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ABSTRACT
In this paper we extend the model of program variables from
the Refinement Calculus [2] in order to be able to reason
more algebraically about recursive procedures with parame-
ters and local variables. We extend the meaning of variable
substitution or freeness from the syntax to the semantics
of program expressions. We give a predicate transformer se-
mantics to recursive procedures with parameters and prove a
refinement rule for introduction of recursive procedure calls.
We also prove a Hoare total correctness rule for our recur-
sive procedures. These rules have no side conditions and are
easier to apply to programs than the ones in the literature.
The theory is built having in mind mechanical verification
support using theorem provers like PVS [18] or HOL [11].

Categories and Subject Descriptors
F.3.1 [Specifying and Verifying and Reasoning about
Programs]; F.3.2 [Semantics of Programming Lan-
guages]

Keywords
Hoare logic, predicate transformer semantics, recursive pro-
cedures, refinement calculus

1. INTRODUCTION
When giving a semantics for an imperative programming

language, suitable for mechanical verification, we should
deal with the fact that program variables have different
types. Many computational models [12, 22, 23, 16, 4, 10],
some used in mechanical verification, are based on states
represented as tuples, with one component for each pro-
gram variable. When accessing or updating a specific pro-
gram variable we should access or update the corresponding
component in the tuple. The problem becomes even more
complicated when there are local variables. Then we should
add or delete components to the tuple. This extra calcu-
lus makes the reasoning about the correctness of a program
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more complicated.
A more intuitive approach is given in [2], where the state

is no longer given as a tuple. Instead, two functions, val.x
and set.x, are introduced for each program variable x. The
function val.x is defined from states to the type of x and
val.x.σ is the value of the program variable x in the state σ.
The function set.x.a is defined from states to states and sets
the program variable x to a in a given state. These func-
tions should satisfy some behavioral axioms. All program
constructs that deal with program variables are defined us-
ing set and val. A drawback of this approach is that, as in
the case of tuples or frames, the introduction of new program
variables is done by changing the state space.

We propose a cleaner solution which handles the introduc-
tion of local variables without changing the state space. We
replace the way local variables are introduced in [2]. Our
main goal is to be able to reason about recursive procedures
so that at any recursive call the procedure parameters are
saved (in a stack) and the procedures work with these pa-
rameters as if they were new. More generally, we want to be
able to save any program variable x at some point during
the program execution, work with x as if it were new, and
then restore the old value of x. We want to do this as many
times as we need.

Last but not least we want to avoid explicitly dealing with
stack-like structures in our calculus. We also want to avoid
any additional calculus (for tuples or frames) except for the
predicate transformers and program expressions one. We
only want to have program constructs that satisfy some spe-
cific desired properties and give us enough power to reason
about recursive procedures with parameters and local vari-
ables, without using a stack or any additional calculus.

The contribution of this paper is to extend the axiomatic
model of program variables from [2] with one additional pro-
gram construct del.x.σ, which deletes the local variable x
from the state σ. We give a predicate transformer seman-
tics [7, 8] for recursive procedures with value and value–
result parameters and local variables. We also introduce a
refinement rule and a Hoare [13] total correctness rule for
these procedures. These rules have no side conditions and
are much easier to apply than the ones in the literature.

The overview of the paper is as follows. We discuss related
work in Section 2. Section 3 contains some basic definitions
about the Refinement Calculus. In Section 4, we introduce
the primitive functions that we use to manipulate program
variables. In Section 5 we give a semantic notion of pro-
gram expressions. We define substitution and freeness in
the context of these program expressions. Using the prim-



itive functions defined in Section 4 we define in Section 6
some program statements and state some properties about
them. In Section 7 we give a least fix point semantics for re-
cursive procedures with parameters and local variables. We
give an example of a correctness proof for a recursive proce-
dure. Section 8 presents a refinement rule for introduction
of recursive procedure calls. Based on this rule we prove, in
Section 9, a Hoare total correctness rule for recursive proce-
dure calls. Section 10 contains concluding remarks.

Because of the space limitation we had to leave out most of
the proofs. A more detailed version of the paper, containing
proofs for all nontrivial results, can be found in [1].

