
Evaluating the XP Customer Model and Design by Contract

Ralph-Johan Back, Piia Hirkman, Luka Milovanov
Turku Centre for Computer Science

Åbo Akademi University, Department of Computer Science and IAMSR
Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland

{backrj, phirkman, lmilovan}@abo.fi

Abstract

In this paper we describe one of the series of experi-
ments with Extreme Programming, carried out as a sum-
mer project. The focus in this experiment was to try out the
XP customer model and Design by Contract. The experi-
ment indicates that the Extreme Programming emphasis on
having an on-site customer available during the project im-
proves the communication between customers and the pro-
gramming team, and markedly decreases the number of
false features and feature misses. It also indicates that the
systematic use of Design by Contract leads to a low post-
release defect rate for the software system built.

1. Introduction

Software development projects tend to be very cumber-
some; the process itself is frustrating with constantly chang-
ing requirements, the resulting software does not conform
to expectations, and deadlines are often overrun. This moti-
vates repeated attempts at finding ”the perfect” method for
software development. The larger the software to be writ-
ten is, the more serious is the problem. New methods are
also proposed, but it is not so easy to study their impact
on software construction, and it can be difficult to find the
time and resources needed to improve these methods. The
Gaudi Software Factory is an effort to provide an environ-
ment where software methods can be tried out, and at the
same time to establish an environment where academic and
industrial needs and interests can meet.

Gaudi is an experimental software factory which aims
at developing and testing new software development meth-
ods in practice. The influence of new methods on the time,
cost, quality, and quantitative aspects of developing soft-
ware is studied in a series of controlled experiments, one of
which is presented in this report. A characteristic of Gaudi
is that the programmers are students. However, program-
ming in Gaudi is not a part of their studies, and the students

get no credits for participating in Gaudi – they are just em-
ployed in Gaudi throughout the experiment. A typical ex-
periment is the development of a new software product (or
a new release of an existing product).

The setting of this series of experiments follows a pat-
tern. An experiment has restricted resources (4-6 program-
mers), goals, and time (3-6 months). Product development
is the main activity, programmers are assisted by a coach,
and well-defined software practices are followed in the con-
struction process. For the moment, the basic software pro-
cess that is followed in Gaudi (Gaudi process) is based on
Extreme Programming (XP). We choose this method be-
cause it is flexible and light-weight and it can be taught
rather quickly to the students [4].

We started with a basic set of XP practices: pair program-
ming, unit testing, refactoring, short iteration cycles, and
light documentation, to name a few [3]. This XP toolset has
been extended with Stepwise Feature Introduction[2] (SFI),
an experimental programming methodology, and the use of
various programming languages and GUIs.

Altogether, we have carried out 15 software construction
experiments in Gaudi to this day. This paper portrays one of
these experiments, the development of a personal financial
planner.

2. Goals for the Experiment

We had essentially three main goals for the experiment:
to test the XP customer model, to test how Design by Con-
tract worked in practice, and to test Stepwise Feature In-
troduction with a statically typed object-oriented language.
The result for the last goal will be reported in a separate pa-
per.

2.1. XP Customer Model and the Planning Game

One of the reasons for the growing popularity of XP in
the industry is its stress on customer’s satisfaction. How-
ever, in our previous experiments we failed to have an on-

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04) 
1089-6503/04 $ 20.00 IEEE 



site customer for the product development. Trying out the
XP customer model was therefore one of the main objec-
tives of this experiment. A secondary objective was to see if
we could make time estimations of the programmers’ work.
XP has a notion of planning game, a part of which are
time estimations and release planing. However, this plan-
ning game requires an active customer, so we have not been
able to try out the planning game before.

2.2. Design by Contract and Eiffel

Design by Contract [13] is a systematic method for mak-
ing software reliable (correct and robust). A system is struc-
tured as a collection of cooperating software elements. The
cooperation of the elements is restricted by contracts, ex-
plicit definitions of obligations and guarantees. The con-
tracts are pre- and postconditions of methods and class in-
variants. These conditions are written in the programming
language itself and can be checked at runtime, when the
method is called. If a method call does not satisfy the con-
tract, an error is raised.

