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Abstract—We present a model and system for deciding
on computing versus storage trade-offs in the Cloud using
von Neumann-Morgenstern lotteries. We use the decision model
in a video-on-demand system providing cost-efficient transcod-
ing and storage of videos. Video transcoding is an expensive
computational process that converts a video from one format
to another. Video data are large enough to cause concern over
rising storage costs. In the general case, our work is of interest
when dealing with expensive computations that generate large
results that can be cached for future use. Solving the decision
problem entails solving two sub-problems: how long to store
cached objects and how many requests we can expect for a
particular object in that duration. We compare the proposed
approach to always storing and to our previous approach over
one year using discrete-event simulations. We observe a 72 %
cost reduction compared to always storing and a 13 % reduction
compared to our previous approach. This reduction in cost
stems from the proposed approach storing fewer unpopular
objects when it does not regard it as cost-efficient to do so.

Keywords-Cache storage; Decision theory; Markov processes;
Simulation; Transcoding; Utility theory; Web services

I. Introduction
In this paper we present a decision model for caching

expensive computations that produce large amounts of data
in a cloud. This model is applicable to cloud services
that produce vast quantities of data that can be reused in
subsequent requests. As a concrete example, we shall study
its application to a cloud-based video transcoding service.

A video transcoding service converts a digital video from
one format to another. The need for such a service arises
due to the existence of a large number of video compression
techniques as well as packaging formats. On the other hand,
client devices, and especially mobile devices, can decode and
play only a limited number of video formats. If a video is not
supported at the client-side device, it needs to be converted
into one of the supported formats before playing it. This
process is known as video transcoding [1] and it is a CPU-
intensive operation. Transcoded videos need to be stored in
the server while they are being streamed to the client but
they can be deleted from the storage once the streaming
operation is completed. Still, there may be new requests for
a previously transcoded video in the near future. By storing
a transcoded video for an additional amount of time, we
can avoid repeating CPU-intensive transcoding operations,

thereby saving relatively large amounts of money. After this
additional time, we may reevaluate the circumstances and
make a new decision on whether or not to store the video.

In the context of a pay-per-use cloud computing infrastruc-
ture, each transcoding operation has a monetary cost due to
use of CPU resources, while video storage has a cost based
on the amount of data and time to be stored. In order to
reduce the operating costs of the service, we need to decide
when and for how long each transcoded video should be
cached in the storage. A service that stores data that will
not be requested in the future will incur unnecessary storage
costs. On the other hand, a service that discards data too
eagerly is susceptible to incur unnecessary computing costs.

In this paper we study this problem and propose a decision
model for cloud-based caches with the objective to reduce
operating costs. In previous work on video transcoding
we developed a transcoding–storage cost trade-off strategy
called cost and popularity score (CPS) [2], which resulted
in significantly lower operating costs compared to always
storing. This paper improves the decision process by applying
utility theory through von Neumann-Morgenstern lotteries,
which we have previously made use of for cost-efficient,
reliable, utility-based session management in the Cloud [3].

Our utility model for decision making requires three
unknown parameters: the storage duration t, the mean number
of arrivals m(t) over the storage duration and the popularity
distribution pi of cached objects oi in the system. We present
a natural way of obtaining a good value for the storage
duration t, having nice properties that help evaluate the
performance of the decision algorithm. We obtain the number
of arrivals m(t) over the storage duration t by solving a
subproblem consisting of predicting future arrival counts
through singular value decomposition. Finally, we employ
the Simple Good-Turing frequency estimator to estimate the
relative popularity pi of each cacheable object in the system.

We evaluate the decision making approaches through
discrete-event simulations and find that the proposed approach
offers 72 % lower cost compared to always storing all
requested objects. Compared to our previous approach [2],
we see 13 % less cost. This cost reduction stems from the
proposed approach storing fewer unpopular objects when it
determines that doing so would lead to unnecessary costs.