2. RELATED WORK
Back and von Wright [2] represent a program variable x

as a pair of functions (val.x, set.x) – val.x for getting the
value of x in a state, and set.x for setting x to some value in
some state. The sentence var x1, . . . , xn indicates that the
program variables x1, . . . , xn satisfy certain assumptions. A
program refinement using x1, . . . , xn is done under the as-
sumptions var x1, . . . , xn. As a consequence, one should
know a priori what program variables are needed in order to
include them in the assumptions. A solution to this problem
would be to start with an infinite set of program variables
and then use as many as needed. However, because any pro-
gram variable has at least one assumption associated with it,
we would need to state an infinite number of assumptions,
which is impossible in a mechanical verification setting.

Reynolds [20] introduces the more general concept of ac-
ceptors, which are functions mapping values into state trans-
formers. A program variable is modeled as a pair of an ac-
ceptor and an expression. The acceptor and expression used
in such a pair correspond to set.x and val.x of Back and von
Wright [2]. However, no assumptions about the behavior of
the program variables are made.

In [2], a procedure call first changes the state space (adds
local variables), does some computation, and then restores
the state space. If there is a recursive call, then this call is
made in the new (extended) state space, and the semantics
should accommodate this fact.

In [3], Back and von Wright give an improved version
of their program variable model [2]. They do not need to
change the state space any more when adding or deleting
local variables. Their approach is similar to ours, but they
use a different set of primitive functions, and their focus is
on refining parallel composition of action systems, while our
focus is on recursive procedures with parameters.

Staples [21, 22, 23] models the state space as a cartesian
product over a set of variables V of the dependent types
τ(v), v ∈ V . When entering local blocks or calling proce-
dures, the set V changes. Because the state space changes,
the semantics and refinement rules of (recursive) procedures
are complicated. Another limitation is that procedures can-
not access global variables.

Hesselink [12] gives a predicate transformer semantics for
parameterless recursive procedures with local variables and
access to global variables. Based on this semantics, a Hoare
total correctness rule is proved. Hesselink, similarly to Sta-
ples, uses a set (frame) F of program variables, and the
state space is the product over F of the types of the pro-
gram variables. A rich logic that connects (changing of)
frames to predicate transformers, is developed in order to
give proper semantics to recursive procedures.

Kleymann [15] gives an operational semantics for an im-
perative deterministic language with recursive procedures.
He gives a complete set of Hoare total correctness rules with
respect to the operational semantics. His approach is simple,
but it is limited to handling procedures without parameters
and local variables. Based on the operational semantics,
the author also gives a predicate transformer semantics. The
latter is obtained easily since the state space does not change
(there are no local variables) and the language is determinis-
tic. In [14] Kleymann introduces recursive procedures with
local variables. Similarly to our approach the author uses a
dependent type technique to represent program variables of
various types. However, the author does not define a pred-
icate transformer semantics for the language. Contrasting
with our approach, adding a local variable in [14] seems to
require a change in the state space. In turn, this change
may add complexity when giving a predicate transformer
semantics for the language.

In [25] von Oheimb gives an operational semantics for
an imperative deterministic language with recursive proce-
dures, and his procedures can have value and result param-
eters and local variables. He gives then a (relatively) com-
plete set of Hoare partial correctness rules with respect to
the operational semantics. When procedure calls occur the
state space changes. The correctness rule for recursive pro-
cedures is very simple and intuitive, but the rules for proce-
dure parameters and local variables are not. However, in his
approach all program variables have the same type, which
is an unrealistic assumption.

Reynolds [19] gives an axiomatic semantics for recursive
procedures. The main procedure mechanism is call-by-name
and uses the copy rule. This mechanism is also used to de-
fine procedures with value, result, and reference parameters.
Since identifier collision might occur, renaming of program
variables may be needed. However, the renaming of vari-
ables leads to the introduction of new variables, which in
turn causes the state space to change.

