
1

A case study: Implementation of Control Systems
Using B-Action Systems1

Pontus Boström and Marina Waldén

Åbo Akademi University, Department of Computer Science

Turku Centre for Computer Science (TUCS)
Lemminkäisenkatu 14 A, 20520 Turku, Finland

E-mail: { Pontus.Bostrom, Marina.Walden} @abo.fi

Introduction

We present a case study where we apply a methodology for formal derivation and
implementation of control systems of industrial size. We use B Action Systems [WaSe98] as
our theoretical framework for developing reliable and correct control systems in a stepwise
manner. In the case study we develop part of a microplate l iquid handling workstation [PE01]
manufactured at Wallac, a division of Perkin Elmer Lifesciences. Previously, we have
concentrated on modelling control systems of industrial size [MATISSE03], but here we
focus on their implementation (see also [Boström03]).

Formal development of control systems

 Discrete control systems are used in many safety-critical systems such as, e.g., cars
and airplanes. These systems need to be safe and very reliable. Control systems usually
consist of an environment and software, here referred to as plant and controller. The plant and
controller can communicate with sensors and actuators. The controller reads the sensors in
order to obtain an updated view of the state of the plant. The controller then produces an
output to the actuators in response to the values read from the sensors. Systems working in
this way are said to be reactive.

 In order to achieve safe and reliable control systems we need formal software
construction techniques. With a formal analysis tool the confidence in the formal
development can be increased. Here we use the B Action Systems [WaSe98] formalism as our
formal framework for developing distributed control systems. Since B Action Systems are
Action Systems [BaKu83, BaSe96] applied in the B Method [Abrial96], we can benefit from
the useful formalism for reasoning about distributed systems given by Action Systems and
from the tool support in B. The development within B Action Systems is performed in a
stepwise manner from abstract specification to concrete implementation using superposition
refinement [BaKu83]. The correctness of each step should be proved to achieve a reliable
system. The B tool assists the development process by generating the proof obligations
needed. Some extra machine constructs in B need to be created to be able to generate all B
Action Systems specific proof obligations [BuWa96]. These proof obligations can then be
proved with the automatic or the interactive prover of the tool. Moreover, the B tool has a
translator for automatically transforming concrete B specifications into the programming
languages C, C++ or Ada.

 The development process starts by capturing the requirements of the system. The
different components of the system are then identified. From the requirements we create an
abstract B Action System. We model the whole system as one entity in order to make it
possible to state properties about the entire system. The system is then decomposed into the
earlier identified components [MATISSE03]. Each component is refined in a stepwise

1 Work done within the MATISSE-project, IST-1999-11435, http://www.matisse.qinetiq.com

2

manner adding new implementation details to the component specification in each step. By
incorporating safety analysis in the development we can gradually add safety properties to the
system [Troubitsyna00]. After having introduced all required implementation details the
components are decomposed into plant, controller, sensors and actuators. The controller in
turn is divided into two parts; an interrupt handler and a part containing the actual control
procedures. At this point the control procedures can be automatically translated into a
programming language. The actions of the interrupt handler are merged into a single action
that receives messages in form of interrupts from the environment and calls the corresponding
controller procedures. This merging process sti ll lacks tool support. When also the interrupt
handler has been translated into a programming language, the implemented components of the
control system are interfaced with the hardware or the operating system.

The Fillwell case study

 In our case study we used the methodology described above to develop part of a
microplate liquid handling workstation, Fillwell [PE01], for discovering new drugs. The
Fillwell workstation consists of a dispense head, a gantry and a processing table with
microplates. The dispense head dispenses liquid into the plates on the processing table. The
gantry moves the dispense head from one plate to another on the table. Both the dispensing
and moving have to be performed with very high precision.

Here we concentrate on implementing the controller of the gantry [Boström03]. The
gantry moves the dispense head horizontally (in the x- and y-directions) with two linear
motors and vertically (in the z-direction) with a stepper motor. Three position encoders, one
for each direction, give the position of the dispense head. Moreover, the system has an
emergency stop button. When it is pressed the system should shut down safely. We can
identify five components of the gantry: three components for handling the movement in the x-
, y- and z-direction; a component for coordinating these components; and a component for
handling the communication between the other components.

