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Abstract

We present a novel approach for efficient code synthe-
sis from Synchronous Dataflow specifications. The method
avoids duplication of code blocks when compiling SDF
graphs regardless of whether a single appearance sched-
ule can be found for the graph or not. This also means
that we can use schedules that require minimal buffer mem-
ory, but are not single appearance schedules. The method
has been developed within the compiler for the Rialto lan-
guage, which we have developed for use as an intermediate
language for code synthesis from heterogeneous models of
computation. The optimization technique presented in the
paper can, however, very well also be used without the Ri-
alto language.

1. Introduction

Dataflow is a natural paradigm for describing DSP appli-
cations. Synchronous dataflow (SDF), originally developed
by Karp and Miller [8] and by Lee and Messerschmitt [9],
is a special case of dataflow, where a static schedule for the
system can be computed at compile time, since the num-
ber of data samples produced or consumed by each node
on each invocation is specified beforehand. This reduces
the run-time overhead usually associated with dataflow. A
simple SDF graph is shown in Figure 1. The numbers on
the edges specify how many tokens the nodes consume and
produce each time they are invoked. Node A produces two
tokens and B consumes one, which means that B has to be
executed twice for each invocation of A. A valid schedule
for this graph is for example ABCCBCC . The schedule
can also be written as A(2B(2C)) to highlight the repetitive
invocation pattern using schedule loops. The schedule loops
are a shorthand for writing the schedules, but can also ex-
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Figure 1. A Simple SDF graph

ploited by code synthesis tools for achieving efficient code.
This schedule is also a single appearance schedule, since
each lexical element appears only once. Single appearance
schedules do not exist for all SDF graphs.

1.1. Code Synthesis from SDF Graphs

Quite efficient model compilers can be developed for
SDF graphs, that exploit the restrictions the SDF model of
computation enforces on a design, e.g. [3, 2]. It is desirable
to generate inline code for the actors in a graph in order to
avoid function call overhead, which can be significant since
the actors can be simple operations. This can, however, lead
to an explosion of the code size, which is intolerable in em-
bedded systems. The traditional techniques for minimising
program memory requirement, while using inline code are
based on finding single appearance schedules for the SDF
graphs.

If we were to do a simple straight code generation using
the schedule ABCCBCC for the example, we would get
undesirable code duplication as below:

code block for A;
code block for B;
code block for C;
code block for C;
code block for B;
code block for C;
code block for C;

The schedule loops in a single appearance schedule can
be translated into loops in the generated code, which avoids
duplication of the inlined code blocks. Using the single ap-
pearance schedule A(2B(2C)) we can generate the code
below, which contains each actor code block only once.



code block for A;
for(i=0;i<2;i++) {

code block for B;
for(j=0;j<2;j++) {

code block for C;
}

}

Another consideration when attempting to generate
memory efficient code from SDF graphs is the buffer mem-
ory requirement, that is the maximum number of tokens
stored in the buffers, or edges, during an execution of a
schedule. In the traditional approaches there is a tradeoff
between buffer memory requirement and code size optimi-
sation. Finding a single appearance schedule to minimize
code size, may result in large buffer memory requirements.

1.2. The Rialto Approach

In this paper we present a different approach for synthe-
sis of efficient target language code from SDF specifications
and also other models of computation. The method has been
developed within the compiler of a language called Rialto.
The Rialto language is a simple textual language with for-
mal semantics designed for modelling systems in multiple
models of computation [4], or for use as an intermediate
language for code synthesis from models in different visual
languages. It was originally designed for representing UML
statecharts [5] and has been used for combining different
behavioral UML models [6]. The translation from SDF or
other graphical models into Rialto is simple, and can be per-
formed by a tool. We are for example using the System
Modeling Workbench (SMW) [13] to experiment on model
translations. The SMW is based on metamodeling, which
allows new modeling paradigms to be easily added. The Ri-
alto language can thus be made transparent to the user when
using it as a intermediate language for code synthesis.

