
Cost-Efficient, Reliable, Utility-Based Session
Management in the Cloud

Benjamin Byholm
Åbo Akademi University, Dept. of Information Technologies

Turku, Finland
Email: benjamin.byholm@abo.fi

Iván Porres
Åbo Akademi University, Dept. of Information Technologies

Turku, Finland
Email: ivan.porres@abo.fi

Abstract

We present a model and system for cost-efficient and reliable management

of sessions in a Cloud, based on the von Neumann-Morgenstern utility theorem.

Our model enables a web application provider to maximize profit while

maintaining a desired quality of service. The objective is to determine whether,

when, where, and how long to store a session, given multiple storage options

with various properties, e.g. cost, capacity, and reliability. Reliability is affected

by three factors: how often session state is stored, how many stores are used, and

how reliable those stores are. To account for these factors, we use a Markovian

reliability model and treat the valid storage options for each session as a

von Neumann-Morgenstern lottery. We proceed by representing the resulting

problem as a knapsack problem, which can be heuristically solved for a good

compromise between efficiency and effectiveness. We analyze the results from

a discrete-event simulation involving multiple session management policies,

including two utility-based policies: a greedy heuristic policy intended to give

real-time performance and a reference policy based on solving the linear

programming relaxation of the knapsack problem, giving a theoretical upper

bound on achievable utility. As the focus of this work is exploratory, rather than

performance-based, we do not directly measure the time required for solving

the model. Instead, we give the computational complexity of the algorithms.

Our results indicate that otherwise unprofitable services become profitable

through utility-based session management in a cloud setting. However, if the

costs are much lower than the expected revenues, all policies manage to turn

a profit. Different policies performed the best under different circumstances.

Keywords

Analytical models; Distributed Systems; Markov processes; Reliability,

availability, and serviceability; Simulation; Utility theory; Web-based services

1. Introduction

Session state is a form of soft state that expires after a
certain time interval has passed since the last request in a
given session [1]. Session state is especially important in
interactive web applications that provide a rich user experience.
Web applications can store session information in different
storage systems, e.g. local memory, a flat file system, a
distributed cache, or a database. Each session store has different
characteristics, e.g. available capacity, durability, and reliability.
In the context of a commercial digital service, successful
handling of a session can lead to some revenue for the service
provider. However, in the context of cloud computing, where
the application provider pays for computing resources per use,
each session store also has a different cost per transaction,
reducing the expected profit. The question that we face in
this article is: How can an application provider maximize the
expected profit by minimizing session costs?

At any given moment, a session management system may
decide to store a session in one or more storage subsystems,
or it can decide to delete a session. These decisions will
affect the reliability, revenue, and costs of the whole web
application. They must account for hardware constraints, such
as how many sessions fit in a store, e.g. local memory, or how
many sessions we can write to a slow store, e.g. a database,
in a particular time interval. Given any number of sessions
with different expected revenues and resource requirements,
e.g. size, a session management system should determine an
efficient allocation of sessions to stores, meeting the reliability
requirements while maximizing profit. For example, at any
given moment, the system should decide which sessions to
keep in volatile, but fast, random-access memory (RAM) on
the application server, which sessions to keep in a reliable, but
slower, remote store and which to drop entirely. We consider
that there is a finite amount of RAM available, operations
cost money and the expected revenues differ between sessions.
A cost-efficient solution to this problem makes previously
unprofitable services profitable and increases profit in others.

In this paper, we develop a general utility model to solve this
problem that takes reliability into account and works in other
contexts than e-commerce. We achieve this by constructing
a utility function, obeying the axioms of the von Neumann-
Morgenstern utility theorem [2]. The utility theorem allows
us to create a risk-aware agent, capable of maximizing the
expected utility of the whole system. For the sake of clarity,
we only present the most basic and general version of the
model, which can easily be tailored to suit implementation-
specific needs. We combine this utility model with a Markovian
reliability model for multiple session stores, giving the risk of
data loss for a session.