Design by Contract was the second objective of the ex-
periment, so we choose Eiffel [12] as the programming
language of the project, because it has very good built
in support for this technique. Eiffel is an object-oriented
language that also includes a comprehensive approach to
software construction: a method, and an environment (Eif-
felStudio) [8]. It is a simple, yet powerful language that
strictly follows the principles of object-orientation. The lan-
guage supports multiple inheritance, has no global variables
and pointer arithmetics. Eiffel has a choice of graphical li-
braries, including the portable EiffelVision library, used in
our project. Eiffel compilation technique uses C as an inter-
mediate language. The run-time efficiency of Eiffel’s exe-
cutables is similar to C.

Eiffel’s documentation[12] claimed portability of the
language. We also wanted to test how portable Eiffel re-
ally is, so we planned to release versions of the software
for both the Windows and the Linux platform. The devel-
opment team in our project was using ISE Eiffel Enterprise
version 5.3 for Linux. We also had one machine with the
same version of Eiffel Enterprise for Windows for building
Windows executable.

Unfortunately, ISE Eiffel had no original unit testing
framework. Unit testing is an essential part of the XP and
could not be left outside our project, in particular as we had
a lot of positive experience with unit testing. Our choice was
to use the Gobo Eiffel Test tool [7]. Gobo Eiffel Test is dis-
tributed freely under the terms and conditions of the Eiffel
Forum License [15].

2.3. Stepwise Feature Introduction

Stepwise Feature Introduction is a software development
methodology introduced by Back [2] based on the incre-
mental extension of the object-oriented software system one
feature at a time. This methodology has much in common
with the original stepwise refinement method. The main dif-
ference to stepwise refinement is the bottom-up software
construction approach and object orientation. SFI is an ex-
perimental methodology and is currently under develop-
ment.

We are using this approach in our projects in order to
get practical experience with the method and suggestions
for further improvements. XP does not say anything about
the software architecture of the system. SFI provides a sim-
ple architecture that goes well with the XP approach of con-
structing software in short iteration cycles. So far we have
had positive feedback from using SFI with a dynamically
typed object-oriented language like Python and we wanted
to test SFI with a statically typed object-oriented language
like Eiffel.

2.4. The Product

As in the previous experiments, we wanted to keep the
developers concentrated on their work and not be disturbed
by the experimental nature of the project and product. To
achieve this we decided to develop a piece of software
which would not seem too experimental to the programmers
– in this case a personal financial planner. The original idea
was that the user would first create a desirable but realis-
tic version of her/his financial future. As time passed, finan-
cial transactions were carried out. They would be recorded
in the system, and the future financial scenario would be up-
dated based on the new information.

The features required of this product type include track-
ing of actual events (manually or automatically), planning
(such as budgeting and creating scenarios), and showing fu-
ture scenarios. The system should also provide advice and
warnings, and support multiple user profiles. These features
should exist for different categories of financial data, in-
cluding basic transactions (income and expenditure), invest-
ments, and loans. The system should provide ways for data
input, calculation, presentation (numerical and graphical),
customization, accessibility, and persistency.

Based on priorities provided by the customer, the most
important (and basic) features were selected as the ones
to be implemented during the first three-month-period.
This limited the functionality of the product into manu-
ally recording basic transactions, providing graphical pre-
sentations, and creating a budget/scenario. Naturally,
saving data and printing were also included in the require-
ments.

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04) 
1089-6503/04 $ 20.00 IEEE 



3. Setup of the Experiment

The experiment was set up as a typical Gaudi develop-
ment project. We describe below the central parts of this: the
product development team, the resources available, and en-
vironment for the experiment.

3.1. The Team

The composition of the team was somewhat different
from earlier experiments in Gaudi [4]. This time, the
team included two professors, one in Computer Science
and the other in Accounting Information Systems, that
acted as managers, one Ph.D. student acting as both coach
and project manager, and four undergraduate students, em-
ployed as programmers. Additionally, another Ph.D. stu-
dent with a background in Accounting Information Systems
played the role of the customer. As stated earlier, the sepa-
ration of the ”business representative” from the other roles
was the biggest change in the standard Gaudi team compo-
sition. This allowed us to implement the XP recommenda-
tion for having an on-site customer [6].