A. Related Work

There are only a few works in the area of computation
and storage trade-off analysis for cost-efficient usage of
cloud resources. One of the earlier attempts is Adams et
al. [4], which addressed the problem of maximizing efficiency
by trading storage for computation. It highlighted some of
the important issues involved in constructing a cost-benefit
model, which can be used to analyze the trade-offs between
computation and storage. However, it did not propose a
strategy to find the proper balance between the two resources.

Deelman et al. [5] studied cost and performance trade-offs
for an astronomy application using Amazon Elastic Compute
Cloud (EC2) 1 and Amazon Simple Storage Service (S3)2 cost
models. It also examined the trade-offs between three different
data management models for cloud storage, namely remote
I/O, regular, and dynamic cleanup. The paper concluded that,
based on the likelihood of reuse, storing popular datasets in
the Cloud can be cost-efficient. However, it did not provide
a concrete strategy for cost-efficient computation and storage
of scientific datasets in an actual, cloud-based environment.

The Nectar system [6] is designed to automate the
management of data and computation in a data center.
It initially stores all the derived datasets when they are
generated. However, when the available disk space falls
below a threshold, all obsolete or least valued datasets are
garbage collected to improve resource utilization. Nectar
makes use of the usage history of datasets to perform cost-
benefit analysis, which determines the usefulness of each
dataset. The cost-benefit analysis considers the size of the
dataset, the elapsed time since it was last used, the number
of times it has been used, and its cumulative computation
time. The datasets with the largest cost-to-benefit ratios are
deleted. Although Nectar provides a computation and storage
trade-off strategy, it is not designed to reduce the total cost
of computation and storage in a cloud-based service which
makes use of infrastructure as a service (IaaS) resources.

Yuan et al. [7] proposed two strategies for cost-efficient
storage of scientific datasets in the Cloud, which compare the
computation cost and the storage cost of the datasets, and a
cost transitive tournament shortest path (CTT-SP) algorithm
to find the best trade-off between the computation and the
storage resources. The strategies are called cost rate based
storage strategy [8], [9] and local-optimization based storage
strategy [10]. The cost rate based storage strategy compares
computation cost rate and storage cost rate to decide storage
status of a dataset. Whereas, the local-optimization based
storage strategy partitions a data dependency graph (DDG)
of datasets into linear segments and applies the CTT-SP
algorithm to achieve a localized optimization. The local-
optimization based storage strategy tends to be more cost-
efficient than the cost rate based storage strategy. However,

1http://aws.amazon.com/ec2/

2http://aws.amazon.com/s3/
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Figure 1. Architecture of the video transcoding service.

due to the overhead introduced by the CTT-SP algorithm,
it is less efficient and less scalable. The DDG-based local-
optimization based storage strategy of Yuan et al. [10], which
provides cost-efficient results for scientific datasets, has little
use in video transcoding, which has few data dependencies.

Jokhio et al. [2], [11] presented a computation and storage
trade-off strategy called CPS. It estimates an equilibrium point
on the time axis where the computation cost and the storage
cost of a transcoded video become equal. It also estimates the
popularity of the individual transcoded videos to differentiate
among videos based on their individual popularity levels.

Kathpal et al. [12] analyzed compute versus storage trade-
off for transcoded videos. It proposed an elimination metric
to decide which transcoded videos can be removed from
the video repository. However, in contrast to the cost and
popularity score based strategy of Jokhio et al. [2], it did not
account for the video popularity score. Moreover, although
the results are also based on Amazon EC2 and Amazon S3,
it used rather short videos, with durations no more than 60 s.

II. A Video On-Demand System

The architecture of the cloud-based, on-demand video
transcoding service is shown in Figure 1. It consists of a
streaming server, a video splitter, a video merger, a video
repository, a dynamically scalable cluster of transcoding
servers, a load balancer, a master controller, and a load
predictor. Video requests and responses flow through the
streaming server. Since our focus in this paper is on
computation and storage trade-off for video transcoding, we
assume that the streaming server will not be a bottleneck.

The video streams are stored in the video repository in
various compressed formats. The streaming server accepts
video requests from users and checks if the required video
is available in the video repository. If it finds the video in
the desired format and resolution, it starts streaming the
video. However, if it finds that the requested video is stored



only in another format or resolution than the one desired by
the user, it sends the video for segmentation and subsequent
transcoding. As soon as it receives the transcoded video from
the video merger, the streaming server begins streaming it.