Rialto code can be compiled into target language, by first
translating it into finite state machines (FSMs), which can
be reduced using S-GRAPHS, introduced in the POLIS ap-
proach [1]. The FSMs are constructed from the structural
operational semantics of Rialto. In the case of SDF, the
translation into FSM actually creates a machine where each
invocation of a node in a schedule becomes a state, and the
node invocations become unguarded transitions between the
states, with the executions of their code blocks as side ef-
fects.

The optimization technique is then a matter of reduc-
ing this state space, and the redundancies in the machine
as much as possible using the S-GRAPHS. An SDF static
schedule could also very easily be translated directly into an
S-GRAPH, instead of using Rialto as an intermediate step.
The benefit of Rialto comes when using other models of
computation in combination with SDF graphs.

What makes this approach interesting, is that the S-
GRAPH technique removes duplication of SDF node code

blocks regardless of the static schedule computed for the
graph. It does not use schedule loops and thus we do not
need to find a single appearance schedule as in the tradi-
tional approaches. This means that we can focus on buffer
memory requirement minimisation in the scheduling and
get the small code size for free, avoiding the tradeoff be-
tween the two. The penalty of our method, is a larger run-
time overhead.

2. The Rialto Language and Optimizing Com-
piler

The SDF compilation approach presented in this paper
has been developed within the compiler of the Rialto lan-
guage; however, it can be used just as well without using
Rialto as an intermediate format. Rialto is developed for
capturing heterogeneous designs, and the benefits of using
it arises when doing code synthesis from such models, as
we will briefly explain in Section 6. The semantics of Ri-
alto has been divided into two levels. The first defines the
behavior of each statement in the language that represent
concepts like concurrency, state, interrupts etc. common to
several models of computation. The statements leave non-
determinism in the scheduling of parallel actors, which is
resolved by the second level of semantics, called schedul-
ing policies that represent different computational models,
like synchronous dataflow.

Figure 2 illustrates the use of Rialto as an intermediate
language for code synthesis from different modeling lan-
guages. From the Rialto code, we construct FSMs using the
operational semantics. Then we apply a set of optimization
steps before proceeding to target code generation. In this
section we will, as shortly as we can, introduce the Rialto
language and how it is compiled, in terms of an SDF graph
example.

Figure 3 shows a Rialto translation of the simple SDF
graph from the previous example. The state blocks are
the key abstraction in the language. They can be hierarchi-
cal and parallel and they can represent different actors in
different models of computation e.g. states in a statechart,
parallel threads or as in the figure, nodes in an SDF graph.
The state blocks are labeled according to the names in
the SDF graph. The par statement in line 4 in the example,
activates the labels A,B and C in parallel, where after there
is nondeterminism in which one to execute. This choice is
made by the scheduling policy in the current state block.
In this case the SDF policy (line 2).

Each state block in a Rialto program can be assigned
a different scheduling policy to reflect different computa-
tional models. In the example, the upsampler block is
scheduled by a SDF policy, which is given the static pre-
computed schedule A,B,C,C,B,C,C. The schedules are
given to the policy without schedule loops, as they are not
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Figure 2. The Rialto Compilation Process

upsampler: state
policy SDF(A,B,C,C,B,C,C);

begin
par(A,B,C)
A: state

# code block for A
end
B: state

# code block for B
end
C: state

# code block for C
end

end

Figure 3. The Rialto translation of the SDF
graph in Figure 1

needed in our approach. The schedule can for example be
computed using a very simple heuristic algorithm that con-
structs a minimal buffer size schedule as found in [2].

A program is executed by repeatedly running the policy
of the topmost state in the hierarchy. The topmost policy
will then schedule the blocks down in the hierarchy, which
can have different policies assigned to them. The entity
that calls the scheduling policy of the top-level state can
be thought of as a global clock in the system.

The state of a program σ is represented by the set of ac-
tive labels α, which represents the control state, and the data
state E , that is σ = 〈α, E〉.