The programmers were third-fourth year computer sci-
ence students employed for the project. Two of them had ex-
perience in previous Gaudi experiments, but the other two
were unfamiliar with this software process. On other issues
their experience level varied. There was only one who had
not developed software in a team before, one admitted hav-
ing previous experience in both unit testing and Design by
Contract, and one who had a basic knowledge of Eiffel.

3.2. The Schedule

The schedule for the project was defined by two factors.
First and foremost, the students were employed for the sum-
mer only. Additionally, the experiment was to be compara-
ble with the other Gaudi projects running at the same time.
That is, we set ourselves a strict three-month deadline: the
product was to be released by August 31 at latest.

We decided not to split the project into three stages, train-
ing, programming and debugging, as we did before. Instead,
we held tutorials on the Gaudi process for the program-
mers for two weeks before they started working, and they
then programmed from the beginning to the last day of the
project, 40 hours a week, according to the XP principle.

3.3. Environment

As during the previous Gaudi experiments, all program-
mers were sitting in the same room, arranged according to
the advice given by Beck [6]. The four programmers sat
by a big table in the middle of the room. Four computers
were placed so that the work stations formed a clover-like

Writing stories With team Testing Idle
2.5 3 2.5 92

Table 1. Customer involvement (%)

square. Since the team consisted of only two pairs, there
was no special machine for integration. There were no sep-
arators which could impede communication. There was a
bookshelf, a white-board and a noticeboard in the room.
Outside this room was a recreation area with a coffee maker
etc. that was shared with four other groups of programmers.
We also decided to use the same platform as in the previous
projects – Linux. The most used software tools were Eif-
felStudio [10] (see section 2.2), XEmacs editor, CVS and a
CVS front-end – Cervisia. All the software was open source
except for the EiffelStudio and Windows 2000.

4. Running the project

As mentioned earlier, the project was preceded by a short
training period for the programmers. The actual develop-
ment work followed quite closely an XP style project flow:
the iterations were short, planning games were played, and
so forth. The following sections provide some details on the
actual project phases and elaborate more on the newer XP
elements present in the experiment.

4.1. Development

At project kick-off, the managers, the coach, and the cus-
tomer had a meeting where the software to be developed
was discussed in general. Based on this discussion, the cus-
tomer created a more detailed idea of the product. Since
the development team had already been trained,the planning
games could begin immediately. The main interactions took
place in the development team itself, with the coach, and
with the customer, all following XP practices. The develop-
ment work itself proceeded in XP style short iterations.

4.2. Customer Involvement

The customer worked basically as an on-site customer.
She was available for questions or discussions whenever
the development team felt this was necessary. However, the
customer did not work in the same room with the develop-
ment team. This was originally recommended by XP prac-
tices [5], but it was considered to be unnecessary because
the customer’s office situated in the same building with the
development team’s premises – this was considered to be
”sharing enough”.

There was no complete requirement specification of the
product to be built. Communication between the customer

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04) 
1089-6503/04 $ 20.00 IEEE 



and the development team took place both through instruc-
tions given on paper and during face-to-face meetings. The
most comprehensive written instructions were formulated
as customer stories which followed the guidelines given
by the XP practice: they stories were about three sen-
tences of text in the customers terminology without techno-
syntax [1, 11]. The customer wrote 15 stories, which were
divided into six different releases as a joint effort between
the customer and the coach.

The customer stories were written in the form given by
Beck [6] providing information about the title, date, status
and a short description of what the user should be able to
do after the story was finished. The division of the product’s
features into the stories was made by the customer based on
an intuitive idea about what meaningful chunks the system
could be divided into.

Since the customer stories did not provide very detailed
guidelines for the desired features, the development team
and the customer had a meeting at the beginning of every it-
eration, during which the requirements were further spec-
ified. These meetings usually took about an hour. During
the meetings, some of the time was used to make sure the
team understood the application logic correctly, but mostly
the discussions concerned aspects of the user interface. The
scantiness of time spent on logic issues could stem from the
fact that business logic in the system was not very compli-
cated; no experts are required to know how day-to-day per-
sonal finances should work.