After each transcoding operation, the computation and
storage trade-off strategy determines if the transcoded video
should be stored in the video repository or not. Moreover, if
a transcoded video is stored, then the trade-off strategy also
determines the duration for which the video should be stored.
Therefore, it allows us to trade computation for storage or
vice versa in order to reduce the total operating costs and to
improve the performance of the video transcoding service.

The video splitter splits the video streams into smaller
segments called jobs, which are placed into the job queue.
Further discussion on video segmentation at the group of
pictures (GOP) level is provided in Jokhio et al. [13], [14].

The load balancer distributes load on the transcod-
ing servers. In other words, it routes and load balances
transcoding jobs on the transcoding servers. It maintains a
configuration list of active transcoding servers. This list is
updated often as a result of dynamic virtual machine (VM)
allocation and deallocation. The load balancer serves the
jobs in FIFO (First In, First Out) order. It implements one
or more job scheduling policies, such as, the shortest queue
length policy, which selects a transcoding server with the
shortest queue length and the shortest queue waiting time
policy, which selects the transcoding server that currently has
the shortest available queue waiting time of all the servers.

The actual transcoding is performed by the transcoding
servers. They get compressed video segments, perform the
required transcoding operations, and return the transcoded
video segments for merging. A transcoding server runs on
a dynamically provisioned VM. Each transcoding server
processes one or more simultaneous jobs. When a transcoding
job arrives at a transcoding server, it is placed in the server’s
queue, from where it subsequently will be processed further.

The master controller acts as the main controller and
resource allocator. It implements prediction-based dynamic
resource allocation and deallocation algorithms [15] and
one or more computation and storage trade-off strategies.
The resource allocation and deallocation is mainly based on
the target play rate of the video streams and the predicted
transcoding rate of the transcoding servers. The master
controller uses the load predictor for load prediction [16].
The video merger merges the transcoded jobs into video
streams, which form video responses. Our resource allocation
and load prediction algorithms are described in detail in
Jokhio et al. [15] and Ashraf et al. [16]. In this paper, we
focus on a cost-efficient computation and storage trade-off.

III. UtilityModel for Computing Versus Storing

In this section we present the utility model that will be used
to govern the caching strategy of the service. We proceed by
introducing the basics of von Neumann-Morgenstern lotteries.

A. Von Neumann-Morgenstern Lotteries

A von Neumann-Morgenstern lottery [17] consists of
mutually exclusive outcomes that may occur with a given
probability. The sum of probabilities in a lottery should be
equal to one. For example, the simple lottery L described by

L = 0.20A + 0.80B, (1)

denotes a scenario where the probability of event A, P(A) =

0.20, the probability of event B, P(B) = 0.80, and exactly
one of the possible outcomes will occur. In general, a lottery
L with n outcomes Ai and probabilities pi is expressed as:

L =

n∑
i=1

pi Ai

subject to
n∑
i=1

pi = 1.

(2)

According to the von Neumann-Morgenstern utility the-
orem [17], an agent faced with the problem of choosing
between a set of lotteries has a utility function, provided
that the four axioms of the theorem are satisfied. The four
axioms of the utility theorem on lotteries L, M and N are:
• completeness (L or M is preferred, or they are equal)

L � M ∨ M � L
• transitivity (consistent preference across 3 operations)

(L � M ∧ M � N ) → L � N
• continuity (transitive preference is continuous)

(L � M ∧ M � N ) → ∃p ∈ [0, 1]pL + (1 − p)N = M
• independence (independence of irrelevant alternatives)

L ≺ M → ∀N∀p ∈ (0, 1]pL+(1−p)N ≺ pM+(1−p)N .
If an agent satisfies these axioms, it has a utility function u,
assigning a real value u(A) to every possible outcome A, so
that for any two lotteries L and M, Eu(L) is the expected
value of u in L, Eu(M) is the expected value of u in M and

L ≺ M ↔ Eu(L) < Eu(M). (3)

By using the utility function we can determine which lotteries
to play. In this paper we will model the choice between
computing and storing as von Neumann-Morgenstern lotteries.
Choosing among lotteries, we can make the best decisions.

