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Abstract
Being able to reason rigorously and comfortably in mathematics plays and essential role in computer science,
particularly when working with formal methods. Unfortunately, the reasoning abilities of �rst year university
students' are commonly rather poor due to lack of training in exact formalism and logic during prior
education. In this paper we present structured derivations, a logic based approach to teaching mathematics,
which promotes preciseness of expression and o�ers a systematic presentation of mathematical reasoning.
The approach has been extensively evaluated at di�erent levels of education with encouraging results,
indicating that structured derivations provide many bene�ts both for students and teachers.
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1 Introduction
Being able to reason rigorously and comfortably in mathematics is an essential pre-
requisite for studies in computer science (CS), especially when working with formal
methods. Nevertheless, many CS students unfortunately show little understanding
for and interest in mathematics in general and formal notation, logic and proofs in
particular. For instance, Gries [10] notes that �students' reasoning abilities are poor,
even after several math courses. Many students still fear math and notation, and the
development of proofs remains a mystery to most.� (p. 2) Almstrum [3] found that
novice CS students experience more di�culty with the concepts of mathematical
logic than with other CS concepts.
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One reason for students' low level of skills in formal reasoning and proofs can
be traced back to their prior education: exact formalism and proof are perceived
as di�cult and consequently avoided at e.g. high school level (e.g. [5,12,13,18]).
For instance in Finland, high school students are o�ered the choice of two di�erent
mathematics syllabi, including a total of 21 courses (sixteen compulsory, �ve elec-
tive) [15]. Despite the large number of courses, proof and formal reasoning is only
mentioned in the learning objectives for one of them, the elective course �Logic and
Number Theory� in the advanced syllabus. This is also the only course that intro-
duces logical notation and truth values. How could we expect �rst year university
students to expose high levels of pro�ciency in topics such as logic, exact formalisms
and constructing proofs, when their only prior chance to study these topics is in
one (elective) course throughout their entire general education? Proofs should be
considered a way of thinking that can be applied to any mathematical topic, instead
of being viewed as a distinct topic [11,18].

In addition to the lack of training in formal reasoning and proofs, studies have
indicated problems in the way proofs are approached and presented in education.
For instance, Dreyfus [9] claims that students often receive mixed messages. As an
example he notes that many mathematical textbooks o�er intuitive explanations
in one solution, use examples to clarify another, and give a rigorous proof for yet
another. The di�erences between these justi�cations are however not explicated, but
leave students with three di�erent views of what could constitute a proof. As a result,
students do not know what counts as an acceptable mathematical justi�cation.

Moreover, students are likely to engage in activities that feel worth while and
relevant for their studies as a whole. However, the prevalent curriculum strategy at
CS departments is to divide courses �into areas of 'theory' and 'practice'... [which]
causes both faculty and students to view the theory of computing as separate and
distinct from the practice of computing.� [2, p. 73] In order for mathematics to be
considered useful by CS students, it should thus be presented in a way that clearly
links it to the computing practice.

In this paper, we present structured derivations [4,6,7], a logic based approach
to teaching mathematics, which we argue can be used to address all the afore-
mentioned problems. Structured derivations promote preciseness of expression and
o�er a systematic and straightforward presentation of mathematical reasoning, with-
out restricting the application area. Using structured derivations, logic becomes a
tool for doing mathematics, rather than a object of mathematical study.

We begin with a brief description of the structured derivations approach to con-
structing proofs in Section 2. The approach has been extensively evaluated since
2001 and currently the evaluation involves �ve institutions at high school and uni-
versity level. We summarize the high school experience in Section 3 and give a more
detailed account of our experience from using the approach in a �rst year CS course
in Section 4. We conclude with a discussion section including ideas for future work.