Based on our model, we propose a system for utility-based
session management and compare 9 different session manage-
ment policies and variants through discrete-event simulations
and analyze the results from 6 different scenarios. Our results
show that utility-based session management increases cost-
efficiency, but if the ratio between expected revenue and cost of
sessions is too high, the difference will be negligible. However,
with a low ratio of expected revenue to cost, such as an
advertisement-funded or freemium web application, utility-
based session management means the difference between the
application provider operating at a net loss or profit.

2. Background and Related Work

Session state is where an application maintains a user’s
workflow. If this state is lost, the user will perceive an
application failure, so session state has to be reliably stored
with high performance. Although the most efficient way to
store sessions from a performance point of view is to keep
them locally in memory at the application servers [1], this
alone is not reliable and does not scale well, as it requires
session affinity, where users are pinned to a specific application
server. Session affinity violates the principle of separation of
concerns, as application servers become responsible not only
for application logic, but also for storing session state [1].
Session affinity also complicates load balancing, as different
classes of requests may have different resource requirements
and service times, but the load can only be balanced at the
session level and not at the request level.

2.1. Session State Management

Several works [1], [3], [4] have studied the problem of session
state management. According to Ling et al. [1], retrieval of
session state should be reliable and fast [1]. However, due to
its transient nature, session state does not require full atomicity,
consistency, isolation, and durability (ACID) semantics [1].
Moreover, if session state is not shared among users and
is accessed in a serial fashion, there is no need for explicit
synchronization or locking [1]. Ling et al. [1] presented SSM, a
reliable session state manager, making use of soft state through
basically available, soft state with eventual consistency (BASE)
semantics. SSM modeled the reliability of identical session
stores as a Poisson process causing servers to fail and restart
randomly. A session would only be lost if all copies of it were
lost between two write cycles. Thus, system reliability was
dependent on write frequency and the number of stores used.

Fox et al. [3] proposed a layered architecture for cluster-based
scalable network services based on soft state and argued that
many network services can trade consistency for availability by
making use of BASE semantics, which are weaker than ACID.
Any data semantics that are not ACID are BASE [3].

Goldberg [4] compared two approaches for state management
in distributed systems: Leases, first introduced by Gray and
Cheriton [5], and soft state, first introduced by Clark [6].
According to Goldberg [4], leases reduce the number of
maintenance messages necessary to keep a system consistent,
a limiting factor when scaling to more hosts and services. But,
leases are more suited to highly heterogeneous services that
join and leave the network often [4]. Soft state offers simplified
maintenance, a high degree of fault tolerance and works well
with BASE semantics. BASE semantics are a perfect match
for the relaxed consistency offered by soft state [4].

However, soft state, in using BASE semantics, is not free of
drawbacks. For example, the level of consistency, and thereby
reliability, in the system is determined by the frequency of the
update messages [4]. A higher frequency of update messages
will lead to increased costs and overhead. Increased overhead

means greater delay. Any delay when retrieving session state
will increase the service time for all requests, as processing
of a request cannot proceed without the required session state.
Based on these observations, we decided to base our model
on soft state coupled with a reliability model, similarly to
Ling et al. [1]. But, because we are interested in non-identical
session stores, we require a reliability model different from that
of SSM [1]. Having chosen soft state as a way of managing
session state, the remainder of the problem consists of choosing
where to store different sessions in a cost-efficient way.

2.2. Knapsack Problems

The knapsack problems are a family of NP-hard combina-
torial optimization problems. NP-hard problems are at least
as hard as the hardest problems in NP [7]. From a practical
point of view, for our knapsack problem, this means that exact
solutions are extremely computationally expensive, even when
the problem entails as few as 100 sessions. In the knapsack
problem, we are given a set of n items with associated profits p
and resource requirements r, the objective is to pick some of
the items x so that the aggregate profit is maximized, while
not exceeding the capacity R of the knapsack. The most basic
form of the knapsack problem is the 0–1 knapsack problem,
which can be formalized as:

maximize
n
∑

i=1

pixi

subject to
n
∑

i=1

rixi ≤ R

xi ∈ {0, 1}

(1)