There are, however, some limitations to von Neumann-
Morgenstern utility. Von Neumann and Morgenstern [17]
acknowledged that nested gambling is ignored. An example
of nested gambling with lotteries L and M would be pL+(1−
p)M , which gets treated as a lottery itself. Another limitation
is that utilities cannot be compared between agents X and
Y with different utility functions uX and uY . Expressions
like uX (L) + uY (L) are undefined. As we use neither nested
gambling nor multiple agents, these limitations do not affect
us. We may design a utility function that incorporates risk
aversion or diminishing returns, which could be beneficial in
an environment with a relatively high degree of uncertainty.



We assume that we can model requests arriving to the
system as an inhomogeneous Poisson process N (t) with rate
λ(t), where N (t) is the number of arrivals by time t. The
mean number of arrivals m(t) by time t is obtained through

m(t) =

∫ t

0
λ(u) du. (4)

N (t) has a Poisson distribution with mean parameter m(t):

P(N (t) = k) =
m(t)k

k!
e−m(t ) . (5)

Using Poisson splitting, we can model the requests arriving
for each video as independent Poisson processes Ni (t) with
mean number of arrivals pim(t), where pi is the relative
frequency of requests for video i. Each process Ni (t) then
has a Poisson distribution with parameter pim(t), defined as

P(Ni (t) = k) =
(pim(t))k

k!
e−pim(t ) . (6)

Requests may arrive to the system at any time. Whenever
a video is requested, we check if a cached copy is available.
If a cached copy is available, we serve the request from the
cache at no extra cost. If there is no cached copy available,
we need to transcode the corresponding source video into the
correct format, this will incur a fixed cost ct of transcoding.
After the video has been transcoded, we have the option of
storing the result in the cache for duration t at cost cst, after
which we can continue storing it for a new duration t at
cost cst. Alternatively, we may delete it at no further cost.

If we decide to cache a transcoded video for duration t
it will always cost cst, regardless of whether any further
requests arrive for the video or not. If we decide not to cache
the transcoded video, one of two possible outcomes will
occur: either further requests for that video arrive, say ni ≥ 1
requests, at which point we will have to transcode the source
video again at cost nict , or no further requests arrive, costing
us nothing. Thus, we may consider the following outcomes:

A: Delete, no requests arrive
B: Delete, requests arrive
C: Store, no requests arrive
D: Store, requests arrive.

Using (6), we can compute the probability of 0 arrivals,
P(Ni (t) = 0) = e−pim(t ) . Conversely, the probability of
more than 0 arrivals is 1 − P(Ni (t) = 0) = 1 − e−pim(t ) .
Assuming that ni is approximately equal to to the mean
of the corresponding zero-truncated Poisson process ni ≈

pim(t )
1−e−pim (t ) , we obtain the following utilities for each possible
outcome:

u(A) = 0
u(B) = −Ct i

pim(t )
1−e−pim (t )

u(C) = −Cs i t
u(D) = −Cs i t.

We can then formulate the alternatives as von Neumann-
Morgenstern lotteries, Ld for deleting and Ls for storing:

Ld = P(Ni (t) = 0) A + (1 − P(Ni (t) = 0))B (7)
Ls = P(Ni (t) = 0)C + (1 − P(Ni (t) = 0))D. (8)

The two lotteries then have the following expected utilities:

Eu(Ld ) = −pim(t)Ct i (9)
Eu(Ls ) = −Cs i t. (10)

Always choosing the lottery with the highest expected utility
should give us the best result in the long run. However, if
we are to compute the expected utility of each lottery, we
need actual values for m(t) as well as pi , none of which
are directly observable. In Sections IV and V we present
possible methods for estimating these parameters. It would
also be possible to use other estimators for specific problems.

