

F. Bomarius and S. Komi-Sirviö (Eds.): PROFES 2005, LNCS 3547, pp. 414–428, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Software Development and Experimentation in an
Academic Environment: The Gaudi Experience

Ralph-Johan Back, Luka Milovanov, and Ivan Porres

Turku Centre for Computer Science,
Åbo Akademi University, Department of Computer Science,

Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland
{backrj, lmilovan, iporres}@abo.fi

Abstract. In this article, we describe an approach to empirical software engi-
neering based on a combined software factory and software laboratory. The
software factory develops software required by an external customer while the
software laboratory monitors and improves the processes and methods used in
the factory. We have used this approach during a period of four years to define
and evaluate a software process that combines practices from Extreme Pro-
gramming with architectural design and documentation practices in order to
find a balance between agility, maintainability and reliability.

1 Introduction

One of the main problems that hinders the research and improvement of various
software construction techniques is the difficulty to perform significant experi-
ments. Many processes and methods in software development have been conceived
in the context of large industrial projects. However, in most cases, it is almost im-
possible to perform controlled experiments in an industrial setting due to resource
constraints.

However, university researchers also meet with difficulties when experimenting
with new software development ideas in practice. Performing an experiment in col-
laboration with the industry using newly untested software development methods can
be risky for the industrial partner but also for the researcher, since the project can fail
due to factors that cannot be controlled by the researcher. The obvious alternative is to
perform software engineering experiments inside a research center in a controlled
environment. Still, this approach has at least three important shortcomings.

First, it is possible that a synthetic development project arranged by a researcher
does not reflect the conditions and constraints found in an actual software develop-
ment project. This happens specially if there is no actual need for the software to be
developed. Also, university experiments are quite often performed by students. Stu-
dents are not necessarily less capable than employed software developers, but they
must be trained and their programming experience and motivation in a project may
vary. Finally, although there is no market pressure, a researcher often has very limited
resources and therefore it is not always possible to execute large experiments.

 Software Development and Experimentation in an Academic Environment 415

These shortcomings disappear if the software built in an experiment is an actual
software product that is needed by one or more customers that will define the product
requirements and will carry the cost of the development of the product. In our case,
we found such customer in our own environment: other researchers that need software
to be built to demonstrate and validate their research work. This scientific software
does not necessarily need to be related to our work in software engineering.

In this paper we describe our experiences following this approach: how we created
Gaudi, our own laboratory for experimental software engineering, and how we stud-
ied software development in practice while building software in Gaudi for other re-
searchers. This experience is based on experiments conducted during the last four
years. The objective of these experiments was to find and document software best
practices in a software process that focus on product quality and project agility.

As we proposed in [1], we chose Extreme Programming [2] (XP) as the framework
process for these experiments. Extreme Programming is an agile software methodol-
ogy that was introduced by Beck in 2000. It is characterized by a short iteration cycle,
integration of the design and implementation phases, continuous refactoring sup-
ported by extensive unit testing, onsite customer, promoting team communication and
pair programming. XP has become quite popular these days, but it has also been criti-
cized for lack of concrete evidences of success [3].

This paper is structured as follows: in Section 2 we describe the Gaudi Software
Factory as a university unit for building software in the form of controlled experi-
ments. Section 3 present the typical settings of such experiments and portrays their
technical aspects. Section 4 discusses the practices of the software process, while
Section 5 summarizes our observations from our experience in Gaudi. Due to space
limitations, this article focuses on presenting the qualitative evaluation of these ex-
periments. The reader can find more detailed information about the actual experi-
ments in [5].

2 Gaudi and Its Working Principles

Gaudi is a research project that aims at developing and testing new software devel-
opment methods in a realistic setting. We are interested in the time, cost, quality, and
quantitative aspects of developing software, and study these issues in a series of con-
trolled experiments. We focus on lightweight or agile software processes. Gaudi is
divided into a software factory and a software laboratory.

2.1 Software Factory

The goal of the Gaudi software factory is to produce software for the needs of various
research projects in our university. Software is built in the factory according to the
requirements given by the project stakeholders. These stakeholders also provided the
required resources to carry out the project. A characteristic of the factory is that the
developers are students. However, programming in Gaudi is not a part of their studies,
and the students get no credits for participating in Gaudi – they are employed and paid
a normal salary according to the university regulations.