Table 1 shows how the customer’s time was spent on
project issues. Apparently, being an on-site customer does
not increase the customer’s work load very much. One
might even wonder whether an on-site presence is really
necessary based on these figures. However, the feedback
from the development team shows that an on-site customer
is very helpful even though the customer’s input was needed
rather seldom.

4.3. Planning Game

This Gaudi project was the first where an actual plan-
ning game and release estimation took place. The goal of
the planning game was to choose the stories to be imple-
mented, rather than taking all of them and negotiating about
a release date and resources to be used (that is, planning by
time [6]).

The initial release planning was made without the pro-
grammers, because the coach had more experience in mak-
ing estimates at that point of time. The coach and the cus-
tomer discussed the schedule and priorities of the 15 stories
written by the customer. The coach doubted if the project’s
schedule (10 weeks after training) would allow program-
mers to implement all of these stories. Consequently, it was
decided that the story with the lowest priority (loans, N12,

release date release date
0.1pre June 26 0.1 June 30
0.2pre July 8 0.2 July 10
0.3pre July 22 0.3 July 28
0.4pre August 6 0.4 August 14
0.5pre August 21 0.5 August 22

Table 2. Release frequency

table 3) was left to the last release and would be imple-
mented only if there was enough time. The other stories
were divided into five different releases of equal lengths
based on the priorities given by the customer and the time
estimates provided by the coach. Each release was defined
to take two weeks and included different amounts of sto-
ries depending on how complex they were.

Since the time frames of the releases were very short, the
stories chosen for a release were actually the same that were
chosen for an iteration. As we mentioned above, the devel-
opment team and the customer met in the beginning of each
iteration and discussed the features to be implemented. The
team estimated whether there was a need for reconsidering
the temporal cost of the iteration in the presence of the cus-
tomer, after which the developers proceeded to break down
the iteration into tasks among themselves.

The planning game then continued with task planning.
The programmers split the customer stories into task cards.
One story normally produced 3-4 tasks. When the tasks
were written, they were estimated. The developers were
writing on each card how many hours it will take for one
programmer to implement the task. Based on these task es-
timations, the customer stories and the whole release were
estimated as well. Then we added 50% to the time estima-
tion for refactoring and debugging. This gave us estimation
in human-hours. The actual time for estimating the date of
the release was calculated following the Nosek’s [14] prin-
ciple: two programmers will implement two tasks in pair
60 percent slower then two programmers implementing the
same task separately with solo programming.

4.4. Iteration Cycles

Our project consisted of five two-week long iteration cy-
cles. Each cycle was finished with a small pre-release of
the software. The pre-release was published on the project’s
web page and given to the customer for testing. It took an
average of three working days (see table 2) to fix the pre-
release according to the customer comments and release a
”customer approved” package. Tables 3 and 4 show the dif-
ference (∆h and ∆%) between the developers’ estimations
Eh and the actual time Ah it took them to implement stories
and releases. Figures 1 and 2 show the story and release es-

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04) 
1089-6503/04 $ 20.00 IEEE 



Story Eh Ah ∆h ∆ %
1 17 12 5 30%
2 14 12 2 14%
3 12 6.5 5.5 46%
4 20.5 17 3.5 17%
5 7 5 2 29%
7 19 21 -2 11%
8 6 5 1 17%
9 14 2 12 86%
6 48 54 -6 12%

10 69 49 20 29%
11 29 31 -2 7%
12 80 – – –
13 53 64 -11 21%

Table 3. Customer stories estimations

release Eh Ah ∆h ∆ %
0.1 70.5 52.5 18 25%
0.2 39 28 11 28%
0.3 48 54 -6 12%
0.4 98 80 18 18%
0.5 53 64 -11 21%
1.0 308.5 278.5 30 10%

Table 4. Release estimations

timation errors respectively. Obviously, it was easier to es-
timate the smaller stories. In some cases the big estimation
errors were caused by issues in the Eiffel programming lan-
guage and by the developers inexperience. For example, the
story asking to print some data was underestimated: print-
ing in Eiffel turned out to be rather complicated. On the
other hand, sorting tasks were overestimated because the
developers did not know about sort routines in the Eiffel li-

Figure 1. Story estimation error (%)

Figure 2. Release estimation error (%)

Figure 3. Activities distribution (%)

braries.
Figure 3 shows the percentage of time distribution for the

different activities of the development team. Table 5 shows
the percentage of pair-solo work distribution. The data in
these figure and table is total from the project. There sel-
dom was a need for great changes after testing. This had
mostly to do with the fact that the logic of the product was
rather simple.