2 Structured Derivations
Structured derivations [4,6,7] is a further development of Dijkstra's calculational
proof style, where we have added a mechanism for doing subderivations and for
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handling assumptions in proofs. With these extensions, structured derivations can
be seen as an alternative notation for Gentzen like proofs in predicate calculus or
higher order logic [6]. A structured derivation has the following general syntax:

derivation ::= ” • ”[ task ” : ”] [assumptionList] [(` | °)] [proofSteps]
assumptionList ::= (postulate | lemma)+

postulate ::= ”[” identi�cation ”]” formula
lemma ::= ”(” identi�cation ”)” formula derivation

proofSteps ::= term (basicStep | subderivation)+

basicStep ::= relation ”{” motivation ”}” term
subderivation ::= relation ”{” motivation ”}” derivation+ ” . . . ” term

Terminals are given inside quotes and nonterminals in roman font. The layout
of a structured derivation is �xed. The general proof layout is as follows (�task� is
a short informal explanation of what we want to do):

derivation:

• task:
assumptionList

`
proofSteps

Below to the left, we show the layout for a derivation where all assumptions are
postulates and where there are only basic proof steps. The middle box shows the
layout of a lemma, where the proof of the lemma (the formula) is a derivation written
directly after the formula but is indented one step to the right. On the right we
show a proof step with a subderivation. A subderivation justi�es the proof step and
corresponds to the application of an inference rule in a Gentzen like proof system.
One proof step may require one or more subderivations. The subderivations follow
immediately after the motivation for the proof step and are indented one step.

simple derivation:

• task:
|id] formula
...
[id] formula
`

term
rel {motivation}

term
...
rel {motivation}

term

lemma with proof:

(id) formula
• task:

assumptionList
`

proofSteps

subderivation proof step:

term
rel {motivation}

• task:
assumptionList

`
proofSteps

. . . term

This proof format �xes the overall structure and layout of a derivation (hence
the name structured derivations) but it does not �x the syntax of basic entities such
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as task, formula, term, relation, motivation, or identi�cation. Thus, we can use
structured derivations for proofs on di�erent domains, and with di�erent levels of
rigor and detail (from a completely intuitive argumentation to an axiomatic proof
in a logical theory).

We illustrate structured derivations with two mathematical problems. The �rst
one illustrates the use of logical rules in standard mathematical reasoning, while
the second illustrates subderivations and the way in which we combine formal and
informal reasoning in a structured derivation (the second problem is taken from the
Finnish high school matriculation exam 2006).

Our �rst problem is to solve the equation (x − 1)(x2 + 1) = 0. We have the
following solution
��������������������������
• Solve the equation (x− 1)(x2 + 1) = 0:

(x− 1)(x2 + 1) = 0
≡ {zero product rule: ab = 0 ≡ a = 0 ∨ b = 0}

x− 1 = 0 ∨ x2 + 1 = 0
≡ {add 1 to both sides in left disjunct and −1 to both sides in right disjunct}

x = 1 ∨ x2 = −1
≡ {a square is always non-negative}

x = 1 ∨ F
≡ {disjunction rule}

x = 1
��������������������������
The second problem is to determine the values of a for which the function f(x) =
−x2 + ax + a− 3 is always negative.

� �
� �

�� � � �

� �

Figure 1. Downward and upward opening parabolas

The following structured derivation shows how we determine the value of a.
Figure 1 illustrates the arguments used in the proof.
��������������������������
• Determine the values of a for which −x2 + ax + a− 3 is always negative:

(∀x · −x2 + ax + a− 3 < 0)
≡ {the function is a parabola that opens downwards (the coe�cient for x2 is

negative); such a function is always negative if it does not intersect the x-axis,
i.e. has no roots (�gure on the left)}
(∀x · −x2 + ax + a− 3 6= 0)
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≡ {this condition holds i� the discriminant D for the function is negative}
D < 0

≡ {substitute value of D}
• Determine the discriminant D:

D

= {the discriminant for the equation Ax2 + Bx + C = 0 is B2 − 4AC}
a2 − 4(−1)(a− 3)

= {simplify}
a2 + 4a− 12

. . . a2 + 4a− 12 < 0
≡ {the function a2 + 4a − 12 is a parabola that opens upwards (the coe�cient

for a2 is positive); such a function is negative between its roots (�gure on the
right)}
• Solve the equation a2 + 4a− 12:

a2 + 4a− 12 = 0
≡ {square root formula}

a = −4±
√

42−4·1·(−12)