416 R.-J. Back, L. Milovanov, and I. Porres

Gaudi factory was started as a pilot experiment in the summer of 2001 [4] with a
group of six programmers working on a single product (an outlining editor). The
following summer we introduced two other products and six more programmers. The
work continued with half-time employments during the following fall and spring. In
the fourth cycle, in the summer of 2003, there were five parallel experiments with five
different products, each with a different focus but with approximately the same set-
tings. Altogether, we have carried out 18 software construction experiments in Gaudi
to this day. The application areas of the software built in Gaudi are quite varied: an
editor for mathematical derivations, software construction and modeling tools, 3D
model animation, a personal financial planner, financial benchmarking of organiza-
tions, a mobile ad-hoc network router, digital TV middleware, and so on.

2.2 Software Laboratory

The goal of the Gaudi software laboratory is to investigate, evaluate and improve the
software development process used in the factory. The factory is in charge of the
software product, while the laboratory is in charge of the software process. The labo-
ratory supplies the factory with tasks, resources and new methods, while the factory
provides the laboratory with the feedback in the form of software and experience
results. The laboratory staff is composed of researchers and doctoral students working
in the area of software engineering.

The kinds of projects carried on by the factory are quite varied and the application
area, technology, and project stakeholders changed from project to project. However,
there were also common challenges in all the projects to be addressed in the labora-
tory: product requirements were quite often underspecified and highly volatile and the
developer turnaround was big.

Research software is often built to validate and demonstrate promising but immature
ideas. Once it is functional, the software creates a feedback loop for the researchers. If
the researchers make good use of this feedback, they will improve and refine their
research work and therefore, they will need to update the software to include their
improved ideas. In this context, the better a piece of research software fulfills its goal,
more changes will be required in it. High developer turnaround is a risk that needs to
be minimized in any software development company and the impacts of this have to be
mitigated. In a university environment, this is part of normal life. We employ students
as programmers during their studies. But, eventually, they will graduate and leave the
programming team. A few students may continue as Ph.D. students or as part of a more
permanent programming staff, but this is more the exception than the norm.

Our approach to these challenges was to use agile methods, in particular on Ex-
treme Programming, and to split a large development project into a number of succes-
sive smaller projects. A smaller project will typically represent a total effort of one to
two person years. This also is the usual size of project that a single researcher can find
financing for in a university setting per year. A project size of one person year is also
a good base for a controlled experiment. It is large enough to yield significant results
while it can be carried out in the relatively short period of three calendar months using
a group of four students.

 Software Development and Experimentation in an Academic Environment 417

3 Experiments in the Gaudi Factory

The Gaudi laboratory uses the Gaudi factory as a sandbox for software process im-
provement and development. Software projects in the factory are run as a series of
monitored and controlled experiments. The settings of those experiments are defined
a priori by the laboratory. After an experiment is completed, the settings are reviewed
and our project standards are updated. In this section we describe the project settings
and arrangements for Gaudi.

3.1 Schedule and Resources

A Gaudi experiment has a tight schedule, usually comprising three months. Most of
the experiments are performed during summer, when students can work full-time (40
hours a week). In practice, this means that the developers start their work the first day
of June and the final release of the software product is the last day of August. In pro-
jects carried out during the terms, students work half time (25-30 hours a week).

All the participants in an experiment are employed by the university, including the
students working as developers, using standard employment contracts. All members
of the same development team sit in the same room, arranged according to the advice
given by Beck in [2].

3.2 Training

We should provide proper training to the developers in a project before it starts. How-
ever, the projects are short so we can not spend much time on the training. We chose
to give the developers short (1-4 hours) tutorials on the essentials of the technologies
that they are going to use. The purpose of these tutorials is not to teach a full pro-
gramming language or a method, but to give a general overview of the topic and pro-
vide references to the necessary literature. We consider these tutorials as an introduc-
tion to standard software best practices, which are then employed throughout the
Gaudi factory. Besides general tutorials that all developers take, we also provide tuto-
rials on specific topics that may be needed in only one project, and which are taken
only by the developers concerned. An example of the complete set of tutorials can be
found in [5].

3.3 Experiment Supervision, Metrics Collection and Evaluation

We have established an experimental supervision and metric collection framework in
order to measure the impact of different development practices in a project.

The complete description of our measurement framework is an issue for a separate
paper, but in this section we outline its main principles. Our choice is the Goal Ques-
tion Metric (GQM) approach [6]. GQM is based upon the assumption that for an or-
ganization to measure in a meaningful way it must first specify the goals for itself and
its projects, then it must trace those goals to the data that are intended to define those
goals operationally, and finally provide a framework for interpreting the data with
respect to the stated goals [6]. The current list of goals for the Gaudi factory as we see
them can be found in [5] and its metric framework in [7].