B. Determining the Duration for Caching

To decide whether to cache the results of a computation,
we first need to determine when to make this decision. If
we decide not to store a transcoded video, we naturally
cannot make further decisions for that video until it has been
transcoded again, as the data are discarded. If we decide to
store a transcoded video, we also need to determine how
long to store it. Storing indefinitely is not viable. Jokhio et
al. [2], [11] determined that there is an equilibrium point τ,
where the cost of storing over time Cs becomes equal to the
cost of transcoding Ct . Figure 2 illustrates how storage cost
and transcoding cost are related. For example, if the cost
of transcoding a given video vi is Ct i = $1 and the cost of
storing that video is Cs i = $0.5 d−1, storing for $1

$0.5 d−1 = 2 d
results in the same cost as transcoding once: Ct i = τCs i = Ci .
This means that if we store a video vi for duration τ and get
at least one request for it, say ni requests, we will break even
or even save money compared to transcoding it ni times, as
Ci ≤ niCi , ni ≥ 1. Setting t = τ in (9) results in a simplified
expression, in which the costs have now been made equal:

Eu(Ld ) = −pim(τ)Ci (11)
Eu(Ls ) = −Ci . (12)

Thus, we can conclude that we should decide to store when

pim(τ) ≥ 1. (13)

IV. Arrival Rate Prediction

Obtaining m(τ) in (13) requires knowledge of the future
arrival rate up to time τ. We have decided to use a time-
series prediction approach based on truncated singular value
decomposition, as outlined by Shen and Huang [18], which
presented methods for predicting arrivals to a call center.
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A. Truncated Singular Value Decomposition

Let X be an n×m matrix recording the number of requests
for n days, each day having m time periods. The rows of
this matrix constitute a vector-valued time series in Rm .
We wish to build a time-series model and forecast future
values. The dimensionality of this time series is large. We can
significantly reduce the dimensionality with a decomposition

xi = βi1 f 1 + · · · + βi K f K + εi , i = 1, . . . , n, (14)

where f 1, . . . , f K ∈ Rm are basis vectors, ε1, . . . ,εn ∈ Rm

are the corresponding error terms, and βi k ∈ R are scalars.
The singular value decomposition (SVD) of X is given by

X = USVᵀ (15)

and gives the solution for minimizing the error terms in (14):

xi ' s1ui1v1 + · · · + sKui K vK , (16)

where s1, . . . , sK are the K largest singular values from the
diagonal of S, ui1, . . . , ui K , i = 1, . . . , n are the entries of
column i in U and v1, . . . , vK are the corresponding columns
of V . We can now forecast each series

{
βi k

}
separately,

which we do by extrapolating from linear regression. We can
then predict the number of arrivals in future days accordingly:

x̂n+h = β̂n+h, 1 f 1 + · · · + β̂n+h, K f K . (17)

However, to keep predictions non-negative, we employ the
root-unroot method of Brown et al. [19]: we transform X to√
X + 1

4 before the SVD and adjust the prediction by x̂2 − 1
4 .

SVD generally requires O
(
m2n + n3

)
operations on an

m × n real matrix. However, as we only want the K most
important singular values, we can use efficient algorithms
for truncated singular value decomposition. We therefore use
the implicitly restarted Lanczos bidiagonalization method
of Baglama and Reichel [20], implemented in the irlbpy
library [21]. In practice, this method requires as little as
O (mnK ) operations [21], scaling linearly with size of data.

V. Frequency Estimation

Suppose there are five kinds of videos: {A,B,C,D, E}.
You observe the number of times each video is requested
and find 2 requests for A, 2 requests for B, 3 requests for
C and 1 request for D. A naïve frequency estimator, like
the maximum likelihood frequency estimator, will assign
a probability pi of .25 to A, .25 to B, .375 to C and
.125 to D. Notice that no requests for E were observed,
resulting in the maximum likelihood frequency estimator
assigning a probability of 0 for requests to the video. However,
this must be false, because we know that it is possible to
request the video. Video E should therefore have a probability
greater than zero. The maximum likelihood estimator does
not account for any missing samples. This is the reason why
it tends to underestimate rare videos and why the maximum
likelihood frequency estimator may not be the best option.