2·1
≡ {simplify the expression}

a = 2 ∨ a = −6

. . . −6 < a < 2
��������������������������
This proves that

(∀x · −x2 + ax + a− 3 < 0) ≡ −6 < a < 2

In other words, the function is always negative if and only if −6 < a < 2.
If we are using a computer supported tool with outlining features (like the

TEXmacs plug-in mentioned below), we can choose to hide the two subderivations.
Omitting the more detailed steps will give us a better view of the overall structure
of the proof.

Traditional approaches to teaching and presenting mathematics contain much
implicit information [9,14]. Using structured derivations, all steps in the derivation
are explicitly motivated and the �nal product thus contains a documentation of the
thinking the student was engaged in while completing the derivation. This facilitates
reading and debugging both for students and teachers.

Moreover, as stated in the introduction, traditional approaches to teaching proofs
leave students uncertain about what rigor is required for a particular proof in a cer-
tain situation [9]. Structured derivations provide a well-de�ned proof format, which
gives students a concrete �model� for what constitutes a proof and which can guide
them in how to carry out rigorous proofs in practice. A clear and familiar for-
mat functions as a mental support that gives students belief in their own skills
to construct the proof. A de�ned format also lets students focus on the solution
rather than spending time thinking about how to put their thoughts down on pa-
per. Furthermore, our approach provides a structure that can be used to make the
presentation of mathematics more consistent in textbooks and classrooms. Due to
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the well-de�ned syntax and simple structure, structured derivations are also well
suited for presentation on the web.

3 Structured Derivations at High School Level
As stated in the introduction, Finnish students can graduate from high school with-
out being exposed to logic or proof in their mathematics courses. This is alarming
not only from a computing perspective, but from a science perspective in general.
Thus, although our main concern as CS educators is to ensure that our students
possess su�cient mathematical skills in order to be able to progress successfully in
their studies, we feel that attention also should be put on mathematics education at
lower levels. We summarize our experiences from introducing structured derivations
at high school in this section, and describe our experiences from introducing the
same method into a CS syllabus in the next section.

The two mathematics syllabi o�ered in Finnish high schools have di�erent foci:
the general syllabus focuses on developing the capabilities needed �to use mathe-
matics in di�erent situations in life and in further studies� [15, p. 119], whereas the
advanced syllabus focuses on learning to �understand the nature of mathematical
knowledge� [15, p. 122]. The advanced syllabus is practically the norm for students
seeking admission to universities for further studies in, for instance, mathematics,
CS, engineering, medicine and physics. Considering the need for mathematical ma-
turity in these �elds, the students would most certainly bene�t from getting more
training in formal reasoning and proof already at high school level (as mentioned
before, these topics are currently only mentioned in one advanced elective course).
This does, however, not necessarily imply that more speci�c courses on logic should
be introduced, but rather that logic should be integrated in other courses [16].

In 2001, a longitudinal study was initiated in a high school in Turku, Finland
[5,17]. The aim of the study was to investigate whether structured derivations could
be used to integrate logic, proof and formal reasoning throughout high school math-
ematics education without the need for additional courses on logic. The research
setting involved a test group and a control group, which were followed up during
their entire high school period (three years). The students chose which group to
belong to, but care was taken to ensure that the entry level of the students was as
similar as possible in both groups. The groups had di�erent teachers who taught the
exact same material, only using di�erent approaches; the test group teacher rewrote
and taught all ten compulsory mathematics courses using structured derivations,
whereas the control group teacher gave the courses in his usual presentation style.
Moreover, the test group teacher spent a few hours at the beginning of the �rst
course introducing basic notions of elementary logic and giving students formal and
informal practice in working with logical connectives.

