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ABSTRACT
Invariant based programming is an approach where we start to con-
struct a program by first identifying the basic situations (pre- and
postconditions as well as invariants) that could arise during the ex-
ecution of the algorithm. These situations are identified before any
code is written. After that, we identify the transitions between the
situations, which will give us the flow of control in the program.
The transitions are verified at the time when they are constructed.
The correctness of the program is thus established as part of con-
structing the program. The program structure in invariant based
programs is determined by the information content of the situa-
tions, using nested invariant diagrams. The control structure is
secondary to the situation structure, and will usually not be well-
structured in the classical sense, i.e., it is not necessarily built out
of single-entry single-exit program constructs.

We study in this paper the semantics and proof rules for invariant-
based programs. The total correctness of an invariant diagram is
established by proving that each transition preserves the invariants
and decreases a global variant. The proof rules for invariant-based
programs are shown to be correct and complete with respect to an
operational semantics. The proof of correctness and completeness
introduces the weakest precondition semantics for invariant dia-
grams, and uses a special construction, based on well-ordered sets,
of the least fixpoint of a monotonic function on a complete lattice.
The results presented in this paper have been mechanically verified
in the PVS theorem prover.

1. INTRODUCTION
Invariant based programming is an approach where we start to

construct a program by first identifying the basic situations (pre-
and postconditions as well as invariants) that could arise during the
execution of the algorithm. These situations are identified before
any code is written. After that, we identify the transitions between
the situations, which will give us the flow of control in the pro-
gram. The transitions are verified at the time when they are con-
structed. The correctness of the program is thus established as part
of constructing the program. The program structure in invariant
based programs is determined by the information content of the sit-
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uations, using nested invariant diagrams. The control structure is
secondary to the situation structure, and will usually not be well-
structured in the classical sense, i.e., it is not necessarily built out of
single- entry single-exit program constructs. We refer to a program
constructed in this manner as an invariant based program.

The execution of an invariant based program may start in any
situation and will choose one of the enabled transitions in this sit-
uation, to continue to the next situation. In this way, the execution
proceeds from situation to situation. Execution terminates when a
situation is reached from which there are no enabled transitions.
Because the execution could start and terminate in any situation,
invariant-based programs can be thought of as multiple entry, mul-
tiple exit programs. Termination of a program may also happen
anywhere, not just at some pre-specified exit points. The transitions
may have statements with unbounded nondeterminism, because we
allow specification statements in transitions. Invariant based pro-
grams are thus a considerable generalization of ordinary structured
program statements, and defining their semantics and proof theory
provides a challenge that usually does not arise for more traditional
programming languages

We study here the semantics and proof theory of invariant based
programs [3, 4, 5]. The idea of invariant based programming is
not new, similar ideas were proposed in the 70’s by John Reynolds
[19], Martin van Emden [21], and Ralph-Johan Back [3, 4], in dif-
ferent forms and variations. Dijkstra’s later work on program con-
struction also points in this direction [10], where he emphasizes
the formulation of a loop invariant as a central step in deriving the
program code. However, Dijkstra insists on building the program
in terms of well-structured (single-entry single-exit) control struc-
tures, whereas there are no restrictions on the control structure in
invariant based programming. Basic for these approaches is that
the loop invariants are formulated before the program code is writ-
ten. Eric Hehner [11] was working along similar lines, but chose
relations rather than predicates as the basic construct.

Invariant based programs are intended to be correct by construc-
tion, so proof of correctness is part of the programming process.
For that purpose, we need to define the semantics of invariant based
programs, give proof rules for showing that the program is correct,
and we need to show that these proof rules are sound (and prefer-
ably complete). But we cannot use existing theories directly, as
they are typically based on well-structured control constructs. Our
purpose here is therefore to define the semantics and proof the-
ory of invariant based programs from scratch, and to show that the
proof rules we give are both sound and complete with respect to the
semantics we give for invariant based programs.

We will proceed in the following way. We first describe invari-
ant based programs in an intuitive way, to give a feel for the basic
ideas behind this approach, and for the constraints and generaliza-



tions inherent in this approach. We begin the theoretical study of
invariant based programs by defining their big-step operational se-
mantics which allows us to define basic properties of program exe-
cution, like partial correctness and termination.

We then define a weakest precondition semantics for invariant
based programs. The weakest precondition semantics is compo-
sitional, and allows us to directly compute the basic correctness
properties of an invariant based program. We show that the weak-
est precondition semantics is equivalent to the big-step operational
semantics.

The weakest precondition semantics does not, however, give us
a practical method for proving program correctness, because it uses
least fixpoints to determine the semantics of loops. We get around
this obstacle by giving a collection of Hoare-like [12] total correct-
ness proof rules for invariant based program. We show that the
proof rules are sound with respect to the weakest precondition se-
mantics. This means that if we prove, using these proof rules, that
our invariant based program is correct, then it will also be correct
according to the weakest precondition semantics.

Because we have shown that the weakest precondition seman-
tics is equivalent to the big-step semantics, we get the following
basic property: If we have proved that an invariant based program
is correct using the given proof rules, then any execution of the in-
variant based program that respects the operational semantics will
be correct. This means that our proof system is sound.