A scheduling policy function accepts as parameters the
current state of the program σ and the set of blocked labels
β and returns the next state of the program. In addition,
the SDF policy is given a schedule S. The schedule is
a sequence of labels of state blocks. For example
S = [A, B, C, C, B, C, C] in the previous example. The
SDF scheduling algorithm simply executes one period of a
schedule and returns the state of the system after execution:

RUN(σ, β, S)
1 for each s in S do
2 σ ← s.RUN(σ, β, S)
3 return σ′

policy(l) = SDF l ∈ σ.α 〈σ, ∅, s〉
S[s].RUN

 〈σ′, ∅, s〉

〈σ, β, s〉 −→ 〈σ′, β, s + 1〉

policy(l) = SDF s = end

〈σ, β, s〉 −→ 〈σ, Λ, 0〉

Figure 4. An SDF scheduling algorithm a) and
a formalisation b)
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Figure 5. Computation as an FSM

Calling l.RUN(σ, β) for a label l belonging to a state,
executes the policy attached to it.

We can develop different SDF policies for Rialto de-
pending on the level of atomicity we want. This is mainly
interesting for cases were we use another computational
model to manage SDF computation, and we wish to choose
the points at which the SDF computation can be interrupted
by the higher level model. The SDF algorithm presented,
executes a whole schedule period without allowing inter-
rupts by other actors.

In order to construct an FSM from a Rialto program, we
formalize the scheduling algorithms using structural oper-
ation rules. The statements are also defined the same way,
but we need not go into that here. The SDF policy is defined
by the operational rules shown in Figure 4.

Here we iterate the schedule S by indexing it with index
variable s. So S[0] returns the first item in the schedule
sequence. The state σ on which the statements operate can
be called micro state, while the scheduling policies operate
on a macro state represented by the tuple 〈σ, β, s〉, where s
is the SDF indexing variable. The first rule executes a block
with label l whose policy is SDF and belongs to the active
set of of σ (l ∈ σ.α), by executing the next actor in its SDF
schedule. The state is updated to σ′, the blocked set β is
left unchanged and the variable s is increased by one. The
second rule is chosen when the we have reached the end of
the schedule. The termination of the step is indicated by the
Λ, and the s variable is reset to 0.

Using these rules, we can construct an FSM, where the
states are the macros states 〈σ, β, s〉 and the transitions are
calculated from the operational rules. From the example
program we obtain the FSM in Figure 5. The states are la-
beled with the active set, which remains unchanged, and the
s variable the steps through the schedule. The transitions



are unguarded and update the data state by executing the
code blocks for the nodes as side effects. We notice that this
is nothing but a sequential computation of the schedule. In
a combination with statecharts or other computational mod-
els, there could be guarded transitions to other states etc.

3. Optimized Code Synthesis

The FSM representation constructed from the Rialto op-
erational rules can be translated into an S-GRAPH, which
can be significantly reduced. The S-GRAPH technique was
introduced in the Polis approach, and we have added several
additional reduction steps on the graphs. Although we will
here explain how FSMs are translated into S-GRAPHS, we
could also translate an SDF static schedule directly. After
all, the FSMs achieved from the SDF graphs as explained
in the previous section, are merely sequences of unguarded
transitions, that actually form the static schedule invocation
sequence.

An S-GRAPH is a directed acyclic graph used to describe
a decision tree with assignments. An S-GRAPH consists
of a set of vertices, which contains four types of vertices:
BEGIN, END, TEST and ASSIGN. Every S-GRAPH has
one vertex of type BEGIN, called the source and one vertex
of type END, called the sink. All other vertices are of type
TEST or ASSIGN. Each TEST vertex v has two children,
which are called true(v) and false(v). Each BEGIN
or ASSIGN vertex u has only one child next(u). Each
vertex is labeled with a function. Two nodes are isomorphic
if they have the same label, and their child or children are
isomorphic. If there are no two isomorphic nodes in an S-
GRAPH, it is said to be reduced.

An FSM can be translated into an S-GRAPH by us-
ing TEST nodes to check the current state and events and
guards, and ASSIGN nodes to do state transitions and ex-
ecute side effects. In our SDF example we only have
unguarded transitions. The FSM from Figure 5 can be
translated into the S-GRAPH shown in Figure 6 a). The
dashed lines denote false-branches; solid lines denote true-
branches. We use a variable S to record the state. The node
labeled S=ABC0 for example is a TEST node checking if
the machine is in state ABC0, the A node is an ASSIGN
node that executes the code block for node A.