418 R.-J. Back, L. Milovanov, and I. Porres

4 Software Practices in Gaudi

In this section we describe the main practices in our process and our observations
after applying them in several projects. We started our first pilot project [4] with just a
few basic XP practices, evaluating them and gradually including more and more XP
practices into the Gaudi process. After trying out a new practice in Gaudi we evaluate
it and then, depending on the results of the evaluation, it either becomes a standard
part of the Gaudi process, is abandoned, or is left for later re-implementation and re-
evaluation. In this section, we discuss our experience with the agile practices which
have been tried out in our projects. Some of the practices are adopted into our process
and became a standard part of it, while some are still under evaluation.

The list of all these practices can be found in [5]. The technical report also includes
percentages of activities performed by developers.

We now proceed as following: first we give a general overview of a practice, then
we present our experience and results achieved with this practice. Finally we discuss
possible ways to improve these practices in Gaudi environment. For the reader’s con-
venience we split the practices into four categories: requirement management, plan-
ning, engineering and asset management.

4.1 Requirement Management Practices

Requirement management in XP is performed by the person carrying out the customer
role. The requirements are presented in the form of user stories.

Customer Model
The role of the customer in XP is to write and prioritize user stories as defined in the
next practice. The customer should also explain and clarify the stories to the devel-
opment team and define and run acceptance tests to verify the correct functionality of
the implemented stories. One of the most distinctive features of XP is that the cus-
tomer should work onsite, as a member of the team, in the same room with the team
and be 100% available for the team’s questions.

As could have been guessed directly, it is hard to implement the onsite customer
model in practice [8, 9]. Our experience confirms this. Among the 18 Gaudi projects,
there was a real onsite customer only in one project – FiPla [7]. Before this the cus-
tomer’s involvement was minimal and it was in the Feature Driven Development [10]
style: the offsite customer wrote requirements for the application, then the coach
transformed these requirements into product requirements. Then the coach compiled
the list of features based on the product requirements, and the features were given to
the developers as programming tasks.

Studying the advantages of an onsite customer was one of the main objectives of
the FiPla project. In this project the customer was available for questions or discus-
sions whenever the development team felt this was necessary. However, the customer
did not work in the same room with the development team. This was originally rec-
ommended by XP practices [11], but it was considered to be unnecessary because the
customer’s office situated in the same building with the development team’s premises
– this was considered to be “sharing enough”.

 Software Development and Experimentation in an Academic Environment 419

Apparently, being an onsite customer does not increase the customer’s work load
very much [7]. One might even wonder whether an onsite presence is really necessary
based on these figures. However, the feedback from the development team shows that
an onsite customer is very helpful even though the customer’s input was rather sel-
dom needed. The developers’ suggestion about involving the customer more in the
team’s work could also be implemented by seating the customer in the same room
with the programmers. The feeling was that there could have been more spontaneous
questions and comments between the developers and the customer if she had been in
the same room.

Since summer 2004 we started using a customer representative or so called cus-
tomer proxy model in Gaudi. The difference between these two customer models were
that the customer representative does not commit himself to be always available to the
team and in order to make decisions he had to consult the actual customer who was
basically offsite. In both cases all customer-team communications were face-to-face,
without e-mail neither phone discussions.

It is essential to have an active customer or customer’s representative in an experi-
mental project when the customer model itself is not a subject for the experiment.
This allows us to keep the developers focused on the product, not the experiment and
not be disturbed by the experimental nature of project.

User Stories
Customer requirements in XP projects are presented in the form of user stories [2]. User
stories are written by the customer and they describe the required functionality from a
user’s point of view, in about three sentences of text in the customer’s terminology.

We have used both paper stories and stories written into a web-based task man-
agement system. An advantage of paper stories is their simplicity. On the other hand,
the task management system allows its users to modify the contents of stories, add
comments, track the effort, attach files (i.e. tests or design documents) etc. It is also
more suitable when we have a remote or offsite customer. Currently we are only using
the task management system and do not have any paper stories at all.

In many projects, product or component requirements are represented in the form of
tasks written by programmers. Tasks contain a lot of technical details, and often also
describe what classes and methods are required to implement a concrete story. A story
normally produces 3-4 tasks. When a story is split into tasks, the tasks are linked as
dependencies of the story, and the story becomes dependent on tasks. When we used
paper stories, we just attached the tasks to their stories. This is done in order to ensure
the bidirectional traceability of requirements. Moreover, it is possible to trace each
story or task to the source code implementing it. This is discussed in the Configuration
Management practice. It is essential that each story makes sense for the developers (see
Section 4.2) and it is estimable (we talk about the estimations in the Section 4.2).