The 0–1 knapsack can be extended to multiple resources in a
variant known as the multiple-choice multi-dimension knapsack
problem (MMKP) [8], shown in (2). In this problem there are
n groups and group i has li items. The objective here is to pick
exactly one item from each group to maximize profit subject
to the knapsack’s m resource constraints rijkxij ≤ Rk.

maximize
n
∑

i=1

li
∑

j=1

pijxij

subject to
n
∑

i=1

li
∑

j=1

rijkxij ≤ Rk

li
∑

j=1

xij = 1

xij ∈ {0, 1}

k = 1, . . . ,m

(2)

2.3. Knapsack Problems in Session Management

Solving large knapsack problems like the MMKP optimally
is computationally expensive. To obtain near-optimal solutions

to the MMKP in real-time, Khan designed an efficient heuristic
called HEU [8]. The heuristic solution to the MMKP, combined
with the concept of utility, solved the problem of resource
management within multisession adaptive multimedia systems
and Khan presented a model [8] based on these concepts.

Many later works [9], [10], [11], [12], [13] extend and
improve HEU. The convex hull heuristic C-HEU [9], solves
the MMKP in O (nlm+ nl log l + nl log n) time, where n
corresponds to the number of sessions, m is the number of
dimensions and l is the number of items in a group. The iterative
refinement I-C-HEU [10], promises a solution to the MMKP
in O ((x+ p)nlm+ (x+ p)nl log l + nl log(x+ p) n) worst
case time with an estimated 90 % accuracy, where p is
the batch size and x is the previous solution. In real
use with a fixed batch size, this appears to amount to
near constant time [10]. Ykman-Couvreur et al. [12] pre-
sented the IMEC method, a faster heuristic with complex-
ity O (m+ 2nl + nl log(nl)). Shojaei et al. [13] showed a
parametrized compositional heuristic for the MMKP with
worst case complexity O

(

nmax(lmax log lmax, α
4)
)

, where the
parameter α corresponds to the maximum number of Pareto-
optimal configurations considered per session and time step.
The heuristic is intended for small n, scheduling applications
on an embedded system. However, it does scale to larger values
of n, but the IMEC method [12] provides better optimality at
equal running time [13]. Projecting the resources into one di-
mension leads to poor results in larger problem instances. Thus,
Pareto points are computed in multi-dimensional space [13].

There are also approaches not based on HEU. For example,
Bateni and Hajiaghayi [14] studied the facility location problem,
which would be appropriate if routing costs between servers
should be accounted for. Cohen and Katzir [15] investigated the
generalized maximum coverage problem (GMCP), an extension
of the budgeted maximum coverage problem (BMCP), where
there is a global budget which cannot be exceeded. If individual
resource constraints on the agents are not necessary, e.g. by
regarding resources as unlimited, the session management
problem can be modeled in this way.

2.4. Von Neumann-Morgenstern Lotteries

A von Neumann-Morgenstern lottery [2] consists of mutually
exclusive outcomes that may occur with a given probability.
The sum of probabilities in a lottery should be equal to one.
For example,

L = 0.20A+ 0.80B (3)

denotes a scenario where the probability of event A is P (A) =
0.20, the probability of event B is P (B) = 0.80 and exactly
one of the possible outcomes will occur. The general case of
a lottery L with n outcomes Ai and probabilities pi can be
expressed as:

L =

n
∑

i=1

piAi

subject to
n
∑

i=1

pi = 1

(4)

According to the von Neumann-Morgenstern utility theo-
rem [2], an agent faced with the problem of choosing between
a set of lotteries has a utility function, provided that the four
axioms of the theorem are satisfied. The four axioms of the
utility theorem on lotteries L, M and N are:

• completeness (L or M is preferred, or they are equal)
L �M ∨M � L

• transitivity (consistent preference across 3 operations)
(L �M ∧M � N)→ L � N

• continuity (transitive preference is continuous)
(L �M ∧M � N)→ ∃p ∈ [0, 1]pL+ (1− p)N = M