We also study the converse problem: Assume that we have a cor-
rect invariant based program that is executed according to the op-
erational semantics. Can we then prove that the program is correct
using the given proof rules for invariant based programs? The an-
swer to this question is positive, i.e., our proof system is also com-
plete. In the end, this means that our proof system is both sound
and complete for invariant based programs.

The theory of invariant based programs has been completely
mechanized in the PVS interactive proof system [16]. The pred-
icate transformer semantics and data refinement of invariant based
programs have been also formalized [17, 18] in the Isabelle [15]
theorem prover. This gives a very solid foundation for our re-
sults. This PVS formalization depends on the well-ordering the-
orem which says that any set can be well-ordered.

Both the soundness and completeness results we have for invari-
ant based programs are consequences of more general results for
monotonic functions on a complete lattice. We give a special con-
struction, based on a well ordered set, of the least fixpoint of a
monotonic function on a complete lattice. The completeness theo-
rem is a consequence of this construction. We allow specification
statements in our programs, so our semantics may have unbounded
nondeterminism. This means that we need to go beyond natural
numbers and use well ordered relations [14] or ordinals [1] when
proving completeness. This is due to the fact that unbounded non-
deterministic statements are not continuous. Nipkow [14] presents
an Isabelle formalization of complete Hoare proof rules for recur-
sive parameterless procedures in the context of unbounded non-
determinism. Our programming language is, however, more gen-
eral than the one studied in [14], because it features multiple-entry,
multiple-exit statements, and a more general recursion mechanism.
Our proof of completeness is also more general and simpler than
the one in [14], and we believe that it could be applied unmodified
to richer programming constructs, such as procedures with param-
eters and local variables.

The contribution of this paper is a complete treatment of the
semantics of invariant based programs. We introduce operational
semantics, weakest preconditions, predicate transformers, and we
prove correct and relatively complete Hoare rules for invariant based

programs. Earlier results on invariant based programs were mainly
concerned with the methodology of constructing such programs
and they provided Hoare proof rules, but they did not prove their
consistency nor completeness. Moreover, our results are mechani-
cally verified.

Due to the space limitation we will omit many proofs of our re-
sults. These proofs can be found in [6].

2. SYNTAX OF INVARIANT DIAGRAMS
Let Σ be an unspecified type of states and Var be the type of all

program variables. For x ∈ Var, the type of the variables x, de-
noted T.x, contains all values that can be assigned to x. Intuitively
a state s from Σ gives the values to the program variables. For-
mally, we access and update program variables using two functions.
val.x : Σ→ T.x and set.x : T.x→ Σ→ Σ. For x ∈ Var, s ∈ Σ,
and a ∈ T.x, valx.s is the value of x in state s, and set.x.a.s is the
state obtained from s by setting the value of location x to a. The
behavior of these functions is described using a set of axioms [7].
For the purpose of this paper we do not need to consider in greater
details the treatment of program variables.

Let Bool be the set of Boolean values. Predicates, denoted Pred,
are the functions from Σ → Bool. Relations, denoted by Rel, are
functions from Σ to Pred. We denote by ⊆, ∪, and ∩ the predi-
cate inclusion, union, and intersection respectively. The type Pred
together with inclusion forms a complete Boolean algebra.

We use higher-order logic [8] as the underlying logic. If f :
A → B is a function and x ∈ A, then the function application is
denoted by f.x (f dot x). The update of a function f : A → B in
a point a ∈ A to b ∈ B is denoted by f [a := b] and is defined by

(f [a := b].a = b) ∧ (x 6= a⇒ f [a := b].x = f.x)

An invariant diagram is a directed graph where nodes are labeled
with invariants (predicates) and edges are labeled with transitions
(program statements). The transitions are non-iterative programs
built from assertions, assumptions, demonic updates, demonic choi-
ces, and sequential compositions. The abstract syntax of transitions
is defined by the following recursive data type:

Trs = Assert(Pred) | Assume(Pred) | Update(Rel)

| Choice(Trs, Trs) | Comp(Trs, Trs)

If p is a predicate, R is a relation, and S, T are transitions, then we
use the notations {p}, [p], [R], S u T, S ; T for the constructs
Assert, Assume, Update, Choice, and Comp, respectively.
Intuitively the execution of the assert statement {p} and the as-
sume statement [p] starting in a state s in which p is true behave
as skip. If p is false in s, then {p} fails and [p] is not enabled.
The demonic update [R], when starting in a state s, terminates in
a nondeterministically chosen state s′ such that R.s.s′. If there is
no state s′ such that R.s.s′, then [R] is not enabled. The execution
of the demonic choice S u T nondeterministically chooses S or T .
The transition S ; T is the sequential composition of the transitions
S and T .

We model both assignments and nondeterministic assignments
using the demonic update:

(x := e) = [λs, s′ • s′ = set.x.(e.s).s]

[x := a • b.a] = [λs, s′ • (∃a • s′ = set.x.a.s ∧ b.a.s)]

A transition S is enabled, when starting from a state s, if it is pos-
sible to avoid any assume or demonic choice statements which are
not enabled. For example the transition S = ([x < 4];x :=
x + 1; [x > 1]) u ([x > 10];x := 3) is enabled for all states
where x is 1, 2, 3 or greater than 10. If x is 1 in the initial state



s, then we chose the first part of the choice in S, and all assume
statements in this part are enabled. The guard of a transition S is
a predicate which is true for all states from which S is enabled.
We will define formally later the notions enabled and guard, but
we have introduced them here informally to explain the intuition
behind invariant based programs.