4.2 Planning Practices

The most fundamental issues in XP project planning are to decide what functional-
ity should be implemented and when it should be implemented. In order to deal

420 R.-J. Back, L. Milovanov, and I. Porres

with these issues we need the planning game and a good mechanism for time esti-
mations.

Planning Game and Small Iterations
The planning game is the XP planning process [2]: business gets to specify what the
system needs to do, while development specifies how much each feature costs and
what budget is available per day, week or month. XP talks about two types of plan-
ning: by scope and by time. Planning by time is to choose the stories to be imple-
mented, rather than taking all of them and negotiating about a release date and re-
sources to be used (planning by scope).

The team estimates all the stories for the project and writes their estimations di-
rectly for the stories (we will discuss the estimation process in more details in the
Section 4.2). These estimations are not very precise, the error is 20% on average [5],
but can be smaller. E.g., in the FiPla [7] project the estimation error for the whole
effort was 10% (approximately 30 hours). The estimations create an overall project
plan and immediately tell us whenever some stories should be postponed to the next
project or whether there is time to add more stories.

The task managements and bug tracking system allows us to submit tasks and
bugs, and to keep track of them. Currently, we use the JIRA task management to keep
track of task estimations. These kinds of systems are easy to use and provide an over-
all view of which tasks and bugs are currently under correction, which are fixed and
which are open. This is especially important when the customer cannot act as an on-
site customer (see Section 4.1).

In our experience, the planning game, the small releases and time estimations are
very hard to implement without well-defined customer stories and technical tasks, and
hence, without an active customer or customer representative.

Time Estimations
The essence of the XP release planning meeting is for the development team to esti-
mate each user story in terms of ideal programming weeks [2]. An ideal week is how
long a programmer imagines it would take to implement a story if he or she had abso-
lutely nothing else to do. No dependencies, no extra work, but the time does include
tests.

We have two estimation phases in the Gaudi process. The first phase is when the
team estimated all of the stories in ideal programming days and weeks. These estima-
tions are not very precise and they are improved in the second estimation phase when
the team splits stories into tasks. When programmers split stories into technical tasks
they make use of their previous programming experience and try to think of the sto-
ries in terms of the programs they have already written. This makes sense for the
programmers and makes the estimating process easier for them.

The estimated time for a task is the number of hours it will take one programmer to
write the code and the unit tests for it. These estimations are done by the same pro-
grammers that are signed up for the tasks, i.e., the person who estimates the task will
later implement it. This improves the precision of the estimations. The sum is doubled
to allocate time for refactoring and debugging. This is the estimation of a story for

 Software Development and Experimentation in an Academic Environment 421

solo programming. In case of pair programming we need to take the Nosek’s [12]
principle into consideration: two programmers will implement two tasks in pair 60
percent slower then two programmers implementing the same task separately with
solo programming. This means that a pair will implement a single task 20% faster
then a single programmer. Similarly, to get the estimation for an iteration we have to
sum the estimations of all stories the iteration consists of. Project estimation will be
the sum of all its iteration estimations.

Estimating tasks turns out to be rather easy even for inexperienced programmers.
The accuracy of the estimations depends, of course, on the experience of the devel-
oper. Experience in the particular programming language turns out to be more impor-
tant than experience in estimation. Examples of the estimation accuracy in Gaudi can
be found in [5].

XP-style project estimation is useful to plan the next one or two iterations in the
project, but they can seldom be used to estimate the calendar length or resources
needed in a project.

4.3 Engineering Practices

Engineering practices include the day-to-day practices employed by the programmers
in order to implement the user stories into the final working system.

Design by Contract
Design by Contract [14] (DBC) is a systematic method for making software reliable
(correct and robust). A system is structured as a collection of cooperating software
elements. The cooperation of the elements is restricted by contracts, explicit defini-
tions of obligations and guarantees. The contracts are pre- and postconditions of
methods and class invariants. These conditions are written in the programming lan-
guage itself and can be checked at runtime, when the method is called. If a method
call does not satisfy the contract, an error is raised. Some reports [15, 16] show that
XP and design by contract fit well together, and unit tests and contracts compliment
each other.