5. Deliverables

In this section we compare the final release of the soft-
ware to the initial specification and show some basic met-
rics of the project.

Programming Refactoring Debugging
Solo 21 23 73
Pair 79 77 27

Table 5. Pair vs Solo (%)

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04) 
1089-6503/04 $ 20.00 IEEE 



5.1. The Software Product

The delivered product includes the very basic features of
a tool for planning personal finances. It enables creating a fi-
nancial history (noting income and expenditure as one-time
or repetitive transactions), drawing pre-defined graphs, and
budgeting.

Thus, the system includes most of the functionality spec-
ified in the restricted requirements which excluded auto-
mated data input, loans, and investments. In the realized
functionality, there are issues that require ”re-engineering”
and further development. For example, the GUI is consid-
ered to be somewhat old-fashioned and needs streamlin-
ing. Also, the product has only reached the stage where
real value-adding functionality can be created. The basis is
there, but further iterations are needed to reach a fully func-
tional – and useful – version.

FiPla is an experimental tool and as such is not intended
for general use. However, it is freely available under the
GNU General Public License to all interested in it.

5.2. Project Metrics

Collecting all possible kinds of metrics is an essential
part of a software engineering experiment. Table 6 shows
some basic metrics collected after the final release of the
product. Some values in the tables are rounded up to the in-
tegers for the better readability. By total work effort in the
table we mean the number of actual hours needed to im-
plement all of the stories of a release from table 2 multi-
plied by four – the number of developers. The developers
stopped writing tests for GUI after the first release. This ex-
plains the decrease in the number of tests for the second re-
lease (table 6). Structuring the software system into the lay-
ers was done according to the release plan. Each new re-
lease was introducing a new layer into the software system.
The five releases of the product formed the following five
SFI-layers:

Layer 1. (Basic): Manually recording one-time trans-
actions (incoming and outgoing), display, save for
multiple users.

Layer 2. (Calc): Calculating sums both according to the
type of transaction and time periods.

Layer 3. (Repetitive): Manually recording repetitive
transactions.

Layer 4. (Graph): Displaying three types of graphs.

Layer 5. (Prognosis): Creating a financial plan.

6. Project Experiences and Impressions

As in the earlier projects, we got valuable feedback on
the subjects for the experiment. There was both positive

and negative feedback. When we get positive feedback on
a method, especially in a series of experiments, that nor-
mally means that we will have a definite benefit from its
further use and that the method is a candidate for incorpo-
ration into the standard Gaudi process. On the other hand,
negative feedback usually provides good guidelines for im-
proving the method. Below we present the most important
findings and impressions of the project.

6.1. Customer Model

One problem with the customer model we used was re-
vealed by the fact that among the activities of the program-
mers (Figure 3), the second largest category was ”miscella-
neous”. According to the team, the reason for that was the
following work order.

After a pre-release was sent to the customer, the team
was trying to find bugs in it, while waiting for the cus-
tomer’s response. Since the acceptance testing was not char-
acterized as the developers’ task in this project, this time
was marked as ”miscellaneous” hours. While the team was
correcting bugs found by the customer in a pre-release, the
amount of work was not enough to keep all the develop-
ers busy, that again caused the ”miscellaneous” hours. The
developers did not start working on the next release before
fixing the previous one. This was due to an unfortunate mis-
understanding. This was required in one iteration since the
customer could not make a decision straight away, but the
rule was not supposed to be generalized to all iterations.

The developers gave some suggestions for decreasing
those ”miscellaneous” hours and for decreasing the risk of
false features implementation by increasing the communi-
cation with the customer and having the customer more in-
volved in the team work. The first suggestion was to plan the
next release and to perform the planning game together with
the customer. When all the stories are implemented, the cus-
tomer should briefly go through the functionality of the sys-
tem together with the team. After that, if no feature misses
of false feature were found (otherwise the team fixes it), the
team together with the customer plans the next release. Fi-
nally, the customer performs the acceptance tests, while the
team starts implementing the new set of stories.