The transition which is always disabled, denoted magic, is as-
sume false (magic = [false])

Let I be a nonempty set of indexes. Formally an invariant dia-
gram ID is a tuple (P,D) where P : I → Pred are the invariants
and D : I × I → Trs are the transitions. D is called a tran-
sition diagram and the elements of I are called situations. The
invariant diagrams are represented as special graphs. The nodes
are represented by rectangles. Inside the rectangles we write the
invariants. The transitions are represented by directed edges in the
graph, labeled with the transition statements. We denote by Magic
the diagram which has all transitions disabled (λi, j •magic).

Figure 1 represents an invariant diagram. The program repre-
sented in this figure searches if an element is member in an array
of numbers.

k ∈ nat ∧ 0 ≤ k ≤ n ∧ (∀l • 0 ≤ l < k ⇒ a.l 6= x)

NotFound

k = n

Found

k < n ∧ a.k = x

Loop

[k = n] [k < n ∧ a.k = x]

n, x ∈ nat ∧ a : {0, 1, . . . , n− 1} → nat

Initial

k := 0
[k < n∧ a.k 6= x] ; k := k+1

Figure 1: Searching for an element in an array

In Figure 1 the situations are Initial, Loop, NotFound, and Found.
In practice, it is very often the case that the invariant of a situation
i is stronger than the invariant of another situation j (P.i = P.j ∧
q). In this case we draw the situation i inside situation j, and we
label i only with the predicate q. The invariant of situation i is
the conjunction of q and the labels of all situations containing the
situation i. For example in Figure 1, the invariant of situation Found
is the conjunction of the predicate labels of situations Initial, Loop,
and Found:

P.Found = (n, x ∈ nat ∧ a : {0, 1, . . . , n− 1} → nat)
∧ (k ∈ nat ∧ 0 ≤ k ≤ n ∧ (∀l • 0 ≤ l < k ⇒ a.l 6= x))
∧ (k < n ∧ a.k = x)

In practical examples, where we have a fixed number of program
variables, we define Σ to be a record with a component for every
program variable. For the search example we define

Σ = [n : nat, x : nat, k : nat, a : {0, . . . , n− 1} → nat ]

where val.n, val.x, val.k, and val.a are the projections correspond-
ing to the record components n, x, k, and a. The functions set.n,
set.x, set.k, and set.a updates the corresponding component of the
record (set.x.3.[n = 2, x = 4, . . .] = [n = 2, x = 3, . . .]).

Intuitively the execution of an invariant diagram starts from an
initial situation and follows the transitions which are enabled. At
each step the invariant of the current situation must be satisfied by

the current value of the program variables. The execution termi-
nates in a situation i when i is reached, and there are no enabled
transitions from i.

The formal definition of an invariant diagram requires that there
must be a transition between any two situations. However our
search example does not satisfy this requirement, there is no tran-
sition between situation NotFound and Found. When there is no
transition between two situations, we assume that there is the de-
fault transition magic between these two situations. Always, when
we draw the diagram, we omit the transitions labeled by magic.

Invariant programs are more general than imperative programs,
they can be thought of as multiple entry, multiple exist programs.
In principle an invariant program could start and terminate in any
situation. If the program from Fig. 1 starts in situation Initial, then
it can terminate in situations NotFound if the element x is not mem-
ber of the array a or in situation Found otherwise.

3. OPERATIONAL SEMANTICS
We introduce in this section big-step operational semantics for

invariant diagrams. In our PVS theories we have also introduced
small-step operation semantics and we prove the equivalence be-
tween the small-step and big-step.

We introduce first the big-step semantics of transitions. If S ∈
Trs and s, s′ ∈ Σ, then the big-step relation (s, S)  s′ is true if
there is an execution of S starting in s and ending in s′. (s, S) s′

is defined by induction on the structure of S.

b.s

(s, {b}) s

b.s

(s, [b]) s

R.s.s′

(s, [R]) s′
(s, S) s′

(s, S u T ) s′

(s, T ) s′

(s, S u T ) s′
(s, S) s′ ∧ (s′, T ) s′′

(s, S ; T ) s′′

A transition S, starting from a state s, may fail (denoted (s, S)  
⊥) if some of its executions leads to a false assertion. Failure is
defined by induction on the structure of S.

¬b.s
(s, {b}) ⊥

(s, S) ⊥
(s, S u T ) ⊥

(s, T ) ⊥
(s, S u T ) ⊥

(s, S) ⊥
(s, S ; T ) ⊥

(s, S) s′ ∧ (s′, T ) ⊥
(s, S ; T ) ⊥

Similarly, the execution of S, starting from a state s, is miraculous
or disabled (denoted (s, S)  >) if any of its executions leads
to a false assumption or to a demonic update [R] which cannot
progress. The demonic update [R] cannot progress from a state s
if for all states s′, R.s.s′ is false.

¬b.s
(s, [b]) >

(∀s′ • ¬R.s.s′)
(s, [R]) >

(s, S) > ∧ (s, T ) >
(s, S u T ) >

(s, S) >
(s, S ; T ) >

(s, S) 6 ⊥ ∧ (∀s′ • (s, S) s′ ⇒ (s′, T ) >)
(s, S ; T ) >

THEOREM 1. Miracle can be defined in terms of big-step and
fail.