The micro states in the FSM differ only in the s index-
ing variable that gives the position in the schedule. So these
micro transitions can be translated into a simple increment
of the state variable, which is easily recognised by the Ri-
alto compiler as well. On traversal of the S-GRAPH, finds
the current state, executes a side effect and does one state
transition, in this case by incrementing it by one.

We see obvious possibilities for combining isomorphic
nodes in the graph. For example nodes 14 and 15 are iso-
morphic since they have the same label C, and their children

are isomorphic having the label S++. By combining all iso-
morphic nodes, we get the reduced graph in Figure 6 b),
where the code blocks A,B and C now appear only once, as
well as the increment of the S variable.

We have developed the S-GRAPH reduction further for
our code generation purposes. We can combine TEST
nodes that share the same true branch, by or:ing the
guards together. The result of this operation on the exam-
ple is shown in Figure 6 c). This reduces the nodes a lot
and makes the code generation easier and more efficient. It
also presents us with opportunities to find repetition patterns
in the schedule. In the traditional approaches, repetitions,
or schedule loops are found at scheduling time, while here
some repetitions can be found by the Rialto compiler, with
the help of S-GRAPHs.

Since we now have all occurrences of a node in
the schedule gathered in one TEST node, we can look
for repetitions inside the node, or with its neighbours.
In the example, we see that in the or node S =
ABC2|ABC3|ABC5|ABC6, the C node is always exe-
cuted twice in succession. We can thus reduce the or node
into S = ABC2|ABC5 as in Figure 6 d). The C node
is then executed twice each time the guard of the or node
evaluates to true. This is indicated by the label 2 ∗C on the
ASSIGN node 11.

This reveals still further reduction opportunities. We find
that in node 2 and 3 of the new graph, each element in the
or list in node 3, is a successor of the corresponding ele-
ment in node 2. This means that C is always executed two
times after an execution of B. We can thus combine these
two nodes as done in Figure 6 e). During this process, we
have achieved a desirable reduction of the states by the re-
moval of the states ABC2, ABC3, ABC5 and ABC6, that
are not needed anymore.

3.1. Target Code Generation

From the optimized S-GRAPH it is now an easy task to
generate target code in different languages. The easiest way
of translating the S-GRAPH into target language is to use
goto statements in C for example. The C code below is a
direct translation of the graph in Figure 6 e).

enum State {ABC0=0,ABC1=1,ABC4=2} S;

while(true) {
l1: if (S==ABC0)

goto l9;
else

goto l2;
l2: if (S==ABC1 || S==ABC4)

goto l10;
else

goto l11;
l9: // code block for A
goto l11;
l10: // code block for B
for ( i=0; 2; i++ )



begin

1:S = ABC0

9:A 2:S = ABC1

16:S++

10:B 3:S = ABC2

17:S++

11:C 4:S = ABC3

18:S++

12:C 5:S = ABC4

19:S++

13:B 6:S = ABC5

20:S++

14:C 7:S = ABC6

21:S++ 15:C

22: end

22:S++

begin

1:S = ABC0

9:A

2:S = ABC1

16:S++

10:B

3:S = ABC2

11:C

4:S = ABC3

5:S = ABC4

6:S = ABC5

7:S = ABC6

22: end

begin

1:S = ABC0

9:A

2:S = ABC1|ABC4

16:S++

10:B 3:S = ABC2|ABC3|ABC5|ABC6

11:C

22: end

begin

1:S = ABC0

9:A

2:S = ABC1|ABC4

16:S++

10:B 3:S = ABC2|ABC5

11:2*C

22: end

begin

1:S = ABC0

9:A

2:S = ABC1|ABC4

16:S++

10:B

22: end

11:2*C

a) b) c) d) e)

Figure 6. Four reduction steps for S-Graphs

// code block for C
l11: S++%4;

}

The variable S representing the state is of the type enu-
merating the state-space. The label l1 corresponds to node
1 in the graph etc. and the goto statements perform jumps
to the labels according to guard evaluations from the TEST
nodes. The double execution of the C node is performed by
the for loop. The whole thing is encapsulated by an infi-
nite loop, and the S++ increment is exchanged to S++%4,
which makes the code run periodically. Notice that the code
blocksA,B andC appear only once, although we did not use
a single appearance schedule.