The developers’ suggestion about involving the customer
more in the team’s work could also be implemented by seat-
ing the customer in the same room with the programmers.
Even though the customer was available throughout this ex-
periment, she was physically only ”rather close by” (that is,
in the same building). Consequently, the overall impression
was that there could have been more spontaneous questions
and comments between the developers and the customer if
she had been in the same room.

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04) 
1089-6503/04 $ 20.00 IEEE 



0.1 0.2 0.3 0.4 0.5 Total
LOC 1694 3441 5517 7100 8572 8572
Test LOC 571 983 2174 2347 2548 2548
Total LOC 2265 4424 7691 9447 11120 11120
Classes 11 23 37 52 59 59
Test classes 9 10 20 23 25 25
Methods 71 122 171 256 331 331
Test methods 50 68 157 167 177 177
LOC/Class 154 150 149 137 145 145
LOC/test class 63 98 109 102 102 102
Methods/class 7 5 5 5 6 6
Test methods/class 6 7 8 7 7 7
Post-release defects 2 1 2 1 0 6
Post-release defects/KLOC 1.18 0.57 0.96 0.63 0 0.70
Total work effort (h) 210 112 216 320 256 1114
Productivity (LOC/h) 8 16 10 5 6 8
Test productivity 3 4 6 1 1 2
Total productivity 11 20 16 6 7 10

Table 6. Collected data for all releases

6.2. Eiffel and Design by Contract

We got a lot of positive feedback about using Eiffel. First
of all, according to all developers, Eiffel was easy to learn.
However, not all of them agreed with the suggestion to teach
Eiffel in an introductory programming course. They also
said that writing good pre- and postconditions and class in-
variants is not an easy task. Another feature of Eiffel they
really appreciated was its readability. Eiffel code written ac-
cording to the Eiffel standard [9] was very easy to read.
”Eiffel code seems easier to read than Python code.” – com-
mented two of the developers that had participated in our
earlier Python project.

All of the Eiffel code in our project was written using
Eiffel Studio, which is a very convenient IDE. According
to the developers, most of all they appreciated the debugger
in Eiffel Studio. However, there was a sense of incomplete-
ness in Eiffel, as one of the developers wrote in the diary:
”The developers of Eiffel seem to spend more time brag-
ging about how good their incomplete language is than ac-
tually trying to make it any better”.

Design by Contract worked well in our project and its
use was one of the reasons for the low defect rate. ”All the
tests written (to a complete code) always pass and the tests
that don’t pass have a bug in the test itself” – commented
the developers in the middle of the project. Most of the bugs
were caught with the help of preconditions, when a routine
with a bug was called during unit testing.

Most of the unit tests were written before the actual code,
but the contracts were specified after it. It would be inter-
esting to study the relationship between Design by Contract

and ”test first” approach in the next experiments. In the be-
ginning of the project we left out automatic GUI testing and
left it to the customer. It was also difficult to come up with
non-trivial pre- and postconditions during the graphical user
interface development.

6.3. Stepwise Feature Introduction

This project was very fruitful for the evaluation of SFI.
As we mentioned above, this was for the first controlled
time when SFI was applied with a statically typed program-
ming language. Using SFI with Eiffel showed us aspects of
the methodology that we could not see when applying SFI
with Python. These discoveries allow us to improve this ex-
perimental methodology and make its practical application
more systematic. The explanation of these findings will be
discussed in a separate paper.

6.4. Planning Game and Time Estimation

Having all customer stories written allowed us to make
time estimations. Time estimation turned out to be rather
easy in this case. The accuracy of the estimations depends,
of course, on the experience of the developer. Experience of
the particular programming language seems also to be more
important than experience in estimation.

In our project the developers did not sign up for the tasks
during the planning game. A task was estimated by all of
them and a pair was signing up for the concrete task dur-
ing the short iterations. Having individuals signing up for
the tasks during the planning game and being responsible

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04) 
1089-6503/04 $ 20.00 IEEE 



for them during implementation would probably have de-
creased the errors in the time estimates.