(s, S) > ⇔ ((s, S) 6 ⊥ ∧ (∀s′ • (s, S) 6 s′))

If D ∈ I × I → Trs, s, s′ ∈ Σ, and i, j ∈ I , then the big-
step relation (s, i,D)  (s′, j) is true if there is an execution
from state s and situation i, following the enabled transitions D,
ending in state s′ and situation j, and all transitions from state s′

and situation j are disabled. The execution of D from state s and



situation i may fail, denoted (s, i,D) ⊥, if there is a situation j
such that the transition Di,j may fail when starting from s.

(s,Di,j) s′ ∧ (s′, j,D) (s′′, k)

(s, i,D) (s′′, k)

(∀j • (s,Di,j) >)
(s, i,D) (s, i)

(s,Di,j) ⊥
(s, i,D) ⊥

When starting from state s and situation i, the transition diagram T
terminates, denoted (s, i, T ) ↓, if all execution paths starting in s, i
are finite and do not fail.

(∀j • (s,Di,j) >)
(s, i,D) ↓

(s, i,D) 6 ⊥ ∧ (∀j, s′ • (s,Di,j) s′ ⇒ (s′, j,D) ↓)
(s, i,D) ↓

The big-step semantics is useful in establishing further properties
of transition diagrams.

4. WEAKEST PRECONDITION AND PRED-
ICATE TRANSFORMERS

Proving correctness of invariant diagrams is unfeasible using the
operational semantics. We will therefore define here a composi-
tional semantics for invariant based programs, based on the notion
of weakest preconditions.

4.1 Weakest precondition and predicate trans-
formers for transitions.

If p, q ∈ Pred , and S ∈ Trs then the Hoare total correctness
triple p {|S |} q denotes the fact that if the transition S start in state
s from p, then it terminates in a state from q. The Hoare triple
p {|S |} q is valid, denoted |= p {|S |} q, if

(∀s • p.s⇒ (s, S) 6 ⊥ ∧ (∀s′ • (s, S) s′ ⇒ q.s′)) (1)

The weakest precondition for a transition S and a post condition q
is a predicate, wp.S.q ∈ Pred. For a state s, wp.S.q.s is true if
the execution of S does not fail and always terminates in a state s′

from q (q.s′ is true). Using the big-step operational semantics for
transitions we define the weakest precondition by:

wp.S.q.s = (s, S) 6 ⊥ ∧ (∀s′ • (s, S) s′ ⇒ q.s′).

The validity of Hoare triples could be expressed equivalently using
the weakest precondition:

|= p {|S |} q ⇔ p ⊆ wp.S.q (2)

Relation (2) reduces the proof of validity of a Hoare triple to an
inclusion of predicates. However the predicate wp.S.q is defined
in terms of big-step semantics, and the proof of the statement p ⊆
wp.S.q is still unfeasible in practice.

For S ∈ Trs we define, by induction on S, the predicate trans-
former associated to S, pt.S : Pred→ Pred by

pt.{p}.q = p ∧ q pt.[p].q = ¬p ∨ q
pt.[R].q.s = (R.s ⊆ q) pt.(S u T ).q = pt.S u pt.T

pt.(S ; T ) = pt.S ◦ pt.T

THEOREM 2. For all S ∈ Trs: wp.S = pt.S.

Using Theorem 2 and relation (2) it follows

|= p {|S |} q ⇔ p ⊆ pt.S.q (3)

The relation (3) reduces the proof of the validity of a Hoare triple
to an inclusion of predicates. These predicates are defined in terms

of the predicates p, q, the predicates and expressions occurring in
S using Boolean connectives (∧,∨,→, . . .).

THEOREM 3. For all S ∈ Trs the predicate transformer pt.S
is monotonic.

The guard of a transition S is a predicate denoted grd.S ∈ Pred
and is true for all states s from which the execution of S is enabled.

grd.S = ¬pt.S.false

THEOREM 4. The guard of a transition S is true in a state s if
and only if the execution of S starting from s is not miraculous:

grd.S.s⇔ (s, S) 6 >

This result follows from Theorem 1, Theorem 2, and the definitions
of grd and wp. �

4.2 Weakest precondition and predicate trans-
formers for transition diagrams

The Hoare triples for diagrams have similar interpretations to
those of the transitions. However, a diagram may be executed
starting in any situation and it may terminate in any situation. Let
P,Q : I → Pred andD : I×I → Pred. The diagram Hoare total
correctness triple, P {|D |}Q, is true if whenever the execution of
D starts in a state s from a situation i, such that P.i.s is true, thenD
always terminates, and if D terminates in a state s′ and a situation
j, then Q.j.s′ is true. The predicate P.i is the precondition of D
when starting from situation i. Similarly, Q.j is the postcondition
of D when terminating in situation j.

The Hoare triple P {|D |}Q is valid, denoted |= P {|D |}Q, if

(∀i, s • P.i.s⇒ ((s, i,D) ↓
∧ (∀j, s′ • (s, i,D) (s′, j)⇒ Q.j.s′)))

(4)

The weakest precondition for a diagram D and a postcondition Q
is an indexed predicate wp.D.Q : I → Pred. For a state s and
a situation i, wp.D.Q.i.s is true if the execution of D from s, i
always terminates, and if it terminates in a state s′ and a situation
j then Q.j.s′ is true. Using the big-step operational semantics for
diagrams we define the weakest precondition by:

wp.D.Q.i.s = (s, i,D) ↓ ∧(∀j, s′•(s, i,D) (s′, j)⇒ Q.j.s′).