Using this approach for compilation of larger models re-
sults in numerous comparison operations in the or guards
at each iteration. We can reduce this overhead dramatically
by representing the state S by a bit-vector, where a ’1’ bit
in position i means the ith state is active. The or states
can then be combined at compile time using the C bitwise
or |. This reduces the guard evaluations to a single bitwise
and &, to see if we are in one of many states. We get to
the next state by doing a shift operation on S i.e. S<<=1.
For larger models, we have to divide the state space into
several integer variables, since a 32 bit integer for example,
can now only represent 32 states. We can do this with very
little extra overhead however. Also these state variables will
require some extra memory, but it should not be too signifi-
cant. Using this technique, we can rewrite the previous code
as below:

enum State {ABC0=1,ABC1=2,ABC4=4} S;

for ( S=ABC0; S <= ABC4; S<<=1 ) {
if (S & ABC0)

// code block for A;
else if (S & (ABC1|ABC4) {

// code block for B;
for ( i=0; i<2; i++ )

// code block for C;
}

We have here also used an alternative bottom-up ap-
proach for translating the S-Graph, which produces a set of
if-else if statements instead of the goto statements.
We have also used a for loop inplace of the while loop.
The loop computes one period of the schedule. This ap-
proach produces much more compact code, but is not nec-
essarily any more efficient. We could apparently still reduce
the code in this case by factoring out the execution of A,
since it is run only once at the beginning, and removing the
S&(ABC1|ABC4) guard.

4. Buffer Memory versus Code Size

In traditional code synthesis approaches from syn-
chronous dataflow specifications, there is a trade-off be-
tween code size and buffer memory size. There is a choice
between first attempting to create a schedule that optimizes
the code size, where-after techniques for minimising the
buffer memory can be applied, or first developing a sched-
ule that minimises the buffer memory and then trying to
reduce the code size as much as possible. The code size
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Figure 7. An SDF graph that does not have a
BMLB schedule

A B B A B C B A B B C
e1 20 10 0 20 10 10 0 20 10 0 0
e2 0 10 20 20 30 0 10 10 20 30 0

Table 1. A minimal buffer memory schedule
for the SDF in Figure 7

minimisation is performed by searching for a single appear-
ance schedule, which can be used to create loop structures
with no code duplication.

The thing that makes the Rialto S-GRAPH reduction for
SDF graphs just presented interesting, is that it always re-
sults in implementations without code duplication, regard-
less of whether a single appearance schedule can be found
or not, or whether first emphasis is put on code size reduc-
tion or buffer memory reduction. In other words we can
put all emphasis on the buffer memory optimisation, while
optimal code size is received for free.

The traditional techniques are optimal when a single
appearance schedule whose buffer memory requirement
equals the Buffer memory lower bound (BMLB) of the SDF
graph. The BMLB of a graph is the minimal amount of
memory required for the buffers or edges of the graph. A
BMLB schedule is a single appearance schedule that satis-
fies the buffer memory lower bound. The single appearance
schedule A(2B(2C)) we used for the example graph results
in minimal buffer memories.

Figure 7 shows an example where a BMLB schedule
cannot be found. The two edges are labeled e1 and e2. The
BMLB for this graph is 50 (see e.g. [3] for an explanation
of the calculation). We can easily find a single appearance
schedule for the graph, for example (3A)(6B)(2C), but it
has a buffer memory requirement of 120. In other words,
giving first priority to code size reduction gives us a buffer
memory overhead of 240%.

We also find that we can easily construct a schedule that
results in the minimal buffer requirement of 50 but is not
a single appearance schedule. Such a schedule is demon-
strated in Table 1, where the first row lists the schedule, or
the actor firings, and the e1 and e2 rows show the number
of tokens on edge e1 and e2 respectively after a node has
been executed from the schedule. We see that the maxi-
mum number of tokens on edge e1 is 20 and 30 on edge e2,
which gives the total buffer memory requirement of 50.