In [19] recursive procedures are handled by extending the
logic with new primitives that express when two expressions
do not interfere. A distinction between environments and
states of computation is made. Environments map identi-
fiers to meanings; in particular, an environment may map
two different identifiers to the same meaning. When a pro-
cedure is specified, the new non-interference primitives may
be needed in order to specify that some variables do not in-
terfere with each other. Such a specification would then be
satisfied only in the environments in which those variables
are mapped into distinct meanings. Lack of interference is
expressed more easily in our formalism, since having a type
of all program variables means that two program variables x
and y do not interfere as long as they are different (x 6= y).

3. PRELIMINARIES
We use higher–order logic [5] as the underlying logic. In

this section we recall some facts about the Refinement Cal-
culus hierarchy [2]. We also use some basic facts about com-
plete lattices and fixpoints [6].

A state space is a type Σ of higher–order logic. We call
an element σ ∈ Σ a program state or simply a state. A state
transformer is a function f : Σ → Σ that maps states to
states. We use the notation f.σ for function application,
f ; g for forward functional composition, i.e. (f ; g).σ =
g.(f.σ), and id for the identity function.



We denote by bool the boolean algebra with two elements.
For a type X, Pred.X are the predicates on X, i.e. the func-
tions from X to bool. We extend pointwise all operations on
bool to operations on Pred.X. We have that the structure
〈Pred.X, ∪, ∩, ¬, false, true〉 is a boolean algebra.

A state relation is a binary relation on Σ, i.e. a function
of type Σ → Σ → bool (Σ → Pred.Σ). We denote by Rel.Σ
all binary relations on Σ. We again extend pointwise the
operations from Pred.Σ to operations on Rel.Σ. We also
have that 〈Rel.Σ, ∪, ∩, ¬, false, true〉 is a boolean algebra.
We denote by R ; R′ the composition of relations. We can
map functions to relations. If f is a state transformer then
we define |f | ∈ Rel.Σ by |f |.σ.σ′ = (f.σ = σ′).

A predicate transformer is a function that maps predi-
cates over Σ to predicates over Σ. Programs are modeled
by monotonic predicate transformers, denoted by MTran.Σ.
As in the cases of predicates and relations we extend point-
wise the operators from Pred.Σ to MTran.Σ. We have that
〈MTran.Σ, v, t, u〉 is a complete lattice. We denote by
S ; T the functional composition of predicate transformers
and by skip the identity function on Pred.Σ. All operations
defined on predicate transformers are interpreted as opera-
tions on programs.

S v T – the refinement relation.

S ; T – the sequential composition.

S u T – the demonic choice.

S t T – the angelic choice.

In addition to these program constructs, we give the defini-
tion of some others:

{p}.q = p ∩ q (assertion)

[p].q = ¬p ∪ q (assumption)

{R}.q = (λσ • (∃σ′ •R.σ.σ′ ∧ q.σ′)) (angelic update)

[R].q = (λσ • (∀σ′ •R.σ.σ′ ⇒ q.σ′)) (demonic update)

[f ] = [|f |] = {|f |} (functional update)

where p, q are predicates, R is a state relation, f is a func-
tion, and S, T are predicate transformers. We define the
conditional statement by:

if p then S else T fi = {p} ; S t {¬p} ; T

We recall Knaster–Tarski’s fixpoint theorem [24] for com-
plete lattices. We will use it to give semantics to recursive
procedures.

Theorem 1. Assume that L is a complete lattice and f :
L → L is a monotonic function, then f has a least fixpoint
(denoted µf).

We denote predicates by p, q, functions by f, g, predicate
transformers by S, T , and states by σ, σ′. We will use Pred,
Rel, and MTran instead of Pred.Σ, Rel.Σ, and MTran.Σ, since
Σ is fixed.

4. PROGRAM VARIABLES
We denote by Var the type of program variables. For any

program variable x ∈ Var, Γ.x is its type. We denote by
nat the type of natural numbers and by NatVar the program
variables of type nat.

For any program variable x we introduce the following
functions:

val.x : Σ → Γ.x (the value of x)
set.x : Γ.x → Σ → Σ (the update of x)
del.x : Σ → Σ (the delete of local x)

The types of the functions val and set are dependent on
the first argument. We could implement them in PVS, for
example, using the dependent type mechanism.