Our first experiment with Eiffel and DBC showed very good results. First of all,
the use of this method was one of the reasons for the low defect rate in the project [7].
As the development team commented out: “All the tests written (to a complete code)
always pass and the tests that don’t pass have a bug in the test itself”. Most of the
bugs were caught with the help of preconditions, when a routine with a bug was
called during unit testing. Most of the unit tests were written before the actual code,
but the contracts were specified after it because the programmers did not get any
instructions from their coach on when the contracts should be written. Example data
for the post-release defect rate of the software developed with DBC is reported in [7].

Stepwise Feature Introduction
Stepwise Feature Introduction (SFI) is a software development methodology intro-
duced by Back [17] based on the incremental extension of the object-oriented soft-
ware system one feature at a time. This methodology has much in common with the

422 R.-J. Back, L. Milovanov, and I. Porres

original stepwise refinement method. The main difference to stepwise refinement is
the bottom-up software construction approach and object orientation. Stepwise Fea-
ture Introduction is an experimental methodology and is currently under development.

We are using this approach in our projects in order to get practical experience with
the method and suggestions for further improvements. Extreme Programming does
not say anything about the software architecture of the system. Stepwise Feature In-
troduction provides a simple architecture that goes well with the XP approach of con-
structing software in short iteration cycles. So far we have had positive feedback from
using SFI with a dynamically typed object-oriented language like Python. An experi-
ment with SFI and Eiffel, a statically typed object-oriented language showed us some
aspects of the methodology which need improvement. The explanation of these find-
ings requires a more thorough explanation of SFI than what is motivated in this paper,
so we decided to discuss this in a separate paper. Developers found SFI methods rela-
tively easy to learn and use. The main complain was the lack of tool support. When
building a software system using SFI, programmers need to take care of a number of
routines which are time consuming but which could be automated. The most positive
feedback about SFI concerned the layered structure: it clarifies the system architecture
and it also helps in debugging, since it is relatively easy to determine the layer in
which the bug is introduced.

Pair Programming
Pair programming is a programming technique in which two programmers work to-
gether at one computer on the same task [18]. Pair programming has many significant
benefits for the design and code quality, communication, education etc [19, 20, 21,
22, 23]. Programmers learn from each other while working in pairs. This is especially
interesting in our context since in the same project we can have students with very
different programming experience.

In our first experiments we were enforcing developers to always work in pairs,
later on when we had some experienced developers in the projects, we gave the de-
velopers the right to choose when to work in pair and when to work solo. In the 2003
projects pair programming was not enforced, but recommended, while in summer
2004 two months were pair programming and one month solo. We leave it up to the
programmer whether to work in pairs while debugging or refactoring. The percentage
of the solo-pair work for the five projects of 2003-2004 is reported in [5].

All of the developers agree that the code written in pairs is easier to read and con-
tains less bugs. They also commented that refactoring is much easier to do in pairs.
However there are different opinions and experiences on debugging. In some projects
developers said that it was almost impossible to debug in pair because “everyone has
his own theory about where the bug is” and “while you want to scroll up, your pair
want to scroll down, this disturbs concentration during debugging”. In other projects
programmers preferred pair debugging because they found it easier to catch bugs
together. We think that working in pairs should be enforced for writing all productive
code, including tests, while it should be up to the developers, whenever debug or
refactor in pairs or solo. It would be interesting to know which part of the code is
actually pair programmed and which solo. A possible solution to distinguish between

 Software Development and Experimentation in an Academic Environment 423

pair and solo code is to use specific annotations in the code [24], as used in Energi
[25] projects, where the origin (pair or solo) of the code is described by comments.

Unit Testing
Unit testing is defined as testing of individual hardware or software units or groups of
related units [26]. In XP, unit testing refers to tests written by the same developer as
the production code. According to XP, all code must have unit tests and the tests
should be written before the actual code. The tests must use a unit test framework to
be able to create automated unit test suites.

Learning to write tests was relatively easy for most developers. The most difficult
practice to adopt was the “write test first” approach. Our experience shows that if the
coach spends time together with the programmers, writing tests himself and writing
the tests before the code, the programming team continues this testing practice also
without the coach. Some supervision is, however, required, especially during the first
weeks of work. The tutorial about unit testing focused at the test driven development
before the project is also essential. The implementation of the testing practice also
depends on the nature of the programming task. Our experience showed that the
“write test first” approach worked only in the situation where the first programming
tasks had no GUI involved because GUI code is hard to test automatically.