From a Rialto program representing the SDF graph, the
compiler produces the following C code (using the more

compact code generation approach):

enum State {ABC0=1,ABC1=2,ABC2=4,ABC3=8,
ABC4=16,ABC5=32,ABC6=64,
ABC7=128,ABC8=256,ABC9=512,
ABC10=1024 } S;

for ( S=ABC0; S <= ABC10; S<<=1 )
{
if (S & (ABC0|ABC3|ABC7) )

code block for A
else if (S&(ABC1|ABC2|ABC4|ABC6|ABC8|

ABC9))
code block for B

else
code block for C

}

The code has no duplication of the code blocks, and it
uses the minimal amount of buffer memory. It uses about
the same amount of program memory as the traditional ap-
proaches. We can do a bit of control overhead analysis on
the two versions: Let n be the number of items in the sched-
ule and k be the number of distinct nodes in the SDF graph.
Our code does n increment operations and about n + nk

2
comparisons (n comparisons in the outer loop and about
nk/2 in the if statements on average, depending on how
deep we get before a hit), i.e. about 2n + nk

2 control opera-
tions.

The traditional version does n increments, n compar-
isons and k initialisations, i.e. about 2n + k operations
total. These are worst-case calculations, and we will see
in the example that follow that they are quite pessimistic in
both cases. In our case, we can order the if cases so that the
ones with the most elements or:ed together, come first. This
way we greatly reduce the number of comparisons needed
on average to find the code block to execute.

5. Example: Non-uniform Filterbank

This example originates from [11] and is used by
Battacharyya, Murthy and Lee. Figure 8 shows an SDF
specification of a non-uniform, near-perfect reconstruction
filterbank. The repetitions vector 1 of this graph is

q(a, . . . , A) = [27, 27, 9, 9, 18, 6, 6, 9, 12, 6, 9, 4, 4, 6, 8, 4,
4, 4, 12, 6, 6, 9, 18, 9, 27, 27, 27]

Summing the vector elements together, we get the total
number of invocations n = 313, the number of nodes in the
graph k = 27. The best schedule for this graph, that is the
single appearance schedule with the lowest buffer memory
requirement, obtained by Battacharyya et al. in [2] is the
following:
(3(3(3ab)dc)(2(3e)fgnj)(3kh))(4(3i)mpl(2o)qr(3s))(3(2tu

(3w))(3xv(3yzA)))

1The repetitions vector lists the minimum number of times each node
has to be fired during a period of a valid schedule
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Figure 8. SDF graph for a non-uniform filterbank

They obtain this schedule using a scheduling heuristic they
call RPMC to find a single appearance schedule, whose
buffer memory requirement is reduced by post-processing
using an algorithm called GDPPO. They manage to reduce
the buffer memory requirement from 153 to 128. However,
the buffer memory lower bound of this graph is 87. Using
a very simple minimum-buffer scheduling algorithm, also
presented in [2], we find a schedule that achieves the BMLB
of 87. The schedule is shown below and as you can see, it
is quite big.

abababcdeehkvabababcdefgehiijknuabababcdeefghijlm
inoopqrsstswwxwuyzyAzyvkAzAabababcdeehabababcdefg
eiijlmnoopqrstsswxwwtuyzyAzyvkhxwwAzyAzyAzyvkx
wAzyAzyAzyvAzAabababcdeefghiijknuabababcdeehabab
abcdefgeijlminoopqrsstswxwwuyzyAzyvkhxAzyAzyAzy
vkAzAabababcdeefghiijlmnoopqrstsswwxwtuwyzyAzyvk
xwwAzyAzyAzyvxAzyAzyAzyAzA

According to our analysis, the worst case runtime over-
head of code synthesized using the technique of Bat-
tacharyya et al. is 2n+ k = 2 ∗ 313+27 = 653 operations.
A real calculation of the number of loops, and nested loops
in the generated code gives 60 initializations and 153 com-
parisons and increments adding up to 366 operations, which
is about half of the worst case.