The functions val.x and set.x are the same as the ones
defined in [2]. We assume that val, set and del satisfy the
following axioms:

(a) val.x.(set.x.a.σ) = a
(b) x 6= y ⇒ val.y.(set.x.a.σ) = val.y.σ
(c) set.x.a ; set.x.b = set.x.b
(d) x 6= y ⇒ set.x.a ; set.y.b = set.y.b ; set.x.a
(e) set.x.(val.x.σ).σ = σ
(f) del.x is surjective
(g) x 6= y ⇒ del.x ; val.y = val.y
(h) set.x.a ; del.x = del.x
(i) x 6= y ⇒ set.x.a ; del.y = del.y ; set.x.a

The axioms (a) – (e) are the same as the ones in [2].
To show that the axioms are consistent, we will give a

model in which they are satisfied. Let Σ be the cartesian
product

Q{x ∈ Var | (Γ.x)ω}. Any component s ∈ (Γ.x)ω of
a state σ ∈ Σ acts as a stack in which the program variable
x is stored. The top element of s is the current value of x,
the value returned by val.x.σ. The function set.x.a changes
the top value of s to a and del.x removes the top of s. It is
easy to prove that all axioms (a) – (i) are satisfied.

We often need to have multiple assignments in programs.
Procedures can also have more than one parameter. In order
to define such program constructs we need to introduce lists
of program variables.

We denote by VarList the set Var∗, of all finite lists with
elements from Var. We use the same notation x, y, z, . . .
to denote both program variables and lists of program vari-
ables. For x, y ∈ VarList we denote by x · y the concatena-
tion of the two lists and by ε the empty list. We consider
Var ⊆ VarList, and we denote by (x, y, z, . . . ) the list with
the elements x, y, z, . . . ∈ Var.

For x ∈ VarList we define Γ.x ⊆ (
L {y ∈ Var | Γ.y})∗

the type of the list of program variables x by induction on
x, where

L
denotes the disjoint union. If y ∈ Var and

z ∈ VarList, then Γ.ε = {ε} and Γ.(y · z) = Γ.y · Γ.z. We
also extend the functions val, set and del to lists of program
variables.
val.ε.σ = ε, val.(y · z).σ = val.y.σ · val.z.σ
del.ε = id, del.(y · z) = del.y ; del.z
set.ε.ε = id, set.(y · z).(a · b) = set.y.a ; set.z.b

Lemma 2. If x, y ∈ VarList, a ∈ Γ.x, and b ∈ Γ.y then

(i) del.(x · y) = del.x ; del.y
(ii) set.(x · y).(a · b) = set.x.a ; set.y.b
(iii) val.(x · y).s = val.x.s · val.y.s

We usually need lists of program variables in which each
program variable occurs at most once. The predicate var.x
is true if all variables from x are distinct. We denote by x∩y
the set of program variables that occur in both x and y.

The axioms of the program variables can be easily gener-
alized to properties about lists of program variables.

Lemma 3. If x, y ∈ VarList, σ ∈ Σ and a, b are of appro-
priate types, then



(a) var.x ⇒ val.x.(set.x.a.σ) = a
(b) x ∩ y = ∅ ⇒ val.y.(set.x.a.σ) = val.y.σ
(c) set.x.a ; set.x.b = set.x.b
(d) x ∩ y = ∅ ⇒ set.x.a ; set.y.b = set.y.b ; set.x.a
(e) set.x.(val.x.σ).σ = σ
(f) del.x is surjective
(g) x ∩ y = ∅ ⇒ del.x ; val.y = val.y
(h) set.x.a ; del.x = del.x
(i) x ∩ y = ∅ ⇒ set.x.a ; del.y = del.y ; set.x.a

5. PROGRAM EXPRESSIONS
We define a program expression of some type A as being

any function from Σ to A. A program expression of type bool
is called boolean program expression. We denote by NatExp
the type of natural program expressions, i.e. Σ → nat.

If e1, e2, . . . , en are program expressions of types A1, A2,
. . . , An, respectively, then we denote by (e1, e2, . . . , en)
the program expression (λσ • (e1.σ, e2.σ, . . . , en.σ)) of type
A1 ·A2 · . . . ·An.