The validity of diagram Hoare triples could be expressed equiva-
lently using the weakest precondition:

|= P {|D |}Q⇔ P ⊆ wp.D.Q (5)

Relation (5) reduces the proof of validity of a Hoare triple to an
inclusion of indexed predicates. However, similarly to transitions’
case, proving P ⊆ wp.D.Q is unfeasible in practice due to the
big-step semantics expressions occurring in wp.

The guard of a situation i in a diagramD is a predicate grd.D.i ∈
Pred which is true in those states in which the execution from situ-
ation i is enabled:

grd.D.i =
∨
j∈I

grd.Di,j

Let Dpt = (I → Pred)→ (I → Pred) andD : I×I → Trs. The
one step predicate transformer associated to D, denoted stpt.D ∈
Dpt, is defined by

stpt.D.Q.i =
∧
j

pt.Di,j .(Q.j)

The predicate stpt.D.Q.i.s is true if and only if when starting in
situation i and state s, for every j and s′, if execution ofDi,j termi-
nates in s′, than Q.j.s′ is true. If Q : I → Pred and T : I → Trs



then ¬Q : I → Pred, [Q] : I → Trs and pt.T : I → (Pred →
Pred) are defined by

(¬Q).i := ¬(Q.i), [Q].i := [Q.i], (pt.Q).i := pt.(Q.i)

For D ∈ I × I → Trs let F.D : Dpt → Dpt be the monotonic
function given by

F.D.U = stpt.D ◦ U u pt.[¬grd.D]

The predicate transformer associated to D, pt.D ∈ Dpt, is the
least fix point of F :

pt.D = µF.D

THEOREM 5. wp.D = pt.D

Proof. The proof can be done by showing that wp.D is fixpoint for
F.D and it is smaller than any other fixpoint. �

Using Theorem 5 and relation (5) it follows

|= P {|D |}Q⇔ P ⊆ pt.D.Q (6)

The relation (6) reduces the proof of the validity of a Hoare triple
to an inclusion of predicates. However, unlike for transitions, the
predicate pt.D.Q is a least fixpoint expression, and proving P ⊆
pt.D.Q is unfeasible in practice.

THEOREM 6. For all D ∈ I × I → Trs the predicate trans-
former pt.D is monotonic.

Proof. This fact follows directly from Theorem 5 and the definition
of wp.D. �

5. AXIOMATIC SEMANTICS
The weakest precondition semantics does not allow us to prove

correctness of programs in practice, because of the use of the least
fixed point operator. We need to define Hoare like proof rules for
invariant based programs to establish correctness in practice.

5.1 Hoare rules for transitions
The Hoare triple p {|S |} q is correct, denoted ` p {|S |} q, if it

can be proved using following Hoare rules.

∀s • p.s⇒ r.s ∧ q.s
` p {| {r} |} q

∀s • p.s ∧ r.s⇒ q.s

` p {| [r] |} q
∀s, s′ • p.s ∧R.s.s′ ⇒ q.s′

` p {| [R] |} q
` p {|S |} q ` p {|T |} q
` p {|S u T |} q

` p {|S |} r ` r {|T |} q
` p {|S ; T |} q

` p {|S |} q p′ ⊆ p ∧ q ⊆ q′

` p′ {|S |} q′

The validity is equivalent to proving correctness using the Hoare
rules, and, in practice, the Hoare rules are used to prove the cor-
rectness of transitions.

THEOREM 7. (Correctness) ` p {|S |} q ⇒ |= p {|S |} q

Proof. By induction on the structure of S. �

THEOREM 8. wp.S.q {|S |} q.

Proof. We prove pt.S.q {|S |} q by induction on S. �

THEOREM 9. (Completeness) |= p {|S |} q ⇒ ` p {|S |} q.

Proof. By the definition of |= p {|S |} q and wp.q it follows p ⊆
wp.q and by Theorem 8 and Hoare consequence rule it follows
p {|S |} q. �

Before introducing the proof rules for diagrams we need some
definitions and properties of complete lattices and fixpoints.

5.2 Complete lattices and fixpoints
This section introduces some results about fixpoints in complete

lattices [9]. These results are the main tools in proving correctness
and completeness of the proof rules for invariant diagrams.

A partially ordered (poset) set 〈L, ≤〉 is a complete lattice if
every subset of L has least upper bound or equivalently greatest
lower bound. For a subset A of L, ∨A ∈ L denotes the least upper
bound (join) of A and ∧A ∈ L denotes the greatest lower bound
(meet) of A. If L is a complete lattice, than the least (bottom)
and the greatest (top) elements of L exist and they are denoted by
⊥, > ∈ L, respectively. If A is a nonempty set and L is a lattice,
than the pointwise extension of the order on L to A → L is also
a complete lattice. The operations meet, join, bottom, and top on
A → L are also the pointwise extensions of the corresponding
operations on L. If 〈A,≤〉 is a partially ordered set, then the set
of monotonic functions from A to L, denoted A m→ L is also a
complete lattice. The order, meet, join, top, and bottom on A m→ L
are the pointwise extensions of the corresponding operations on L.
For a complete latticeL, MF.L is the complete lattice of monotonic
functions from L to L. The Boolean algebra with two elements
Bool, the predicates Pred, the indexed predicates I → Pred, and
the monotonic predicate transformers are complete lattices.

