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Abstract. Microsoft Kinect has attracted great attention from research
communities, resulting in numerous interaction and entertainment appli-
cations. However, to the best of our knowledge, there does not exist an
ontology for 3D depth sensors. Including automated semantic reasoning
in these settings would open the doors for new research, making possible
not only to track but also understand what the user is doing. We took
a first step towards this new paradigm and developed a 3D depth sen-
sor ontology, modelling different features regarding user movement and
object interaction. We believe in the potential of integrating semantics
into computer vision. As 3D depth sensors and ontology-based applica-
tions improve further, the ontology could be used, for instance, for ac-
tivity recognition, together with semantic maps for supporting visually
impaired people or in assistance technologies, such as remote rehabilita-
tion.
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1 Introduction

Recently there has been a spark in developments in the field of smart spaces and
ubiquitous computing, especially regarding applications using affordable sensors.
One of these sensors is the Microsoft Kinect device, originally intended as an
add-on for the Xbox 360 video console, which enables user interaction through
movements and voice, instead of using a controller. However, the sensor attracted
a lot of interest from the R&D communities, as Kinect can be reprogrammed
for other purposes than purely entertainment.

The main goal with ubiquitous spaces is to work towards an ideal environ-
ment where humans and surrounding devices interact effortlessly [1]. For this to
be realized, context-awareness is key. Semantic technologies have shown to be



successful, among other areas, in context representation and reasoning, which
can serve in object tracking and scene interpretation [2] and in human activity
recognition [3]. We believe that semantic modelling of human movement and
interaction could greatly benefit existing data-driven (e.g., computer vision)
approaches, increasing context-awareness and potentially, activity recognition
rates.

One of the most challenging areas within UbiComp is Activity Recognition.
Using vision based techniques has substantial disadvantages, as most of them
store the images, and become intrusive and privacy compromising. Since 3D
depth sensors do not store the image itself, but a skeleton structure, they add
an advantage towards traditional data-driven approaches [4] (HMM, SVM, etc.)

To the best of our knowledge, there does not exist any automated seman-
tic reasoning for modelling movement and interaction within computer vision
technologies and 3D depth sensors (e.g. Kinect). The rest of the paper is struc-
tured as follows. Section 2 presents related work in computer vision and semantic
approaches, Section 3 describes our ontology proposal for modelling body move-
ment, and Section 4 exemplifies its usage. Section 5 concludes and gives some
future research directions.

2 Related Work

Due to Kinect multimodal features such as gesture and spoken commands, dif-
ferent UbiComp applications have been recently developed. For instance, the
combination of Kinect with an airborne robot [5] to enable automatic 3D mod-
elling and mapping of indoor environments.

An interesting initiative in this area is Kinect@Home4[6], a crowd-sourcing
project for large 3D datasets of real environments to help robotics and computer
vision researchers, through vast amounts of images, to improve their algorithms.
Another project, Kinect Fusion [7], allows for real-time 3D reconstruction and
interaction using point-based 3D depth sensor data. An application example is
touch input enabled arbitrary surfaces.

In the Semantic Web, ontologies represent the main technology for creat-
ing interoperability at a semantic level. This is achieved by creating a for-
mal illustration of the data, making it possible to share and reuse the ontol-
ogy all over the Web. Ontologies formulate and model relationships between
concepts in a given domain [8]. The following example illustrates with OWL
2 axioms the activity TakeMedication, that can serve to monitor an elder:
NataliaTakingMedication ≡ isPerformedBy.(Natalia u performsAction

(OpenPillCupboard u (TakeObject u actionAppliesTo someNataliasMedication) u
(TakeObject u actionAppliesTo someGlass) u FillGlassWithWater u Drink)).