Lemma 4. If S, T ∈ MTran and e : Σ → A is a program
expression, then
(∀a ∈ A • {e = a} ; S v {e = a} ; T ) ⇔ S v T .

Let e : Σ → A, x ∈ VarList, and e′ : Σ → Γ.x. We define
e[x := e′] : Σ → A, the substitution of e′ for x in e as
e[x := e′].σ = e.(set.x.(e′.σ).σ).

Let e : Σ → A be an expression, x ∈ VarList and f : Σ →
Σ be a function. We say that e is f–free if e = f ; e. We
say that e is set.x–free if e is set.x.a–free for all a ∈ Γ.x. We
say that e is x-free if e is set.x–free and del.x–free.

We define a subclass of program expressions that depend
only on the current values of the program variables. Two
states σ and σ′ are val-equivalent, denoted σ ∼ σ′, if
(∀x • val.x.σ = val.x.σ′). We call a program expression e, val-
determined if for all σ and σ′ we have σ ∼ σ′ ⇒ e.σ = e.σ′.

6. PROGRAM STATEMENTS
In this section we introduce some program constructs and

give some properties about them and their compositions.
If x, y ∈ VarList have the same type and e : Σ → Γ.x,

then we define:

Multiple assignment:
(x := e).σ = set.x.(e.σ).σ

Add local variables:
add.x.σ.σ′ = (σ = del.x.σ′)

Add & initialize local variables:
add.x.e.σ.σ′ = (σ = del.x.σ′) ∧ (val.x.σ′ = e.σ)

Save & delete local variables:
del.x.y.σ = set.y.(val.x.σ).(del.x.σ)

We use the same notation, add.x, for both the relation and
the demonic update [add.x]. The same is true for add.x.e,
del.x, del.x.y, and x := e.

Lemma 5. If x ∈ VarList then

(i) add.x ; del.x = skip
(ii) var.x ⇒ add.x.e ; del.x = skip

Lemma 6. If x, y ∈ VarList then

(i) x := e ; del.x = del.x
(ii) (x ∩ y = ∅) ∧ (e is del.x–free) ⇒

y := e ; del.x = del.x ; y := e
(iii) var.x ∧ (e is del.x–free) ⇒

x := e ; del.x.y = del.x ; y := e

Lemma 7. If x ∈ VarList and p is a boolean expression
then

(i) (p is del.x-free) ⇒ {p} ; add.x = add.x ; {p}
(ii) (p is del.x-free) ⇒ {p} ; add.x.e = add.x.e ; {p}
(iii) var.x ∧ (p is a val-determined) ⇒

{p[x := e]} ; add.x.e = add.x.e ; {p}

Example 8. If k, n, c, x, y ∈ NatVar such that var.(k, n, c, x, y)
and e, f, g, h are program expressions such that h is del.(k, n, c, x, y)–
free, then we have the following derivation for all u ∈ NatVar

add.(k, n, c).e ; add.(x, y) ;
x := f ; y := g ; c := h ;
del.(x, y) ; del.(k, n) ; del.c.u

= {Lemma 2, Lemma 5 and Lemma 6}
u := h

7. PROCEDURES
In this section we show how recursive procedures with

value and/or result parameters can be modeled using the
program constructs add and del.

We call a procedure with parameters from A or simply a
procedure over A an element from A → MTran. We denote
by Proc.A the type of all procedures over A. The set A is
the range of the procedure’s actual parameters. A call to
a procedure P ∈ Proc.A with the actual parameter a ∈ A
is the program P.a. We again extend pointwise all oper-
ations on programs to procedures over A. We have that
(Proc, v,t, u) is a complete lattice. We call v the proce-
dure refinement relation, u the demonic choice, t the angelic
choice, and ; the sequential composition of procedures.

A general nonrecursive procedure declaration is:

procedure name(val x; res y) :
body

(1)

where body is a program that does not contain any recursive
call. The procedure declaration (1) is an abbreviation for
the following formal definition:

name = (λe, z • add.(x · y).(e · val.z) ; body ; del.x ; del.y.z)

where the variables e and z do not occur free in x, y and
body.