We list briefly some properties of well founded and well ordered
sets that are needed in this paper. For a comprehensive treatment of
this subject see [13]. A partially ordered set 〈W,<〉 is well founded
if every nonempty subset of W has a minimal element. The poset
〈W,<〉 is well ordered if it is well founded and total.

THEOREM 10. For any setA there is a well ordered set 〈W,<〉
such that no function f : W → A is injective. In other words, for
any function f :W → A there existsw1, w2 ∈W ,w1 < w2, such
that f.w1 = f.w2. For a set A we denote by WA a well ordered
set satisfying the property above.

We use Theorem 10 to give a new proof for the classical Knaster-
Tarski fixpoint theorem [20]. We give a construction of the least
fixpoint of a monotonic function on a complete lattice L based on a
well ordered set. Our construction is more general than the one in
[7] which is based on ordinals, since we only need a well ordered
set.

THEOREM 11. If 〈L,≤〉 is a complete lattice and F : L → L
is a monotonic function, then F has a least fixpoint denoted by µF .

We give here the outline of the proof. Assume that 〈L,≤〉 is a
complete lattice and that F : L → L is a monotonic function. Let
WL be a well ordered set given by Theorem 10. Let w ∈ WL and
define xw, x ∈ L by

xw =
∨
v<w

F.xv and x =
∨

w∈W

xw

Then x is the least fixpoint of F . We prove first a number of prop-
erties about xw.

1. xv forms an increasing chain: v ≤ w ⇒ xv ≤ xw
2. For all w ∈WL: xw ≤ F.xw
3. If y is a fixpoint of F (y = F.y ), then (∀w • xw ≤ y)
4. By the property of WL it follows that there exists w1 < w2

such that xw1 = xw2 . We can prove that xw1 = F.xw1

It follows that xw1 is the least fixpoint of F . Finally, we prove that
x = xw1 by proving xw1 ≤ x and x ≤ xw1 . �

Let 〈W,<〉 be a well founded set and xw ∈ L a collection of
elements indexed by w ∈ W . Then the elements x<w, x ∈ L are



given by

x<w =
∨
v<w

xv and x =
∨

w∈W

xw

THEOREM 12. If 〈L,≤〉 is a complete lattice, F : L → L
is monotonic, and xw ∈ L is a collection of elements indexed by
w ∈W , then

(∀w • xw ≤ F.x<w)⇒ x ≤ µF

Proof. We prove by well founded induction that (∀w •xw ≤ µF ).
�

If x, y ∈ L, then α.(x, y) ∈ MF.L is given by

α.(x, y).z =

{
x if z ≥ y
⊥ otherwise

LEMMA 13. If x, y ∈ L, xi ∈ L for all i ∈ I , and f ∈ MF.L,
then α.(x, y) is monotonic and

α.(x, y) ≤ f ⇔ x ≤ f.y
α.(∨xi, y) = ∨α(xi, y)

THEOREM 14. If xw, y ∈ L, and F : MF.L → MF.L is a
monotonic function, then

(∀w, f ∈ MF.L • x<w ≤ f.y ⇒ xw ≤ F.f.y)⇒ x ≤ (µF ).y

Proof.

(∀w ∈W, f ∈ MF.L • x<w ≤ f.y ⇒ xw ≤ F.f.y)
⇔ {Lemma 13}

(∀w ∈ W, f ∈ MF.L • α.(x<w, y) ≤ f ⇒ α.(xw, y) ≤
F.f)

⇔ {Monotonic function properties}
(∀w ∈W • α.(xw, y) ≤ F.(α.(x<w, y)))

⇔ {Lemma 13}
(∀w ∈W • α.(xw, y) ≤ F.(

∨
v<w α.(xv, y)))

⇒ {Theorem 12}∨
w∈W α.(xw, y) ≤ µF

⇔ {Lemma 13}
α.(x, y) ≤ µF

⇔ {Lemma 13}
x ≤ (µF ).y �

5.3 Hoare rules for transition diagrams.
Let 〈W,<〉 be a well founded set, and Xw : I → Pred a col-

lection of indexed predicates for all w ∈ W . Then the indexed
predicates X<w, X : I → Pred, are defined by

X<w =
∨
v<w

Xv, X =
∨

w∈W

Xw

The Hoare triple P {|D |}Q is correct, denoted ` P {|D |}Q, if it
can be proved using the following Hoare rules:

P ′ ⊆ P Q ⊆ Q′ ` P {|D |}Q
` P ′ {|D |}Q′

∀i, j, w• ` Xw.i {|Di,j |}X<w.j

` X {|D |} (X ∧ ¬grd.D)

(7)

THEOREM 15. (Correctness) ` P {|D |}Q ⇒ |= P {|D |}Q.