In [9] ontology-based annotation of images and semantic maps are realized
within a framework for semantic spatial information processing. An XML de-
scription language for describing the physical realization of behaviours (speech

4 Kinect@Home http://www.kinectathome.com/



and behaviour) is the Behavior Markup Language (BML) 5, which allows repre-
sentation of postures and gestures for controlling verbal and nonverbal behavior
of (humanoid) embodied conversational agents (ECAs). However, to the best of
our knowledge, there is no current solution integrating the performance power
of computer vision technologies, together with a formal semantic representation
of the user, its movement and interaction with the environment, to achieve auto-
matic knowledge reasoning. In next section we propose an ontology for combining
data-driven and knowledge-based paradigms.

3 An Ontology for modelling movement and interaction
with 3D depth sensors

We propose an ontology to distinguish among human movement, human-object
interaction and human-computer interaction. The Kinect ontology6 aims at rep-
resenting 3D depth sensor information generally, but at this stage it is based
upon two main Kinect modules. The first and most basic one is Kinect Core,
and represents the Natural User Interface (NUI), which is the core of the Kinect
for Windows API, and represents the most relevant concepts from Kinect Inter-
action and Kinect Fusion APIs [10]. The second module of the ontology consists
of practical extensions for modelling and recognizing human activity.

3.1 Kinect Core Ontology, Kinect Interaction and Kinect Fusion

The Kinect Sensor class represents the camera device, its current location, ori-
entation and frames. A Kinect Sensor associates a 3D Model with the user’
skeleton.

A Kinect 3D Volume is characterized through its size and voxel resolution.
Kinect Audio supports a microphone mode, beamforming and source local-

ization (which can be identified through a direction or language). A Speech is
recognized by a Speech Recognition Engine. The latter allows creation of cus-
tomized grammars for recognition of user commands with a confidence threshold
parameter for each grammar.

Kinect Interaction provides several ways to interact with a Kinect-enabled
application. The natural gestures, as a way of touch-free user interactions, allow
the sensor to operate in a range of 0.4 to 3-4 m. The types of interaction are
modelled with gestures (gripping, releasing, pushing and scrolling) (Fig. 1). This
class generates interaction streams which are bound to a control, i.e., an action
that allows computer interaction. A Control is an action performed when an
interaction gesture is recognized. The set of interactive controls are classified on
video, images or text. An Interaction Stream represents the supply of interaction
frames as they are generated by a KinectInteraction. Each InteractionFrame has
a timestamp.

5 BML: http://www.mindmakers.org/projects/bml-1-0/wiki
6 Kinect Ontology: http://users.abo.fi/rowikstr/KinectOntology/



Kinect distinguishes among two types of Tracking Modes, default or seated.
Both modes can track 2 out of 6 users, but only one can be active at once.

Fig. 1. Some available interaction gestures: a) Grip b) Release c) Press

By using ontology-based modelling, a SeatingUser can be defined as:

SeatingUser ≡ User u isTracked u (SeatedTrackingMode isActive).

StandingUser ≡ User u isTracked u (DefaultTrackingMode isActive).

TrackedUser ≡ User u isTracked u ((DefaultTrackingMode or SeatedTrack −
ingMode)isActive).

InteractingUser ≡ User u isTracked u (hasArmsomeArm) u (hasHand some

Hand) u (hasInteractionMode some (GrippingInteractionMode or ReleasingInter−
actionMode or PressingInteractionMode)).

Kinect’ Skeleton class identifies a User and is represented with a bone and
joint hierarchy, which refers to the ordering of the bones defined by the sur-
rounding joints. Our ontology allows to express relations concerning bones and
joints, where the bone rotation is stored in a bone’s child joint, e.g., the rotation
of the left hip bone is stored in the HipLeft joint (See Fig. 2-right)7. The skeletal
tracking includes rotations of each bone joint and orientations of each bone.

Fig. 2. Left) Skeleton, bones and joints. Right) Joints hierarchy. [10]

The Hand class has a set of properties that represent its state, e.g., the user
the hand belongs to, whether the hand is primary for that user, whether the
hand is interactive, gripping or pressing. Arms, in the same way, are provided
with an arm state.

7 Bones are specified by the parent and child joints that enclose the bone and their
orientation (x,y,z). For example, the Hip Left bone is enclosed by the Hip Center
joint (parent) and the Hip Left joint (child) [10].