In many projects the goal is to achieve 100% unit test coverage for non-GUI com-
ponents. A program that calculates test coverage automatically provides an invaluable
help to achieve this goal to both programmers and coaches.

Continuous Refactoring and Collective Code Ownership
Refactoring is the process of changing a software system in such a way that it does
not alter the external behavior of the code, yet improves its internal structure [27]. XP
promotes refactoring throughout the entire project life cycle to save time and increase
quality [28]. This practice together with pair programming also promotes collective
code ownership, where no one person owns the code and may become a bottleneck
for changes. Instead, every team member is encouraged to contribute to all parts of
the project.

Pair programming, continuous refactoring, collective code ownership, and the lay-
ered architecture make the code produced in the Gaudi factory simpler and easier to
read, and hence more maintainable. As mentioned before, larger products are devel-
oped in a series of three-month projects and not necessarily by the same developers.
To ensure that a new team that takes over the project gets to understand the code
quickly, we usually compose the team with one or two developers who have experi-
ence with the product from a previous project, the rest of the team being new to the
product. In this way new developers can take over the old code and start contributing
to the different parts of the product faster. When the team is completely new, the
coach will help the developers to take over the old code.

4.4 Asset Management

Any nontrivial software project will create many artifacts which will evolve during
the project. In XP those artifacts are added in the central repository and updated as

424 R.-J. Back, L. Milovanov, and I. Porres

soon as possible. Each team member is not only allowed, but encouraged to change
any artifact in the repository.

Configuration Management and Continuous Integration
All code produced in the Gaudi Software Factory, as well as all tests (see Section
4.3), are developed under a version control system. We started in 2001 using CVS but
now most projects have migrated to Subversion, which is now the standard version
control system in Gaudi. The source code repository is also an important source of
data for analyzing the progress of the project, since all revisions are stored there to-
gether with a record of the responsible person and date and time for check-in. The
metrics issues were discussed in the Section 3.3.

Due to the small size (four to six programmers) of the development teams in
Gaudi, we do not use a special computer for integration, neither do we make use of
integration tokens. When a pair needs to integrate its code, the programmers from this
pair simply inform their colleagues and ask them to wait with their integration until
the first pair checks in the integrated code. The number of daily check-ins varies, but
there is at least one check-in every day. In many cases integration is just a matter of
few seconds.

It is important to be able to trace every check-in to concrete tasks and user stories
[29]. For this purpose programmers add the identification of the relevant task or
story to the CVS or Subversion log. The identification is the unique ID of the story
or task in the task management system (SourceForge or JIRA). The exception is
when the programmers refactor or debug existing code, it is then very hard (or im-
possible) to trace this activity to a concrete task or story. Therefore check-ins after
refactoring or debugging are linked to the “General Refactoring and Debugging”
task (see Section 4.1).

Agile Documentation
When a story is implemented, the pair or single programmer who implemented it
should also write the user documentation for the story. The documentation is written
directly on the story or in a text file located in the project’s repository. This file is
divided into sections, where each section corresponds to an implemented story. If the
stories are on a web-base task management system, the documentation is written di-
rectly in the stories – this simplifies the bidirectional traceability for stories and their
documentation. Later on the complete user documentation will be compiled from the
stories’ documentation. Documenting a user story is basically rephrasing it, and it
takes an average of 30 minutes to do it.

This approach allows us to embed the user documentation into the development
process. Bidirectional traceability of the stories and user documentation makes it easy
to update the corresponding documentation whenever the functionality changes. The
documentation examples from one of the Gaudi projects can be found in [5].

5 Conclusions and Related Work

In this paper we have presented Gaudi, our approach to empirical research in software
engineering based on the development of small software products in a controlled

 Software Development and Experimentation in an Academic Environment 425

environment. This approach requires a large amount of resources and effort but pro-
vides a unique opportunity to monitor and study software development in practice.

The software process used in Gaudi is based on agile methods, especially on Ex-
treme Programming. In this, paper we have discussed the adoption and performance
of 12 different agile practices. We believe that our collected data represents a signifi-
cant sample of actual software development due to its size and diversity, and lends
support for many of the claims made by the advocates of Extreme Programming.

There have been several efforts to study and validate how agile methods are used
in the industry, such as the survey performed i.e. in [30, 31]. An industrial survey can
help us to determine the performance of a completely defined process such as XP, but
it cannot be used to study the effects of different development practices quantitatively,
since the researchers cannot monitor the project in full details. Instead, the survey has
to be based on the qualitative and subjective assessments of project managers of the
success of the different development practices used in their projects. Abrahamsson
follows a research approach that is similar to ours, combining software research with
software development in Energi [25]. The main focus of his research is to evaluate
agile methods proposed by other researchers in the field. In contrast, our intention is
to perform empirical experiments not only to evaluate existing practices but also to
propose new practices that we think will improve the overall software process.