Using this approach we can have local variables as well. If
w are the local variables, then body is add.w ; body0 ; del.w.

The semantics of a recursive procedure over A is the least
fixpoint of some monotonic function on Proc.A given by the
procedure declaration. If body : Proc.A → Proc.A is a mono-
tonic function then we define the recursive procedure given
by body as µ body.

Example 9. We give a recursive procedure that computes
the binomial coefficient

„
n
k

«
=

n!

k! · (n− k)!
=

„
n− 1
k − 1

«
+

„
n− 1

k

«

when 0 < k < n.



If k, n, c, x, y are program variables of type nat such that
var.(k, n, c, x, y) then let comb be the procedure defined by:

procedure comb (val k, n; res c):
local x, y
if k = 0 ∨ k = n then

c := 1
else

comb(k − 1, n− 1, x) ;
comb(k, n− 1, y) ;
c := x + y

fi
We take A = NatExp× NatExp× NatVar and define

body.S.(e, f, u)

=

add.(k, n, c).(e, f, val.u) ; add.(x, y) ;
if k = 0 ∨ k = n then

c := 1
else

S.(k − 1, n− 1, x) ; S.(k, n− 1, y) ; c := x + y
fi ;
del.(x, y) ; del.(k, n) ; del.c.u

(2)

Then body is a monotonic function. If comb = µ body, then
we can prove

∀u, e, f • {e ≤ f} ; u :=

„
f
e

«
=

{e ≤ f} ; comb(e, f, u)
(3)

To prove (3) it is enough (by Lemma 4) to show

{a ≤ b ∧ e = a ∧ f = b} ; u :=

„
f
e

«

=
{a ≤ b ∧ e = a ∧ f = b} ; comb(e, f, u)

(4)

for all a, b ∈ nat, u ∈ NatVar and f, g ∈ NatExp. We split
the proof of (4) in two cases: a > b and a ≤ b. The case
a > b is trivial because {false} ; S = {false}.

We prove the second case by induction on b. We assume
b > 0, and (4) true for b − 1 and all a ∈ nat, u ∈ NatVar,
f, g ∈ NatExp. Moreover we assume that 0 < a < b. Then
we have:

{a ≤ b ∧ e = a ∧ f = b} ; comb(e, f, u)

= {Assumptions, comb = µ body, and Lemma 7}
{0 < a < b ∧ e = a ∧ f = b} ;
add.(k, n, c).(e, f, val.u) ; add.(x, y) ;
{0 < a < b ∧ k = a ∧ n = b} ;
if k = 0 ∨ k = n then

c := 1
else

comb(k − 1, n− 1, x) ; comb(k, n− 1, y) ;
c := x + y

fi ;
del.(x, y) ; del.(k, n) ; del.c.u

= {by induction hypothesis using Refinement [2]}
{0 < a < b ∧ e = a ∧ f = b} ;
add.(k, n, c).(e, f, val.u) ; add.(x, y) ;

x :=

„
b− 1
a− 1

«
; y :=

„
b− 1

a

«
; c :=

„
b
a

«
;

del.(x, y) ; del.(k, n) ; del.c.u

= {Example 8 and Refinement [2]}

{0 < a < b ∧ e = a ∧ f = b} ; u :=

„
f
e

«

The remaining cases are similar. This concludes the proof
of (3).

8. REFINEMENT RULE FOR INTRODUC-
TION OF RECURSIVE PROCEDURE
CALLS

We call the type A → Pred the parametric predicate type
over A. The order relation (meet, join) on parametric pred-
icates is the pointwise extension of the order relation (meet,
join) on predicates. For p : A → Pred we define assert p
(denoted {p}) as the procedure

{p} = (λa • {p.a})

In the same way we can define parametric relations and we
can lift all operations over predicates, relations, and pro-
grams to operations over parametric predicates, parametric
relations and procedures.