• independence (independence of irrelevant alternatives)
L ≺M → ∀N∀p ∈ (0, 1]pL+(1−p)N ≺ pM+(1−p)N

If an agent satisfies these axioms, it has a utility function u,
assigning a real value u(A) to every possible outcome A, so
that for any two lotteries L and M , Eu(L) is the expected
value of u in L, and

L ≺M ↔ Eu(L) < Eu(M) (5)

By using the utility function we can determine which lotteries
to play. In this paper we will model the alternatives for handling
a session as von Neumann-Morgenstern lotteries. By choosing
among lotteries, we can determine an allocation of sessions to
stores that maximizes the aggregate system utility.

There are, however, some limitations to von Neumann-
Morgenstern utility. Von Neumann and Morgenstern [2]
acknowledged that nested gambling is ignored. An exam-
ple of nested gambling with lotteries L and M would be
pL+ (1− p)M , which gets treated as a lottery itself. Another
limitation is that utilities cannot be compared between agents X
and Y with different utility functions uX and uY . Expressions
like uX(L) + uY (L) are undefined. As we use neither nested
gambling nor multiple agents, these limitations do not affect
us. We may design a utility function that incorporates risk
aversion or diminishing returns, which could be beneficial in a
session management system focusing on reliability.

2.5. Utility in Session Management

The concept of utility provides a way of accounting for
preferences over a set of goods or offers. Poggi et al. [16]
used machine-learning techniques to develop a model of Web
user behavior. The model provides a utility-based allocation of
system resources, using the expected revenue of a session in an
e-commerce application. Expected revenue is the probability
that a session will end in a purchase, multiplied by the value
of the goods in question. Expected revenue works as a way of
prioritizing sessions: if the expected revenue is low enough, a
session receives no service, e.g. when a robot tries to access a
website under high load.

In addition to HEU, Khan also developed a utility model [8]
for the problem of resource management within multisession
adaptive multimedia systems [8]. In this problem, each session
provides a quality profile, describing user preferences for
different operating qualities. Operating qualities are mapped to

resource requirements by a quality-resource mapping and to a
session utility through a quality-utility mapping [8]. Modifying
Khan’s model to better suit our problem allows us to construct
a utility model for session management in a cloud setting.

Khan’s utility model [8] is also a source of derivative works.
Yu [17] applied multicommodity flow to Khan’s utility model
in replacement of the MMKP, as the resulting problem can be
solved more easily. We have yet to attempt this method. Akbar et
al. [18] extended Khan’s utility model [8] to distributed systems
and formulated the underlying problem as the multiple-choice
multi-dimensional multiple knapsack problem (MMMKP) [11],
an extension of MMKP to multiple knapsacks, but the context
was still multimedia systems.

3. Session Management System

A session management system is responsible for retrieving
and storing session state, as well as admission control. In a
web application, the session management system lies in the
critical path of requests and needs to reliably perform its tasks
in near real-time without substantial overhead. In the world of
Enterprise Java, session management is provided by a servlet
container, which provides the run-time environment for Web
components, including life cycle management, concurrency,
and sessions. We have designed a profitable, reliable session
management system for web applications with access to
multiple session stores in a cloud setting.

The design of the session management system envisioned
in this paper can be seen in Figure 1, which presents the
system architecture. A session is requested through a hypertext
transfer protocol (HTTP) request to a web application running
on an application server. The application server has a session
manager and a local memory-based cache of a finite capacity,
the local store. The session manager can store session state in
the local store, as well as retrieve it, unless the session has
been evicted from the cache or the application server has failed
and everything in the local store has been lost. Sessions may be
evicted from a store either due to the session manager explicitly
removing them, or implicitly through a flushing policy, e.g.
least recently used (LRU), if the store has become overfull.
In addition to the local store, the session manager also has
access to other services providing session storage. These remote
stores may have their own capacity restrictions and reliability
guarantees. They usually have higher latencies.