The Gaudi framework project started in 2001 and have completed 18 projects dur-
ing a period for 4 years representing an effort of 30 person years in total. This work
has been measured and the results of these measurements are being used to create the
so called Gaudi process. Once this process is completely defined it will be tested
again in empirical experiments. It is possible to argue that this approach will result in
a software process that is optimized for building software only in a university setting.
Although this criticism is valid, it is also true that most of the challenges found in our
environment such as scarce resources, undefined and volatile requirements and high
programmer turn around are also present in many industrial projects.

In the previous section, we have evaluated each practice in detail. However, we
would like to discuss some of the overall experiences obtained from the framework
project.

Agile Methods Work in Practice: As overall conclusions of our experiences is that
agile methods provide good results when used in small projects with undefined and
volatile requirements. Agile methods have many known limitations such as difficul-
ties to scale up to large teams, reliance on oral communication and a focus on func-
tional requirements that dismisses the importance of reliability and safety aspects.
However, when projects are of relatively small size and are not safety critical, agile
methods will enable us to reliably obtain results in a short time.

The fact that agile methods worked for us does not mean that is not possible to im-
prove existing agile practices. Our first recommendation is that architectural design
should be an established practice. We have never observed a good architecture to
“emerge” from a project. The architecture has been either designed a priory at the
beginning of a project or a posteriori, when the design was so difficult to understand
that a complete rethinking was needed.

426 R.-J. Back, L. Milovanov, and I. Porres

Also, we established project and product documentation as an important task. XP
reliance on oral communication should not be used in environments with high devel-
oper turnaround. Artifacts describing the software architecture, design and product
manual are as important as the source code and should be created and maintained
during the whole life of the project.

Project Management and Flying Hats: Another observation is that in many cases
the actual roles and tasks performed by the different people involved in a project did
not correspond to the roles and tasks assigned to them before the project started. This
was due to the fact that the motivation and interest in a given project varied greatly
from person to person. In some cases, the official customer for a project lost interest
in the project before it was completed, e.g. in less than three months. In these cases,
another person took the role of a customer just because that person was still interested
in the product or because a strong commitment to the project made this person to take
different roles simultaneously even if that was not his or her duty.

Our conclusion is that standard management tasks such project staffing, project su-
pervision and ensuring a high motivation and commitment from the project staff and
different stakeholders are as relevant in agile process in a university setting as in any
other kind of project.

Tension Between Product and Experiment: Finally, we want to note that during
these four years we have observed a certain tension between the development of soft-
ware and the experimentation with methods. We have had projects that produced
good products to customer satisfaction but were considered bad experiments since it
was not possible to collect all the desired data in a reliable way. Also, there have been
successful experiments that produced software that has never been used by its cus-
tomer.

To detect and avoid these situations a well-defined measurement framework should
be in place during the development phase of a project but also after the project has
been completed to monitor how the products are being used by their customers.

References

1. Back, R.J., Milovanov, L., Porres, I., Preoteasa, V.: XP as a Framework for Practical
Software Engineering Experiments. In: Proceedings of the Third International Confer-
ence on eXtreme Programming and Agile Processes in Software Engineering – XP2002
(2002)

2. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley (1999)
3. Abrahamsson, P.: Extreme Programming: First Results from a Controlled Study. In: Pro-

ceedings of the 29th EUROMICRO Conference ”NewWaves in System Architecture”,
IEEE (2003)

4. Back, R.J., Milovanov, L., Porres, I., Preoteasa, V.: An Experiment on Extreme Program-
ming and Stepwise Feature Introduction. Technical Report 451, TUCS (2002)

5. Back, R.J., Milovanov, L., Porres, I.: Software Development and Experimentation in an
Academic Environment: The Gaudi Experience. Technical Report 641, TUCS (2004)

6. Basili, V., Caldiera, G., Rombach, D.: The Goal Question Metric Approach. Encyclopedia
of Software Engineering. John Wiley and Sons (1994)

 Software Development and Experimentation in an Academic Environment 427

7. Back, R.J., Hirkman, P., Milovanov, L.: Evaluating the XP Customer Model and Design
by Contract. In: Proceedings of the 30th EUROMICRO Conference, IEEE Computer So-
ciety (2004)