All the components of the gantry were independently refined. We used the tool Atelier B
[ClearSy03] to assist in the development. In the components for the x-, y- and z-movement
we added features for handling interrupts and measuring the position of the dispense head.
Also the coordinating component was refined to take into account the changes in the other
components. When these features had been added all the five components are partitioned into
plant, controller (with procedures and interrupt handlers), sensors and actuators. For the
gantry development 3109 proof obligations were generated. The automatic prover of Atelier
B proved most of them (94%), the rest were proved with the interactive prover.

Finally, the controllers of the five components were translated into C with Atelier B.
For each controller the actions in the interrupt handler were manually merged to form a single
action and these transformed interrupt handlers were then automatically translated into C. The
program code has not been used on the real Fil lwell workstation, but a simulator has been
constructed to interface the implemented components.

Conclusions

 Our method provides a way to model, specify and design the complete control system
with both the environment and the software controller taken into account. By using the B
Action System framework and the Atelier B tool, safety properties can be proved about the
entire system. The software for the controller can be automatically generated from the
specification. Hence, we have a method for correct implementation of control systems.
Though, it is only possible to prove that a system is correct in respect to the specification. If
the specification is wrong, they system will not work correctly.

3

 There are some limitations with this method. These limitations are mainly due to
l imitations in the B Method. For example, it is not possible to use sequential composition in
the controller. Moreover, continuous behaviour of the environment cannot be modelled, nor
does the B Method support real or rational numbers, which are necessary when modelling
dynamic systems. Despite these limitations the method using the B Action Systems formalism
seems to be quite well suited for these kinds of problems. The method is relatively easy to
apply and the case study has provided some insight in the design of larger systems using this
method [Boström03].

B Action Systems have been used previously by Sekerinski [Sek98] for designing
control systems. However, he has used a bottom-up approach were the system is modelled by
several small machines that are later merged into one. Lano presents a method for
implementing discrete event systems using the B Method [Lano00]. However, he does not
model the environment in his approach and can, therefore, not prove properties about the
system as a whole.

References

[Abrial96] J. R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

[BaKu83] R. J. R. Back and R. Kurki-Suonio. Decentralization of Process Nets with
Centralized Control. Proceedings of 2nd ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, Montreal, Canada, August 1983, pp. 131-142.

[BaSe96] R.J.R. Back and K. Sere. From modular systems to action systems. Software --
Concepts and Tools 17, pp. 26-39, 1996.

[Boström03] P. Boström. Formal Development of Control Systems. M. Sc. Thesis,
Department of computer science, Åbo Akademi University, Finland, September
2003.

[BuWa96] M. Butler and M. Waldén. Distributed system development in B. Proceedings of
the 1st Conference on the B Method, Nantes, France, pp. 155-168, November 1996.

[ClearSy03] Atelier B, ClearSy, http://www.atelierb.societe.com/, latest accessed 15.09.2003.

[Lano00] K. Lano, J. Bicarregui and P. Kan. Experiences of Using Formal Methods for
Chemical Process Control Specification. Control Engineering Practice. Vol. 8.
Elsevier Science, 2000.

[MATISSE03] MATISSE Handbook for Correct Systems Construction. EU-project
MATISSE: Methodologies and Technologies for Industrial Strength Systems
Engineering, IST-1999-11345, 2003.

 http://www.esil.univ-mrs.fr/~spc/matisse/Handbook

[PE01] Perkin-Elmer Life Sciences, Fillwell™2002 – Features Guide, 2001.
http:/www.abo.fi/~marina.walden/fil lwell.pdf.

[Sek98] E. Sekerinski. Production Cell. Chapter 6 in E. Sekerinski and K. Sere (editors.),
Program Development by Refinement – Case Studies Using the B Method, pp. 197-
254. Springer-Verlag, London, 1998.

[Troubitsyna00] E. Troubitsyna. Stepwise Development of Dependable Systems, Turku
Centre for Computer Science, TUCS, Ph. D. thesis No. 29, June 2000.

[WaSe98] M. Waldén and K. Sere. Reasoning About Action Systems Using the B Method.
Formal Methods in Systems Design 13(5-35). Kluwer Academic Publishers, 1998.