The results from the study were positive, indicating that logical notation and
structured derivations can be successfully used in a high school setting. Students in
the test group consistently outperformed the control group in all ten courses [5] as
well as in the matriculation exam [17]. 5

5 Students take the matriculation exam at the end of their high school studies. The matriculations exami-
nation board approves of the use of structured derivations in the matriculation exam.
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In addition to this longitudinal study, the approach has also been introduced
in single courses at three other high schools. Clearly, this renders a completely
di�erent situation than when all courses are given using the same format. Despite
the limited time available for the teacher to present the approach and for the students
to get familiar with it and use it, the results from these courses have also been
positive. Surveys and observations have shown that despite a somewhat negative
initial reaction to the new strict format requiring additional writing, most students
learned to use and appreciate the structured approach during one single course.

We are now in the process of developing more systematic teaching material to
support the use of structured derivations in mathematics education. Back and von
Wright have written �Mathematics with a Little Bit of Logic� [8], a text book that
introduces the approach and that can also be used as a teachers manual. More-
over, two ordinary high school mathematics text books have been �translated� into
structured derivations. In addition, all assignments in ten complete mathematics
matriculation exams have been solved using structured derivations (altogether 150
solved problems). This collection of solutions is important not only as an example
base, but also as a con�rmation that the approach can in fact be applied on a wide
variety of problems.

4 Structured Derivations for First Year CS Students
The need for practical skills in proving mathematical theorems becomes evident to
our CS students already during their �rst year courses. A compulsory course on
logic was introduced in the basic studies in the CS curriculum at our department
already in the 1990s, but as it was rather theoretical, students did not see the
connection to the real world and felt that the course did not give them any skills
that could be useful in practice. The course was totally redesigned in fall 2006, when
structured derivations were introduced to put more focus on enhancing students'
logical reasoning and proof-writing abilities in practice.

The course was attended by 47 students and included 36 lectures (of 45 minutes),
six exercise sessions (of 90 minutes) and a �nal exam. A pre- and postcourse survey
as well as observations were used to evaluate the course and students' opinions about
the approach. The idea of the course was to apply structured derivations to high
school mathematics. We thought that applying the rigorous derivational format on
familiar problems would make it easier for students to learn the methodology, as they
would not have to learn any new mathematics at the same time. This, however, did
not work as intended. Instead, the familiar domain hindered the students from seeing
the purpose of the course, but thought that the course was just a repetition of high
school mathematics, failing to understand the importance of the format used. The
initial confusion was partly a result of miscommunication, as the teaching assistant
did not enforce the use of the structured derivations format in the exercise sessions.
This gave the students a message that was not consistent with the one they received
during the lectures.

Resistance to relearn familiar material using a new format is understandable;
why should one start using a new approach for doing something one has already
been doing successfully in another way for 12 years. However, as the students
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realized that the topics covered in the course were indeed intended to be familiar,
and that structured derivations was the new thing that they were supposed to learn,
the resistance faded away. The results from the �nal exam were good (70% of the
students passed, 30% with the highest grade) and the �nal feedback was in general
positive. In the following, we list some of the positive and negative aspects brought
up by students in the open questions of the post course survey. 6

Students identi�ed many of the same bene�ts of using structured derivations as
was originally hypothesized when the approach was developed:
• �When you write out everything, careless mistakes disappear�
• �Writing better mathematical derivations: same motivations as earlier, but more logically constructed�
• �Learning a systematic way of working�
• �I learned to think deeper on mathematical solutions�
• �Useful to practice problem solving, structure and divide problems�
• �The di�erent proof strategies will be useful in math courses. But the logical motivations were also

important to learn considering how to prove one's programs�

Some students found writing the derivations a bit tedious, but nevertheless found
the approach interesting and useful.
• �They feel a bit unnecessary sometimes, but on the other hand you see much more clearly what you've

meant when you look at the solution again later�
• �Structured derivations feels like unnecessary work, but the format does make the calculations clearer�
• �In many cases I feel that structured derivations is a way of complicating simple things. Sure, you

should be able to motivate what you're doing, but there's no need to exaggerate. On a suitable level of
abstraction, this is, however, an interesting way of thinking�

• �The derivations were important. Even if you don't like them, you may appreciate them more during
further studies�

Students also appreciated the structured derivations simply because it was a new
format that appealed to them.
• �The approach was pretty di�cult and therefore interesting�
• �Interesting to learn how to write them and understand why you should write them�
• �The approach was interesting. I've always had problems proving things�

The negative aspects brought up by the students were mainly related to the moti-
vations and assumptions in proofs. One student also mentioned di�culties remem-
bering the syntax of the format.
• �Feels somewhat unnecessary to motivate everything�
• �I think it's di�cult to write down the motivations as many of them are obvious�
• �Di�cult to know when a derivation is correct. What can you assume and what can't you assume?�
• �Di�cult to remember how to write them correctly�

Finally, some students seemed to have a negative attitude towards mathematics in
general.
• �Derivations are always uninteresting�
• �I'm not interested in derivations and I don't think I'll need it in future CS studies�

We were pleased to see that only a couple of students expressed negative opinions
towards mathematics after the course. Most students stated that they appreciated
the approach and the bene�ts it provides (clari�es solutions, facilitates debugging,
makes relations explicit, enforces a systematic way of working, etc). As was found
in the feedback on the high school courses, students initially felt frustrated with the
extra writing needed in the form of motivations, but still found the format useful. We
feel that the students' feedback indicates that the majority of them did no longer

6 The quotations have been freely translated into English by one of the authors.
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fear notation after this particular course. In our opinion, this is an encouraging
�nding.

Based on the experience from the �rst version of the course, some revisions
were made before giving the course again starting in fall 2007. The main changes
made were that instead of applying structured derivations on high school topics,
the approach is now exempli�ed with problems in areas that the students are not
familiar with from before: propositional and predicate logic, discrete mathematics,
elementary algebra, lattice theory and boolean algebra. The focus is still on using
the structured derivations framework and on emphasizing the need to develop skills
in constructing mathematical proofs in practice. This course is going on as we write
this, and the �nal evaluation is thus yet to be done. However, our preliminary
observations indicate that students now �got the point� of the course from the very
beginning, have used the structured derivations format in their own solutions and
appreciate learning new mathematical topics.

5 Discussion
The experience from using structured derivations in education has been encourag-
ing both at secondary and tertiary level. Although the results of introducing the
approach in individual high school courses have been positive, we nevertheless be-
lieve that integrating logic as a tool in all mathematics courses is to be preferred.
The e�ects of one single course are easily canceled out by the remaining courses not
mentioning logic or proof at all.

Our experiences from teaching the structured derivations course as an introduc-
tory CS course has also been very encouraging, so much that structured derivations
is now the standard approach used in the logic course. We are also planning a
new course for �rst year university students in natural sciences and engineering.
The course will be speci�cally designed as a bridging course between high school
and university, focusing on improving students' pro�ciency in doing mathematical
proofs with structured derivations.

We are presently working on tool support for making structured derivation
proofs, both on a personal computer and on the web. We use TEXmacs [1], a
wysiwyg LATEX editor, as the basic framework for writing mathematical documents.
We have constructed a plug-in for TEXmacs that understands structured derivations
and makes it easy to construct and browse derivations. In particular, TEXmacs now
supports selective hiding and revealing of subderivations and lemma proofs. This
has made it straightforward for both teachers and students to work with derivations
and proofs in electronic format.

Moreover, we are also currently working on providing just-in-time on-the-spot
assistance for students reading a mathematical proof. For instance, consider a step
in a derivation that calls for solving an equation, like in the second example given
in Section 2. In that example, the equation was solved in a subderivation. If all
subderivations are initially hidden, then students who feel con�dent about how to
solve an equation do not need to open the subderivation, while students who are
uncertain can do that. Thus, one single example can be used for students at di�erent
skill levels. This feature also renders structured derivations suitable for self-study
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material, as examples can be made self-explanatory on di�erent levels, providing the
reader the choice of di�erent levels of detail.
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