Fig. 3. Exercise & Workout Sub-Ontology

3.2 Kinect Extensions Ontology

A set of relevant classes is defined next to make sense on body, objects and
actions interactions.

The class User identifies the person behind the Skeleton model. A user is
modelled with the correspondent arms (and hands) and a set of properties that,
e.g., may identify him as PrimaryUser8.

Body Movement mainly represents actions executed with body limbs and
articulations. Different kind of movements include to rotate, bend, extend and
elevate. These can have a clockwise direction (e.g. RotateWristClockwise), a
direction (ElevateFootFront), a degree or a body part to which they apply (Left-
BodyPart).

Any physical Object and its properties such as dimensions, (partial) colours
or number of voxels can be represented, for instance, to recognize activities such
as experiments involving volume measurements. Object actions model interac-
tion between objects or among users and objects thanks to Kinect Fusion API
module. Examples of interactions between user and objects include to grab, re-
lease, touch, click etc.

The Spatial Relations Ontology [11] is reused to express physical space rela-
tions of objects as well as how they are placed or how they interact with each
other, e.g. contains, disjoint, equal and overlaps.

Elements from NeOn Ontology engineering methodology [12] were used, e.g.:
reusing ontology resources, requirements specification, development of required
scenarios and dynamic ontology evolution. The main classes, data and object
properties of the Kinect Ontology are presented in Table 1.

4 Ontology-based human activity reasoning

Figure 3 presents the structure of the Exercise & Workout Sub-Ontology, where
the goal is to precisely model the specific movements a user performs, e.g.,

8 Kinect Interaction layer decides which of the tracked users is primary and assigns
him an ID and a primary hand, although both hands are tracked [10]



OWL Classes OWL Data Properties and Object Properties

BodyMovement, BodyPart,
ObjectAction, Exercise, Angle,
(Image, Text, Video-)Control,
Exercise(-Difficulty, Fre-
quency, Intensity, Quality)
Grammar, HandState, In-
dication, Location, Object,
Orientation, Kinect-(Audio,
Interaction, Sensor), Dic-
tation, SpeechRecognitio-
nEngine, TrackingMode,
Bone, BoneJoint

hasStart/EndDateTime, wasRepeatedNTimes, hadAvg-
TimePerRepetition, shouldBeMin/Max/ExactlyIn-
Degrees, hasDescription, isProgrammedForNRepeti-
tions, IsProgrammedForDurationInMin, hasCoordina-
teX/Y/Z, hasHeightInCm hasDifficulty, hasIndication,
hasAvgQuality, performsExercise, isComposedByAction,
involvesAngle, hasOrientation, hasSourceLocation, in-
teractsWith, detectsKinectAudio, hasLoadedGrammar,
hasActiveTrackingMode, detectsInteraction/Object,
activatesControl, hasBoneHierarchy, isLocatedIn, has-
SpatialRelation, hasInteractionMode, hasArm/Hand,
hasSpeechRecognition, representsUser

Table 1. Kinect Ontology Classes, Data and Object Properties (partial)

through the exercise duration, repetitions and quality or intensity (Low, Medium,
High) performed.

In order to model human activities and behaviours, the state of environment
variables and body postures can be abstracted so that identifying changes of in-
terest is possible. Since existing statistical methods have demonstrated to be ro-
bust in activity monitoring [13], the Kinect ontology is intended to support these
by adding context-awareness to the end-user application. For instance, long-term
queries could be done, since having semantic knowledge adds the capability of
integration with other sensor information, allowing for user-customization of the
smart environment. Therefore, we focus on representing simple, higher level ac-
tions (lay down, washing hands, etc.) and facilitating the finding of longer term
changes. Examples of the ontology in use are:

Example 1: Defining basic movement (Stand, BendDown, TwistRight, Move-
Object, etc.) can be mapped to OWL 2, e.g., the Action Sitting, would be of the
form:
performsAction(Natalia, Sit) ∧ hasStartDatetime(Sit, T ).