The session manager continuously executes a time-based
sampling loop. At each iteration of the loop, the sessions are
redistributed according to one or more optimization criteria.
If the number of sessions is large, it may not be feasible to
optimize them all at once. In this case, optimization should
be done incrementally in smaller batches, which will trade
efficiency for effectiveness. Providing an effective and efficient
way of storing sessions with minimal overhead is the goal of
the proposed system. The session manager tries to achieve this
goal by keeping track of sessions in the system and determining
where to store them, according to a given session allocation
policy. Some allocation policies may choose to drop previously

Server

Session Manager

Local Store

Session

Remote Store 1

Remote Store N

HTTP

Fig. 1. A session manager runs on an application server

with a local store and decides how to handle a session.

admitted sessions. New sessions arrive to the session manager
as HTTP requests. For new sessions, the session manager acts
as a utility-based admission controller.

Utility-based admission control [16] uses the notion of
utility to determine whether to admit a session or not. The
system should only allow new sessions that satisfy two criteria:
sufficient resources are available and the system utility will
increase by admitting the session [8]. A new session should be
rejected if either criterion remains unfulfilled. Khan’s utility
model [8] provides implicit admission control satisfying these
requirements. Applying Khan’s utility model to management
of session state will lead to session-based admission control.
Session-based admission control gives a better user experience
than request-based admission control [19]. Moreover, when
there are insufficient resources, taking into account the elastic
nature of the cloud, it is possible to queue sessions until
sufficient resources are available [19].

4. Utility Model for Session Management

Our utility model should account for the reliability of the
session stores as well as for costs related to storing sessions.

There are three monetary costs directly related to maintaining
session state: the read and write costs, cr and cw, which can
consist of a transaction cost as well as a size-dependent cost,
which might account for bandwidth consumed in the data
transfer, and a store cost cs dependent on the size of the stored
data over time. For example, a slightly simplified version of the
current prices at Amazon S31 gives a read cost cr = $4×10−7,
a write cost cw = $5×10−6, and a store cost cs = $3×10−17

per byte per second. In addition to the strictly monetary costs,
a session may also consume arbitrary system resources.

This paper mainly considers two stores, since Ling et al. [1]
found two to three stores of greatest practical use. If the number
of session stores n = 2, and each has one type of resource,
e.g. memory, the number of resource types in the MMKP will
be 2, ma and mb, memory from store a and b. The number
of choices will be 2n = 22 = 4: store at neither, store at a,

1. http://aws.amazon.com/s3/

TABLE 1. Resource usage with two stores, a and b

a

b
0 1

0 0ma + 0mb = 0 1ma + 0mb = ma

1 0ma + 1mb = mb 1ma + 1mb = ma +mb

store at b, store at both. The resource consumption of the
corresponding choices is given in Table 1.

For each session, we have a set of lotteries corresponding
to the ways of handling the session. In the case of 2 storage
levels, we have 4 lotteries: L0 dropping the session, L1 keeping
the session in memory on the application server, L2 persisting
the session in the reliable store or L3 keeping the session in
memory while also persisting it in the reliable store. Each
lottery Li also has a utility function ui. Due to assignment
restrictions, all lotteries may not be playable at all times. The
agent must always choose a playable lottery.

Let us consider the reliable store ideal for now, having a
failure rate of 0, and the application server having a failure
rate µ. The relationship between mean time to failure (MTTF)
and availability can be modeled as follows: Given a MTTF
of 1

µi
, store failure can be modeled as a Poisson process F (t)

with rate µi. Similarly, writes for a user’s data can be modeled
as a Poisson process with rate λ. This rate affects the session
expiration time, which will be 1

λ
. A session needs to exist for

a time interval τ , the predefined expiration time. Thus, the
write rate λ has to be at least high enough to satisfy 1

λ
≤ τ .

We will now show how to construct a utility function. To ease
understanding for the reader, we only present a simple, risk-
neutral variant in this section. In practice, the reliable store
may not be ideal and there will be overhead costs.