6.5. Software Quality

Comparing this project to our previous experimental
projects, which were carried out in a very similar setting
but using Python instead of Eiffel and without the on-site
customer, the software produced in this project had a much
lower defect rate (0.70 for this project, compared to an av-
erage of 5.2 for previous projects).

Design by Contract and especially preconditions helped
to catch many bugs during the development. While such
features of the Eiffel programming language as lack of pub-
lic variables and static typing prevented introducing many
bugs into the software system. Programmers found the Eif-
fel’s documentation very poor. This also held for the SFI
method, which is experimental and has almost no practical
documentation for programmers. This forced the develop-
ers to do a lot of spikes, testing and trying before writing the
actual code. According to the developers, this caused the re-
sulting code to be more bug-free.

Another reason for the low defect rate was the nature of
the application. The tasks given to the programmers were
relatively easy in their opinion. The system they were de-
veloping was easy to understand due to the nature of the ap-
plication. Finally, the implementation of a new pre-release
never started before releasing the software in the ”customer
approved” package. While the customer was testing the pre-
release alone, four programmers were also testing the same
system. This meant that some minor bugs were fixed with-
out documenting them as bugs and without the customer
mentioning them.

7. Conclusions and Future Work

The objectives of the project were met both on the prod-
uct and the research level. The product reached the func-
tional level that was set at the end of the overall planning
period for the project. As stated, it still requires further de-
velopment, but this was known from the beginning.

Experiences on a clearer customer model and customer
stories were altogether very positive, but they also gave di-
rections for considering a few aspects, particularly the phys-
ical location of the customer and the programmers.

The use of a formal method, Design by Contract in our
case, dramatically decreased the post-release defect rate of
the software system. The project also showed ways to im-
prove SFI. There were improvements to be made when us-
ing the method with a statically typed language.

Experimenting with these issues should be continued,
giving room for the experiences gained during this project.

Software development may never become an art of perfec-
tion, but it may well be worth to strive for it.

References

[1] Extreme Programming: A gentle introduction website. On-
line at: http://www.extremeprogramming.org/.

[2] R.-J. Back. Software Construction by Stepwise Feature In-
troduction. In Proceedings of the ZB2001 - Second Inter-
national Z and B Conference. Springer Verlag LNCS Series,
2002.

[3] R.-J. Back, L. Milovanov, I. Porres, and V. Preoteasa. An Ex-
periment on Extreme Programming and Stepwise Feature In-
troduction. Technical Report 451, TUCS, 2002.

[4] R.-J. Back, L. Milovanov, I. Porres, and V. Preoteasa. XP
as a Framework for Practical Software Engineering Exper-
iments. In Proceedings of the Third International Confer-
ence on eXtreme Programming and Agile Processes in Soft-
ware Engineering - XP2002, May 2002.

[5] K. Beck. Embracing Change with Extreme Programming.
Computer, 32(10):70–73, October 1999.

[6] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 1999.

[7] E. Bezault. Gobo Eiffel Test.
http://www.gobosoft.com/eiffel/gobo/getest/.

[8] Eiffel Software Inc. Eiffel in a Nutshel. Online at:
http://archive.eiffel.com/eiffel/nutshell.html, 2003.

[9] Interactive Software Engineering.
An Eiffel Tutorial. Online at:
http://docs.eiffel.com/general/guided tour/language/tutorial-
00.html, 2001.

[10] Interactive Software Engineering. Eif-
felStudio: A Guided Tour. Online at:
http://docs.eiffel.com/general/guided tour/environment/,
2001.

[11] R. Jeffries, A. Anderson, and C. Hendrickson. Extreme Pro-
gramming Installed. Addison-Wesley, 2001.

[12] B. Meyer. Eiffel: The Language. Prentice Hall, second edi-
tion edition, 1992.

[13] B. Meyer. Object-Oriented Software Construction. Prentice
Hall, second edition edition, 1997.

[14] J. Nosek. The Case for Collaborative Programming. Com-
munications of the ACM, 41(3):105–108, 1998.

[15] Open Source Initiative. Eiffel Forum Licence. Version 2. On-
line at: http://opensource.org/licenses/ver2 eiffel.php.

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04) 
1089-6503/04 $ 20.00 IEEE 