Let P = {pw |w ∈ W} be a collection of parametric pred-
icates over A that are indexed by the well-founded set W
such that v ≤ w ⇒ pv ⊆ pw. We refer to this collection as a
collection of ranked parametric predicates. We define

p = (
[

w∈W

pw) and p<w = (
[

v<w

pv)

Theorem 10. (Theorem 20.1, [2]) If body : Proc.A →
Proc.A is monotonic, {pw |w ∈ W} is a collection of ranked
parametric predicates, and P is a procedure over A, then

(∀w ∈ W • {pw} ; P v body.({p<w} ; P ))
⇒

{p} ; P v µ body

We will show how this theorem can be applied to obtain by
refinement the recursive procedure defined in the previous
section. We take body given by (2) and

W = nat

pa = (λ(e, f, u) • e ≤ f ∧ f = a)

P =

„
λ(e, f, u) •u :=

„
f
e

««

To prove that

{e ≤ f} ; u :=

„
f
e

«
v comb(e, f, u) (5)

we have to show for all a ∈ nat that

{pa} ; P v body.({p<a} ; P )).

This can be proved using refinement and equality rules proved
in this paper for the program constructs we have introduced.
A detailed proof of this fact can be found in [1].

The proof of (5) using Theorem 10 is simpler than the
proof of (3). We do not need induction anymore as the
recursion introduction theorem has the induction built in.
The refinement relation (5) is weaker than (3) but it is strong
enough in practice.



9. HOARE TOTAL CORRECTNESS RULE
FOR RECURSIVE PROCEDURES

We will give a Hoare rule for proving the correctness of
recursive procedures based on the refinement rule given by
Theorem 10. If p and q are predicates and S is a program,
then a Hoare triple is denoted by p {|S|} q and is true if and
only if p ⊆ S.q.

If p, q are parametric predicates over A and P is a pro-
cedure over A then a parametric Hoare triple is denoted by
p {|P |} q and is true if and only if for all a ∈ A the Hoare
triple p.a {|P.a|} q.a is true. We also define for a parametric
predicate q the parametric relation over A, q̂ = (λa σ • q.a).

Lemma 11. (Lemma 17.4, [2]) p {|P |} q is true if and
only if {p} ; [q̂] v P .

Theorem 12. If {pw |w ∈ W} and body are as in The-
orem 10, and q is a parametric predicate over A, then the
following parametric Hoare rule is true

(∀w, P • p<w {|P |} q ⇒ pw {|body.P |} q)

p {|µ body|} q

Proof.

p {|µ body|} q
= {Lemma 11}

{p} ; [q̂] v µ body
⇐ {Theorem 10}

(∀w • {pw} ; [q̂] v body.({p<w} ; [q̂])
= {Lattice properties}

(∀w, P • {p<w} ; [q̂] v P ⇒ {pw} ; [q̂] v body.P
= {Lemma 11}

(∀w, P • p<w {|P |} q ⇒ pw {|body.P |} q)

Similarly, we can also derive correctness rules for add and
del. Using these rules we would be able to prove correctness
of the procedure for computing the binomial coefficient us-
ing the same arguments we used, but reformulated in the
context of Hoare proof rules.

10. CONCLUSIONS
We have introduced new program constructs for adding

and deleting program variables and have used them to give
a predicate transformer semantics for recursive procedures
with parameters and local variables. We proved some prop-
erties of these constructs and showed how one can prove
the correctness of a recursive procedure using this seman-
tics. We have also given a refinement rule for introduction
of recursive procedure calls and, based on this, we proved
a Hoare correctness rule for recursive procedures with pa-
rameters and local variables. We do not need to change the
state space in our approach to accommodate local variables
or procedure parameters. Because of this our calculus is
simpler and more algebraic than the ones in the literature.

Having only value and value-result parameters does not
seem to be a major drawback. According to [9], in the ab-
sence of aliasing, call by reference is equivalent to call by
value result.

Many procedure proof rules in the literature are mixing
the procedure call with the procedure parameters. We have
separated these concerns [17], and obtained as a result much
simpler rules. We have rules for recursive procedures in

which the parameters are not involved at all. We have dif-
ferent rules that deal with parameters and they are almost
as simple as the assignment rules.
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