A. The Good-Turing Frequency Estimator

Since we are most concerned about low expected numbers
of requests, we are dealing with rare events of which we
might not have made any observations. Similarly, when
new videos are made available, we will again be dealing
with a lack of information. This is why we propose to use
the Simple Good-Turing frequency estimator [22], which
accounts for unobserved events. The estimator tends to
underestimate frequent items, but this can be mitigated by
using the empirical estimate for them [23]. As we are really
only interested in infrequent items where pim(t) ≈ 1, it is
not necessary for our particular case. For the five videos, the
Simple Good-Turing frequency estimator assigns a probability
of .22 to A, .22 to B, .285 to C, .15 to D, and .125 to E.

The Good-Turing frequency estimators assume that the
observed items follow a binomial distribution [22], but we
assume that they follow a Poisson distribution. However, this
is not a problem in our case, as the binomial distribution
converges to the Poisson distribution as np = λ, n →
∞, p → 0. With a large number of observable items, the
probabilities will be small for infrequent items. The Good-
Turing frequency estimators also assume that the underlying
frequency distribution is static. We postulate that we can
relax this assumption by using a sliding window. We only
need to ensure that the window is large enough, compared to
the mean number of arrivals m(t), to give a suitable number
of observations n within the duration of the time window.

VI. Evaluation Using Discrete-Event Simulations

We used SimPy3 to develop a discrete-event simulation of a
video transcoding service. We chose to compare the proposed,
utility-based approach with the previously developed CPS
policy and a reference policy based on always opting to store.

3http://simpy.readthedocs.org/



A. Setting up the Experiment

We simulated a video transcoding service with 10 000
videos over one year. Video sizes were randomly assigned
according to a double Pareto-lognormal distribution [24]
with parameters α = 2,β = 4,µ = 0,σ = 1 scaled by a
factor of 256 MiB. The probability of a request to the system
belonging to a particular video is given by a truncated Pareto
distribution with parameters xm = 1,α = 2. Transcoding
cost $1.7 × 10−5 s−1, the cost of a medium instance in
Amazon EC2. Transcoding rate was 2.4 MiB s−1. Storage
cost $3.6 × 10−11 MiB−1 s−1, as in Amazon S3. Thus, the
time to store each video was a constant, calculated through

τ =
$1.7 × 10−5 s−1

2.4 MiB s−1 × $3.6 × 10−11 MiB−1 s−1 = 55 h. (18)

The arrival process was a randomly generated inhomoge-
neous Poisson process. We constructed the arrival process by
thinning a homogeneous Poisson process with rate λ = 20 s−1

using a Bernoulli trial with a time-dependent probability p(t).
We generated the probability vector by dividing the simulation
duration into a random number X of parts according to a
Poisson distribution with mean µ = 26. We then generated
an exponentially distributed duration with mean ω =

ttotal
X

for each interval. With this information we finally generated
a linear spline with random coefficients, assuming values
between 0 and 1. Figure 3 shows the resulting mean rate.

We sought to compare the proposed, utility-based approach
with the established CPS approach. We also included the
always store policy and a version of the utility-based approach
with perfect knowledge of the mean number of arrivals m(t)
and popularity pi in the benchmarks, acting as references.
To enable direct comparison of the approaches by classifying
each decision as good, bad or neutral, we used a minimum
storage duration of SDτi = 55 h for the CPS approach.
This resulted in marginally higher cost for this approach,
compared to when using a minimum duration of 24 h, but
this increase was not significant enough to alter the outcome
of the experiments. The reference policy always chose storing.

For the utility-based approach, the rate predictor used a
sliding past window of 7 d. The popularity estimator also used
a sliding window of 7 d. Because the system cannot make
good predictions before historical data have been collected,
all requested videos were always stored during the first 7 d.
Samples of request counts were collected every hour: ts = 1 h.