Worst case analysis of our procedure gives 2n + nk

2 =
2 ∗ 313 + 313 ∗ 27/2 = 4852 operations. By combining
or nodes where all elements in one node are successors of
the corresponding ones in the other, as explained earlier,
the state space n is reduced from 313 to 251. The com-
piler finds the following repetition patterns in the schedule
ab,cd,fg,lm and (2o)pqr. The number of test nodes k is
reduced to 20. This would mean 10 comparisons on av-
erage per iteration, but ordering the test nodes so that the
ones with the most elements come first, we only need to do
5 comparisons on average per iteration, which gives us a
runtime overhead of 2 ∗ 251 + 251 ∗ 5 = 1757 operations
per schedule period, which is about one third of the worst
case. This is still almost five times more than the traditional
technique, which can be quite significant if the nodes only
do very simple operations. Let us say that the nodes in the
graph (consisting of e.g. low-pass and high-pass filters), do
50 operations per invocation on average. The total number
of operations then becomes 50 ∗ 313 + 366 = 16016 and
50∗313+2504 = 18054 for the two methods; 11% more in

our code. We also do get a slightly larger program memory
requirement. A compilation of the two pieces of code using
GCC with only the control structures resulted in 1720 bytes
of object code for the RPMC/GDPPO version and 1764
bytes for our version, 2.1% larger. Since we achieve the
BMLB of 87 as opposed to the 128 using RPMC/GDPPO,
30% less, our synthesis approach might be quite useful
in certain cases. Notice also that the graph contains two
edges with delays, 8D and 20D, which contributes to the
buffer memory requirment with 26 tokens (the edges would
only need to be of size 1 without delays). If there were
no delays, our code would require a buffer memory of 87-
26=61, and the other approach at least 102. In that case,
our code would have 40% smaller buffer memory. We used
about the simplest possible scheduling algorithm, while the
RPMC/GDPPO algorithms of Battacharyya et al. are much
more complicated.

6. Heterogeneous Models

Embedded systems usually require several description
and modeling techniques for different parts of a system.
Numerous tools exist for simulation and code generation
within the different domains. Also the combination and
interaction of the models of computation has been stud-
ied by e.g. Lee and Sangiovanni-Vincentelli [10], and the
Ptolemy [7] project allows us to simulate heterogeneous
models. Usually we still have to resort to different code
synthesis tools for the different parts of the system, mod-
eled using different computational models. The generated
code is then pieced together using some glue code.

The Rialto language is being developed for the purpose
of capturing the semantics of different models of compu-
tation and their combinations, and provide a uniform low-
level representation for the models that can be optimized for
efficient code synthesis.

Let us now look at a hierarchy of computational models,
namely an SDF graph with some control modelled using
a statechart as depicted in Figure 9. We will use this toy
example to demonstrate the use of Rialto in heterogeneous
systems, and an alternative SDF policy we could use. The
system can be in one of two states, On or Off. While in
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upsampler: state
policy RTC; fifo q; event on, off;

begin
On: state

policy RTC;
t1: trap q.get(off) do l2: goto Off

begin
sdf: state
policy SDF(A,B,C,C,B,C,C);

begin
# code block from the first example

end
end
Off: state

policy rtc;
t2: trap q.get(on) do l8: goto(On)

end
end

Figure 9. A hierarchy of computational mod-
els

the On state, it processes samples as in the first example.
While processing, it monitors the off event on its queue and
on receiving it, takes the transition to the Off state.

The Rialto code for this system, also shown in the figure,
is scheduled on the top-level by the RTC policy, which is a
run-to-completion algorithm we have developed for UML
statecharts. Also the On state is scheduled by the RTC
policy, since it is a statechart state but it contains the sub-
state sdf, which is scheduled by the SDF policy. The
RTC policy of the On state mainly takes care of schedul-
ing the trap statements according to the statechart seman-
tics. The code would become a bit more compact if we
would develop a hybrid scheduling policy that would cor-
rectly schedule the traps as well as step through the SDF
schedule. This policy would be assigned to the On state and
the sdf substate would not be needed. It is probably wiser
to separate the concerns as done in the example though.