Proof. We assume ∀i, j, w• ` Xw.i {|Di,j |}X<w.j and we first
prove that for all w ∈W the following relation holds:

Xw ⊆ stpt.D.X<w (8)

• Xw ⊆ stpt.D.X<w

⇔ {Definition of ⊆ and stpt}
(∀i •Xw.i ⊆

∧
j pt.Di,j .X<w.j)

⇔ {Definition of
∧

}
(∀i, j •Xw.i ⊆ pt.Di,j .X<w.j)

⇔ {Relation (2) }
(∀i, j• |= Xw.i {|Di,j |}X<w.j)

⇔ {Theorem 7 and Theorem 9}
(∀i, j• ` Xw.i {|Di,j |}X<w.j)

⇔ {Assumptions}
true

We prove now ` X {|D |}X ∧ ¬grd.D which is equivalent to

X ⊆ pt.D.(X ∧ ¬grd.D) = (µF.D).(X ∧ ¬grd.D)

Using Theorem 14 we have to prove

X<w ⊆ U.(X ∧ ¬grd.D)⇒ Xw ⊆ F.D.U.(X ∧ ¬grd.D)

for all w ∈ W and U ∈ (I → Pred) → (I → Pred). We assume
X<w ⊆ U.(X ∧ ¬grd.D)

• F.D.U.(X ∧ ¬grd.D)

= {Definition of F}
stpt.D.(U.(X ∧ ¬grd.D)) ∩ pt.[¬grd.D].(X ∧ ¬grd.D)

⊇ {Assumptions and monotonicity of stpt.D}
stpt.D.X<w ∩ pt.[¬grd.D].(X ∧ ¬grd.D)

⊇ {X ⊆ pt.[¬grd.D].(X ∧ ¬grd.D)}
stpt.D.X<w ∩X

⊇ {Relation 8}
Xw ∩X

⊇ {Definition of X}
Xw �

THEOREM 16. ` wp.D.Q {|D |}Q.

Proof. We need to prove that there exists Xw : I → Pred such that

wp.D.Q ⊆ X
(X ∧ (¬grd.D)) ⊆ Q
(∀i, j ∈ I, w ∈W• ` Xw.i {|Di,j |}X<w.j)

Let Tw =
∨

v<w F.D.Tv and Xw = Tw.Q. By Theorem 11,∨
w∈W Tw is the least fixpoint ofF.D, therefore wp.D =

∨
w∈W Tw.

wp.D.Q ⊆ X
⇔ {Assumptions}

(
∨
Tw).Q ⊆

∨
(Tw.Q)

⇔ {Definition of
∨

}
true

For the second property we have:

(X ∧ (¬grd.D)) ⊆ Q
⇔ {Definitions of X and

∨
}

(∀w •Xw ∧ (¬grd.D) ⊆ Q)

⇔ {Definitions of Xw and
∨

}
(∀w, v • v < w ⇒ F.D.Tv.Q ∧ (¬grd.D) ⊆ Q)

⇐ {Definition of F.D}
pt.[¬grd.D].Q ∧ ¬grd.D ⊆ Q

⇔ {Definitions}



true

For the last property let w ∈W .

∀i, j• ` Xw.i {|Di,j |}X<w.j

⇔ {Relation (8)}
Xw ⊆ stpt.D.X<w

⇔ {Definition of Xwand X<w}
Tw.Q ⊆ stpt.D.(

∨
v<w(Tv.Q))

⇔ {Definition of Tw}
(
∨

v<w F.D.Tv).Q ⊆ stpt.D.(
∨

v<w(Tv.Q))

⇔ {Monotonicity of stpt.D}
(
∨

v<w F.D.Tv).Q ⊆
∨

v<w stpt.D.(Tv.Q)

⇐ {Definition of
∨

}∨
v<w F.D.Tv.Q ⊆

∨
v<w stpt.D.(Tv.Q)

⇐ {Properties of
∨

}
∀v • v < w ⇒ F.D.Tv.Q ⊆ stpt.D.(Tv.Q)

⇔ {Definition of F}
true �

THEOREM 17. (Completeness)

|= P {|D |}Q ⇒ ` P {|D |}Q.

Proof. This is a consequence of Theorem 16. �

6. PROVING PROGRAMS IN PRACTICE
If we want to use the proof rules (7) for the search example

(Fig. 1) we would need to provide a variant which would decrease
on every transition. We have to prove for every i, j, w that `
Xw.i {|Di,j |}X<w.j, that is, after the transition Di,j , some ex-
pression which initially is equal to w must decrease. This require-
ment is difficult to achieve in practice and it seems unreasonable.
In principle we would need to show that some expression always
decreases only on transitions which are part of loops. We will in-
troduce new proof rules for diagrams, equivalent to (7), which are
easier to use in practical examples, and which require proving that
the variant decreases only on some transitions that are part of loops.

LetW a non empty set and< a well founded order onW×I and
Xw : I → Pred an indexed predicate as before. For u ∈ W × I
we define X<u : I → Pred and X ∈ Pred by

X<u.i =
∨

(v,i)<u

Xv.i ∧ X =
∨

w∈W

Xw

The new total correctness rules for invariant diagram are:

P ′ ⊆ P Q ⊆ Q′ `1 P {|D |}Q
`1 P ′ {|D |}Q′

∀i, j, w• ` Xw.i {|Di,j |}X<(w,i).j

`1 X {|D |} (X ∧ ¬grd.D)

(9)

Before proving the correctness and the completness of the rule
(9) we show how it can be applied to the search example. Let
I = {Initial, Loop, NotFound, Found} be a set of situations. The
search diagram is the tuple (P, D), where P : I → Pred and
D : I × I → Trs are given by