B. Results

Figure 3 also shows the predicted arrival rate obtained
through truncated singular value decomposition. The pre-
diction accuracy appears good considering the simplicity
of the used approach. The total operating cost over time is
shown in Figure 4. Always storing cost $605, CPS cost $196
and the utility-based approach cost $171 ($164 with perfect
information). The utility-based approach clearly operates at
a lower cost than the other approaches. Compared to always
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storing, the utility based approach operated at 1− $171
$605 = 72 %

less cost. Compared to the CPS approach, the utility based
approach operated at 1 − $171

$196 = 13 % less cost. With
perfect information, the utility-based approach operated at
1 − $164

$171 = 4 % less cost than the actual implementation.
This is a small difference, indicating that the proposed
implementation performed close to its theoretical optimum.
The reason why the proposed approach fares better than the
previously developed approach can be seen by classifying
each decision as good, bad or neutral, as shown in Figure 5.

C. Analysis

The utility-based approach operates at less cost than the
CPS approach because it did fewer bad decisions, as seen
in Figures 5a and 5b. A bad decision is either a bad decision
to store or a bad decision to delete. A bad decision to store
means that no requests arrived for the video in question during
duration τ, meaning that it cost us Ci when it could have
cost us $0 if we had chosen the other alternative. Conversely,
a bad decision to delete means that more than one request
arrived for the video in duration τ, which cost us more than
storing at cost Ci would have done. When only one request
arrives in duration τ, it does not matter whether we store or
delete, as storing for duration τ costs the same as transcoding
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Figure 4. Cost of operation for the approaches over one year.
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(a) Decisions by the CPS approach.
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(b) Decisions by the utility-based approach.
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(c) Deletes by the CPS approach.
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(d) Deletes by the utility-based approach.
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(e) Stores by the CPS approach.
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(f) Stores by the utility-based approach.

Figure 5. Classification of decisions made by the two actual approaches as good, bad or neutral.



Table I
Bad, neutral and good operations per approach

Operation Approach Bad Neutral Good
Delete CPS 4 % 16 % 80 %

Utility 14 % 22 % 64 %
Store CPS 28 % 15 % 57 %

Utility 10 % 11 % 79 %
All CPS 25 % 15 % 60 %

Utility 11 % 15 % 74 %

once: Ci . These decisions are thus neutral. Table I shows
the proportion of bad, neutral, and good delete and store
operations for each approach. CPS made 44 973 decisions,
comprising 7172 deletes and 37 801 stores. The utility-based
approach made 38 894 decisions, comprising 13 214 deletes
and 25 680 stores. While the utility-based approach did
slightly more erroneous deletes than the CPS approach, it
still did far fewer erroneous stores. CPS deletes too rarely.

VII. Conclusions

We presented a utility-based decision strategy for caching
expensive computations in a cloud-computing setting. We
exemplified our approach with a video transcoding service,
but we believe that a similar approach can be used in other
services that transcode, uncompress or index large amounts
of data based on user requests. Our model requires three
unknown parameters: the storage duration t, the mean number
of arrivals m(t) over the storage duration and the popularity
distribution pi of objects to store in the cache oi . We
presented a formally justified way of obtaining a good value
for the storage duration t, having good properties that helped
evaluate the performance of the decision algorithm. We
obtained the mean number of arrivals m(t) over the storage
duration t by solving a subproblem consisting of predicting
future arrival counts through singular value decomposition.
Finally, we used the Simple Good-Turing frequency estimator
to estimate the relative popularity pi of each available video.

We evaluated our approach using discrete-event simula-
tions. The utility-based approach incurred 72 % less cost than
always storing and 13 % less cost than the CPS approach [2]
over one simulated year. Prediction accuracy was high, as
evidenced by only obtaining 4 % less cost when using perfect
information. This made the utility-based approach better. We
only evaluated the system with a static popularity distribution,
but have accounted for non-static distributions by using a
sliding window for popularity estimation. Determining the
sizes of the sliding windows used by the arrival rate predictor
and popularity estimator is a domain-specific problem which
we have only touched upon lightly. Given a good estimator for
non-static popularity distributions, the utility-based approach
should work well. We have assumed independent arrivals,
which is not always true of a real-world service. However,
our approach can also be evaluated against actual load traces.
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