8. Korkala, M.: Extreme Programming: Introducing a Requirements Management Process for
an Offsite Customer. Department of Information Processing Science research papers series
A, University of Oulu (2004)

9. Korkala, M., Abrahamsson, P.: Extreme Programming: Reassessing the Requirements
Management Process for an Offsite Customer. In: Proceedings of the European Software
Process Improvement Conference EUROSPI 2004, Springer Verlag LNCS Series
(2004)

10. Palmer, S.R., Felsing, J.M.: A Practicel Guide to Feature-Driven Development. The Coad
Series. Prentice Hall PTR (2002)

11. Beck, K.: Embracing Change with Extreme Programming. Computer 32 (1999) 70–73
12. Nosek, J.: The Case for Collaborative Programming. Communications of the ACM 41

(1998) 105–108
13. Meyer, B.: Eiffel: The Language. second edition edn. Prentice Hall (1992)
14. Meyer, B.: Object-Oriented Software Construction. second edition edn. Prentice Hall

(1997)
15. Feldman, Y.A.: Extreme Design by Contract. In: Proceedings of the 4th International Con-

ference on Extreme Programming and Agile Processes in Software Engineering, Springer
(2003)

16. Heinecke, H., Noack, C. In: Integrating Extreme Programming and Contracts. Addison-
Wesley Professional (2002)

17. Back, R.J.: Software Construction by Stepwise Feature Introduction. In: Proceedings of
the ZB2001 – Second International Z and B Conference, Springer Verlag LNCS Series
(2002)

18. Williams, L., Kessler, R.: Pair Programming Illuminated. Addison-Wesley Longman Pub-
lishing Co., Inc. (2002)

19. Cockburn, A., Williams, L.: The Costs and Benefits of Pair Programming. In: Proceedings
of eXtreme Programming and Flexible Processes in Software Engineering XP2000. (2000)

20. Constantine, L.L.: Constantine on Peopleware. Englewood Cliffs: Prentice Hall (1995)
21. Johnson, D.H., Caristi, J.: Extreme Programming and the Software Design Course. In:

Proceedings of XP Universe. (2001)
22. Müller, M.M., Tichy, W.F.: Case study: Extreme programming in a university environ-

ment. In: Proceedings of the 23rd Conference on Software Engineering, IEEE Computer
Society (2001)

23. Williams, L.A., Kessler, R.R.: Experimenting with Industry’s Pair-Programming Model in
the Computer Science Classroom. Journal on Software Engineering Education (2000)

24. Hulkko, H.: Pair programming and its impact on software quality. Master’s thesis, Electri-
cal and Information Engineering department, University of Oulu (2004)

25. Salo, O., Abrahamsson, P.: Evaluation of Agile Software Development: The Controlled
Case Study approach. In: Proceedings of the 5th International Conference on Product Fo-
cused Software Process Improvement PROFES 2004, Springer Verlag LNCS Series
(2004)

26. Institute of Electrical and Electronics Engineers: IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries. New York (1990)

27. Fowler, M.: Refactoring: Improving the Design of Existing Code. Object Technology Se-
ries. Addison-Wesley (1999)

428 R.-J. Back, L. Milovanov, and I. Porres

28. Roberts, D.B.: Practical Analysis of Refactorings. PhD thesis, University of Illinois at Ur-
bana-Champaign (1999)

29. Asklund, U., Bendix, L., Ekman, T.: Software Configuration Management Practices for
eXtreme Programming Teams. In: Proceedings of the 11th Nordic Workshop on Pro-
gramming and Software Development Tools and Techniques NWPER’2004. (2004)

30. Ilieva, S., Ivanov, P., Stefanova, E.: Analyses of an Agile Methodology Implementation.
In: Proceedings of the 30th EUROMICRO Conference, IEEE Computer Society (2004)

31. Rumpe, B., Schröder, A.: Quantitative survey on extreme programming projects. In: Third
International Conference on Extreme Programming and Flexible Processes in Software
Engineering, XP2002, May 26-30, Alghero, Italy (2002) 95–100

	Introduction
	Gaudi and Its Working Principles
	Software Factory
	Software Laboratory

	Experiments in the Gaudi Factory
	Schedule and Resources
	Training
	Experiment Supervision, Metrics Collection and Evaluation

	Software Practices in Gaudi
	Requirement Management Practices
	Planning Practices
	Engineering Practices
	Asset Management

	Conclusions and Related Work
	References