D := Magic[(Initial, Loop) := (k := 0),

(Loop, Loop) := ([k < n ∧ a.k 6= x]; k := k + 1),

(Initial, NotFound) := ([k = n]),

(Initial, Found) := ([k < n ∧ a.k = x])]

and

P.Initial := true
P.Loop := 0 ≤ i ≤ n ∧ (∀j : 0 ≤ j < i⇒ a.j 6= x)
P.NotFound := P.Loop ∧ i = n
P.Found := P.Loop ∧ i < n ∧ a.i = x

We prove `1 P {|D |}P using the rule (9). For this we choose
W = nat , <: (W × I)2 → Bool,

(v, i) < (w, j)⇔ (i > j ∨ (i = j ∧ v < w)),

and

Xw := P [Loop := P.Loop ∧ n− i = w].

The property `1 P {|D |}P follows from

P ⊆ X ∧ (1)

X ∧ ¬grd.D ⊆ P ∧ (2)

∀i, j, w• ` Xw.i {|Di,j |}X<(w,i).j (3)

(10)

The property (1) from (10) follows from the fact that X.Loop =
P.Loop. The property (2) from (10) is a consequence of the fact
that Xw is a strengthening of P . The last property from (10) can
be simplified to

` true {| k := 0 |}P.Loop
` P.Loop ∧ n− k = w {| [k < n ∧ a.k 6= x]; k := k + 1 |}

P.Loop ∧ n− k < w

` P.Loop ∧ n− k = w {| [k = n] |}P.NotFound
` P.Loop ∧ n− k = w {| [k < n ∧ a.k = x] |}P.Found

because all the other transitions are miracles.
In this example we need to prove that the variant (n−i) decreases

only for the transition DLoop,Loop and not for all transitions in
the diagram. This was possible because we could choose the well
founded order on W × I .

We prove now the correctness and completeness of the rules (9)
by proving that they are equivalent to the rules (7)

THEOREM 18. (Correctness) For all P,Q : I → Pred and
D : I × I → Trs we have

`1 P {|D |}Q ⇒ ` P {|D |}Q

Proof. Assume `1 P {|D |}Q. It follows that there exists W , < a
well founded order on W × I , and Xw : I → Pred such that

P ⊆ X ∧ (X ∧ ¬grd.D) ⊆ Q
∧ (∀i, j, w• ` Xw.i {|Di,j |}X<(w,i).j)

which is equivalent to

P ⊆ X ∧ (X ∧ ¬grd.D) ⊆ Q
∧ (∀i, j, w •Xw.i ⊆ pt.(Di,j).(X<(w,i).j))

Let Y(w,j) : I → Pred given by

Y(w,j).i =
∨

(v,i)≤(w,j)

Xv.i

We can prove now ` P {|D |}Q using the predicates Y in rules
(7). �

THEOREM 19. (Completeness) For all P,Q : I → Pred and
D : I × I → Trs we have

` P {|D |}Q ⇒ `1 P {|D |}Q



Proof. This result follows by extending the well founded order <
on W to W × I by

(v, i) < (w, j)⇔ v < w

and then using the predicates X given by ` P {|D |}Q to prove
`1 P {|D |}Q . �

7. CONCLUSIONS
We have introduced in this paper the semantics and proof rules

for invariant based programs. We have started by defining the big-
step operational semantics for transition diagrams. Using the big-
step operational semantics we have defined the weakest precondi-
tion of a transition diagram and we have proved that it is composi-
tional (it can be computed from the post-conditions and transitions,
using a fixpoint operator). Although the weakest precondition is
compositional, it cannot be used directly to prove correctness for
transition diagrams, due to the use of the least fixpoint operator. We
therefore introduced total correctness Hoare proof rules for transi-
tion diagrams, and we proved that they are correct and complete
with respect to the operational semantics. Both the correctness and
the completeness of the proof rules for transition diagrams are con-
sequences of more general results about least fixpoints of mono-
tonic functions on complete lattices.

We proved all these results using the PVS theorem prover and
we proved the consistency part of our work in the Isabelle theorem
prover. This gives a very solid foundation of our results.

In addition to meeting our original challenge, we have also con-
tributed to other areas of programming language semantics. We
have given a sound and complete proof system for multiple-entry
multiple-exit program statements with unrestricted flow of control
and unbounded non-determinism. This is pretty much as general as
you can get, without going into higher levels of modularity (proce-
dures, data modules, classes, processes etc.). This gives us a very
general framework for establishing soundness and completeness of
proof systems for simple imperative programs. Most programming
languages can be seen as special cases of invariant based programs,
with restricted flow of control. By mapping the control structures of
such programming languages onto invariant based programs, it is
easy for us to study the soundness of proof systems for these more
restricted languages, by reducing their soundness to the soundness
of invariant based programs (which has been proved). Our result
also opens up the way for checking the correctness of more com-
plex structures. Multiple exits will, in particular, be useful for mod-
eling exception handling [2] in programming languages. Multiple
entries can again be used to model data modules (procedures with
multiple entry points are an old trick for modeling data modules).

We are currently working on extensions of these results to pro-
cedures (with parameters and local variables). Another direction
of research is the specialization of the rule for termination of the
execution of a transition diagram into a collection of rules that can
be easier applied in practice.
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