The Rialto model is executed by repeatedly calling the
RUN function of the topmost statement, which means we
call the RTC policy of the upsampler state. The pro-
gram can be translated into the FSM in Figure 10 a). The
SDF code blocks A;B;C;C;B;C;C; are executed in one
atomic step and between executions, the transition to the
Off state can be taken, but not between node executions in
the SDF graph.

a) Off

/A;B;C;C;B;C;C

offon

On

{A,B,C,t1}
       0

b)

On
  3

On
  4

On
  5

On
  6

Off

On
  2

On
  1

off
off off off off offoff

       0
{A,B,C,t1}

On

on

Figure 10. Computation as FSMs, using a) an
atomic SDF policy b) and interruptible SDF
policy

From this representation we would get the C code below,
where the simple FSM is implemented in the step func-
tion, that calls the ABCCBCC P procedure when it is in the
On state and no off event is observed. The ABCCBCC P
procedure contains the code we showed before for first sim-
ple SDF example.

void ABCCBCC_P(){
# code as in the first example

}

void step() {
enum State {Off, On};
if (S==Off && q.get(on) )

S = On;
else if (S==On && q.get(off) )

S = Off;
else

ABCCBCC_P();
}

An alternative SDF policy for Rialto, works on a lower
level of atomicity, allowing control actors higher up in the
hierarchy to interrupt the computation of the SDF schedule.
Applying this scheduling policy to the previous example al-
lows the transition to the Off state to be triggered between
the execution of each node in the schedule. The Rialto pro-
gram then translates into the FSM in Figure 10 b).

The optimized S-GRAPH representation of this FSM is
shown in Figure 11. The S-GRAPH technique has reduced
the number of event tests (q.get(off) and transitions
(S:=Off), as well as removed duplication of the SDF node
code blocks. This graph contains 12 nodes, while in its
unreduced form it contained 35, a reduction of.

7. Automatic SDF to Rialto Translation

We want to be able to make Rialto totally transparent
so that the designer can draw models in an editor, and get



begin

1: S=Off

5: q.get(on)

2: S=OnABC0

9: S:=OnABC0

15: end

8: q.get(off)

3: S=OnABC1|OnABC4

12: S:=Off

13: A

7: q.get(off)

11: B

10: 2*C

14: S++

Figure 11. The S-GRAPH for the statechart/SDF
model

target code generated for him. For this reason we are work-
ing on an SDF profile for the System Modeling Workbench
(SMW) [13]. The SMW is a tool for model creation, navi-
gation, manipulation and storage and is based on metamod-
eling using the MOF standard [12] defined by the Object
Management Group (OMG).

Since the SMW is based on metamodeling, profiles for
new modelling languages can be rapidly added through a
metamodel of the modelling language. In the case of UML,
we can obtain the metamodel directly from the object man-
agement group in charge of the standardisation of UML;
however, a metamodel for SDF had to be created by our-
selves. Creating a metamodel for SDF models, is all that is
needed for us to be able to textually create and browse SDF
models. In order to draw the SDF graphs we need to design
a graphical editor for SDF graphs.

We can easily browse the SMW models using python
scripts, and for the case of SDF, we could develop scripts
to do well formed checks on the graphs, as well as calcu-
late static schedules and buffer sizes for the models. As the
last and simplest step, comes the Rialto generation from the
SDF graphs.

8. Conclusions and Future Work

We have presented an approach for code synthesis
from synchronous dataflow graphs using S-Graphs, imple-
mented in the Rialto compiler. The Rialto approach can
also be used for other models of computation, as well as
combinations of heterogeneous models. The benefit of our

approach for SDF compilation, is that it always results in
code with no duplication of actor code blocks regardless of
the schedule, also when a single appearance schedule can-
not be found. This means that we can focus on minimum
buffer memory scheduling. The size of the produced code
is about the same as the traditional approaches, but we can
achieve smaller buffer memory requirement in cases where
a BMLB schedule cannot be found. The drawback of our
method is that it results in more runtime control overhead
than the usual methods. This becomes significant when the
nodes perform only simple calculations, which they very
well may do in DSP applications. Our approach could also
be used without the Rialto language.

It could perhaps be possible to improve our method by
developing special scheduling algorithms for our purposes.
The actor invocations could perhaps be organized so that
more repetition patterns could be found by the S-Graph
optimization steps.

The Rialto compiler is very much on a prototype level,
and used only for experiments at this time. We have a
simple SDF profile and editor within the SMW framework,
from which Rialto code can be generated; this is also work
under progress and is still quite limited.
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