 ∧ α ⇒
next0.s �= nil

next, s, r := next[p ← nil], p, next.p
{r �= nil}
while s �= q do

next, s, r := next[r ← s], r, next.r
{r �= nil}

{s = q ∧ r = h ∧ r �= nil}
next, s, r := next[h ← q], h, next.h
while r �= nil do

next, s, r := next[r ← s], r, next.r

� {using assertion – while and introducing if statement}
next, s, r := next[p ← nil], p, next.p
while s �= q ∧ r �= nil do

next, s, r := next[r ← s], r, next.r
if r �= nil then

next, s, r := next[r ← s], r, next.r
while r �= nil do

next, s, r := next[r ← s], r, next.r

� {unfolding while}
next, s, r := next[p ← nil], p, next.p
while s �= q ∧ r �= nil do

next, s, r := next[r ← s], r, next.r
while r �= nil do

next, s, r := next[r ← s], r, next.r

� {merge while}
next, s, r := next[p ← nil], p, next.p
while r �= nil do

next, s, r := next[r ← s], r, next.r

We see that in both cases linear and loop lists we ob-
tained the same algorithm.

Theorem 37 (Loop checker) The following Hoare total
correctness triple is true

next = next0 ∧ p = p0 ∧ listnext.p ∧ 1 < |p|next

{|
next, s := reverse.(next, p)
hasloop := (s = p)
next, p := reverse.(next, s)

|}
(next, p) = (next0, p0) ∧ hasloop = loopnext0 .p0

(3)

Proof. Using the Hoare [14] assignment and sequential
composition rules and then the Theorems 28 and 32.

If we replace in 3 the specification statements next, s :=
reverse.(next, p) and next, p := reverse.(next, s) with their
refinements then we get a Hoare total correctness triple for a
program that tests if a list has a loop. The program computes
the result in linear time, does not need additional memory,
and leaves the list unchanged.

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

6. Conclusions

We have developed a model for pointer programs suit-
able for refinement calculus. Our model is based on repre-
senting the fields of pointer structures as global functions
from pointers to values. All pointer operations (allocating
a new pointer, disposing, accessing a field, and updating a
field) become simple assignments. The model is specialized
for single linked lists. We have also introduced an induction
theorem and an induction definition principle for lists.

Using the model for lists we have refined a specification
for checking whether a list has a loop by reversing the list
into an executable program. The specification was given by
an inductive definition on lists, and we have gotten the prop-
erties that the loop invariant should satisfy for free. Many
works on pointers [23, 17, 6, 5] have treated the example
of reversing a single linked list, but none of these treats the
loop list case. The real complexity comes in when one tries
to reverse a loop list because although the same algorithm
can be used, part of the list is traversed twice.

We have also implemented the theory for single linked
lists in PVS [20] and proved some of the mentioned proper-
ties. This shows that a complete mechanization of our the-
ory is possible.

In future work we intend to investigate if the approach
is practical for other pointer structures. For example, the in-
duction theorem can, in principle, be used to prove proper-
ties about any kind of pointer structure; however, the induc-
tion definition principle, which has simplified the reasoning
about linked lists, can be used only on tree like structures.

References

[1] R. Back and V. Preoteasa. Reasoning about recursive proce-
dures with parameters. Technical Report 500, TUCS - Turku
Centre for Computer Science, January 2003.

[2] R. Back and J. von Wright. Refinement Calculus. A system-
atic Introduction. Springer, 1998.

[3] R. Back and J. von Wright. Reasoning algebraically about
loops. Acta Inform., 36(4):295–334, 1999.

[4] F. L. Bauer and H. Wössner. Algorithmic Language and Pro-
gram Development. Springer-Verlag, 1982.

[5] R. Bird. Functional pearl: Unfolding pointer algorithms.
Journal of Functional Programming, 11(3):347–358, May
2001.

[6] R. Bornat. Proving pointer programs in Hoare logic.
In Mathematics of Program Construction. Springer-Verlag,
2000.

[7] R. M. Burstall. Some techniques for proving correctness of
programs which alter data structures. Machine Intelligence,
7:23–50, 1972.

[8] M. Butler. Calculational derivation of pointer algorithms
from tree operations. Science of Computer Programming,
33(3):221–260, 1999.

[9] C. Calcagno, S. Ishtiaq, and P. O’Hearn. Semantic anal-
ysis of pointer aliasing, allocation and disposal in Hoare
logic. In ACM-SIGPLAN 2nd International Conference on
Principles and practice of Declarative Programming (PPDP
2000). ACM Press, September 2000.

[10] A. Church. A formulation of the simple theory of types. J.
Symbolic logic, 5:56–68, 1940.

[11] E. Dijkstra. Guarded commands, nondeterminacy and for-
mal derivation of programs. Comm. ACM, 18(8):453–457,
1975.

[12] R. Floyd. Assigning meanings to programs. In Proc. Sym-
pos. Appl. Math., Vol. XIX, pages 19–32. Amer. Math. Soc.,
Providence, R.I., 1967.

[13] M. Gordon and T. Melham, editors. Introduction to HOL.
Cambridge University Press, Cambridge, 1993. A theorem
proving environment for higher order logic, Appendix B by
R. J. Boulton.

[14] C. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969.

[15] S. Ishtiaq and P. O’Hearn. Bi as an assertion language for
mutable data structures. In Proceedings of the 28th ACM
SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 14–26. ACM Press, 2001.

[16] D. Luckham and N. Suzuki. Verification of array, record,
and pointer operations in Pascal. ACM Transactions on
Programming Languages and Systems (TOPLAS), 1(2):226–
244, 1979.

[17] B. Meyer. Towards practical proofs of class correctness. In
ZB 2003: Formal Specification and Development in Z and
B, Lecture Notes in Computer Science, volume 2651, pages
359–387. Springer-Verlag, 2003.

[18] J. M. Morris. A general axiom of assignment, assignment
and linked data stuctures, a proof of the Schorr-Waite algo-
rithm. In Theoretical Foundations of Programming Method-
ology, Lecture notes of an International Summer School,
pages 25–51. D. Reidel Publishing Company, 1982.

[19] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In Computer science
logic (Paris, 2001), volume 2142 of Lecture Notes in Com-
put. Sci., pages 1–19. Springer, Berlin, 2001.

[20] S. Owre, N. Shankar, J. Rushby, and D. Stringer-Clavert.
PVS Language Reference, 1999.

[21] R. Paige, J. Ostroff, and P. Brooke. Formalising Eif-
fel reference and expanded types in PVS. In Proc. In-
ternational Workshop on Aliasing, Confinement, and Own-
ership in Object-Oriented Programming, Darmstadt, Ger-
many, July 2003.

[22] J. Reynolds. Intuitionistic reasoning about shared mutable
data structure. In Millenial Perspectives in Computer Sci-
ence, 2000.

[23] J. Reynolds. Separation logic: A logic for shared mutable
data structures. In 17th Annual IEEE Symposium on Logic
in Computer Science. IEEE, July 2002.

Proceedings of the Tenth Asia-Pacific Software Engineering Conference (APSEC’03)
1530-1362/03 $ 17.00 © 2003 IEEE