Example 2: When defining an activity, e.g. Sit StandExercise workout, the
amount of series done in a given time as well as the exercise quality can be mea-
sured. These values can be predefined according to medical parameters, e.g., the
difficulty faced when sitting/standing as well as the stretching of the back when
standing:
∀U , ∀Sit StandEx ∈ Sit Stand−Ex , ∀V : performsExercise(User, Sit StandEx)∧
isComposedByAction(Sit StandEx, (Sit∧Stand)∧involvesAngle(Stand, LowerUpper−
BackAngle) ∧ hadAngleV alue(LowerUpperBackAngle, V ) ∧ V < 175→
hasAvgQuality(Sit StandEx,BadQuality).

Example 3: Historic analysis can be provided through measurements per-
formed while doing certain activity, to monitor posture quality. E.g., having the
back less straight than a year ago could be notified to make the user aware of
his posture habits:



∀ Stand , LowerUpperBackAngle1, LowerUpperBackAngle2 , ∀ V 1, V 2, D1, D2 :

performsAction(Natalia, Stand)∧involvesAngle(Stand, LowerUpperBackAngle1)∧
hasV alue(Lower−UpperBackAngle1, V 1)∧hasDateT ime(LowerUpperBackAngle,D1)

∧involvesAngle(Stand, LowerUpperBackAngle2)∧hasV alue(LowerUpperBackAngle2,

V 2)∧hasDateT ime(LowerUpperBackAngle2, D2)∧((V 1−V 2) > 5)∧T2 == (T1+(X1-

XX-XX))∧ hasPhone(Natalias, P )→ SendSMS(P,”Your back is not as extended as

a year ago”).

Example 4: An office worker can be notified when he is not having straight
back and neck:
∀Sit , ∀NeckUpperBackAngle ,∀V : isCurrently(Natalia, Sit)∧isInLocation(Natalia,

NataliasOffice) ∧ involvesAngle(Sit,NeckUpperBackAngle) ∧ hadAngleV alue

(NeckUpperBackAngle, V ) ∧ V < 175 ∧ hasPhone(Natalia,NataliasPhone)→
SendDoubleV ibrationAlarm(NataliasPhone,”Bad posture!”).

Or when he has been sitting for too long:
∀ T : executesAction(Robin, Sit) ∧ hasEndDateT ime(Sit, T ) ∧ ((T ime.Now − T ) >

2h)→ sendSMS(RobinsPhone,”Stand up and stretch legs!”).

The integration with other physiological data such as heart rate, sleep quality
or stress, from sensors such as accelerometers, can be as well integrated for more
complete assessments of every day functions or tasks.

5 Conclusions and Future work

We developed a OWL 2 ontology (ALC DL expressivity) composed of 164 classes,
53 object properties, 58 data properties and 93 individuals, based on the Kinect
for Windows API. The structure of the ontology is based on Kinect Natural User
Interface, Kinect Interaction, Fusion and Audio modules.

We believe that ontologies can and should play a vital part in this develop-
ment to help abstracting atomic gestures for an incremental, fine, and coarse
grained activity recognition. In this way, automatic reasoning for inferring of
novel information is facilitated. For instance, the Exercise & Workout ontology
classes allow the data integration and registration to follow the evolution of a
person’s performance through the quality of the workout or rehabilitation pro-
gram. We exemplified the usage of the proposed ontology with different domain
examples.

In future work, there is an imminent need to conduct evaluation experiments
with the ontology developed, for validating its modelling accuracy, as well as
its reliability. We are convinced that an appropriate combination of computer
vision algorithms with semantic models of human movement and interaction
can significantly improve context-awareness, recognition accuracy and activity
analysis precision.

Another interesting research direction for the future is the use of fuzzy on-
tologies, which offer ways for dealing with vague and imprecise data. During the
modelling process of the Kinect ontology, we found features susceptible to be
modelled in an imprecise way. Due to the imprecision inherent to the environ-
ment, these features could benefit from being expressed through an extension of



the ontology to Fuzzy OWL 2. This would ease the looseness of the model and
facilitate user interaction, as linguistic labels can be used for natural language-
based customization.
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