If we drop the session, we will almost never profit, more
formally expressed as

Drop : u0(si) = 0 (6)

If we decide to keep the session without persisting, we will
gain v(si) revenue with probability P (F (t) = 0) of the session
not being lost, so

Local : u1(si) = v(si)P (F (t) = 0) (7)

If we decide to persist the session and remove it from local
memory, we will gain v(si) revenue at cost λts(cr + cw) of
reading and writing the session and cost cstss(si) of storing
the session for ts seconds, the sampling interval. This choice
amounts to

Remote : u2(si) = v(si)− λts(cr + cw)− cstss(si) (8)

Finally, when storing in both locations, we will gain v(si)
revenue at cost λts(cw + P (F (t) > 0)cr) of reading and
writing to the session and cost cstss(si) of storing it for the
sample interval ts, where P (F (t) > 0) is the probability of
the local store failing, giving

Both : u3(si) = v(si)−λts(cw+P (F (t) > 0)cr)−cstss(si)
(9)

The equations for three storage levels can be derived in a
similar fashion.

4.1. Optimizing System Utility

An important task for the session management system, as
presented in this article, is to maximize the system utility. At
any given time, the system utility is defined as the sum of the
utility of all the sessions in the system.

Initially, the session management problem resembles the
maximum generalized assignment problem (GAP), an APX-
hard combinatorial optimization problem [20]. In the GAP, we
have an arbitrary number of agents with finite resources and
an arbitrary number of tasks with resource requirements. We
are able to assign any task to any agent at cost and profit
dependent on the assignment, provided that the aggregate
resource consumption of tasks assigned to an agent does
not exceed the amount of resources available. We require an
assignment meeting all resource constraints while maximizing
system profit. However, we can reduce the complexity of
the problem by limiting the number of agents to a suitable
constant. Although the number of possible assignments grows
exponentially with the number of agents, there are only 22 = 4
possible assignments with 2 stores and 23 = 8 with 3. Choosing
between assignments, we can express our problem as the NP-
hard MMKP, described in Section 2.2.

Let there be n sessions, each having a set of lotteries Li, e.g.
Li = {L0, L1, L2, L3}. Let li = |Li| and by transforming the
goal of (2), we can express the goal of the session management
problem as:

maximize
n
∑

i=1

li
∑

j=1

Lijxij (10)

Since each lottery has an associated utility function u, (10)
can also be expressed as:

maximize
n
∑

i=1

li
∑

j=1

uijxij (11)

All the resource constraints Rk in (2) must still be satisfied, so
the final equation, where there are m resources with capacities
Rk and each session i, using lottery j, consumes rijk of
resource k is:

maximize
n
∑

i=1

li
∑

j=1

uijxij

subject to
n
∑

i=1

li
∑

j=1

rijkxij ≤ Rk

li
∑

j=1

xij = 1

xij ∈ {0, 1}

k = 1, . . . ,m

(12)

Because the state of the system varies frequently when
sessions enter and exit the system, the model needs to be
solved and re-solved in soft real-time. Frequently solving and
re-solving the model means that the effort of obtaining an

optimal solution will not be worth the returns, as old solutions
cannot be reused [21]. Our conjecture is that a heuristic or
approximation approach will suffice and give results that are
good enough in reasonable time. We present these approaches
in the next section.

5. Session Allocation Policies

We present two utility-based approaches: a simple, greedy
algorithm based on aggregate resource consumption, and
a linear programming (LP)-relaxation of the corresponding
MMKP. We will evaluate 2 variants of these algorithms:
allowing sessions to be dropped and without dropping. For
comparison, we have developed 3 naïve session management
algorithms that always choose the same action (always local,
remote, or both) and one random algorithm, of which we also
made an alternative version that would not drop sessions. These
algorithms and policies add up to 9 in total.

5.1. LP-Relaxed MMKP

Optimally solving large instances of the MMKP is unfeasible.
For this reason, we have decided to use CPLEX2 to solve
the LP-relaxation of the MMKP instead, which can be done
quickly and provides an upper bound on the achievable utility.
However, the maximum utility actually achievable is likely to be
somewhat lower than this bound due to integrality constraints.
The solution is rounded to the nearest integer solution, so
that it can be realized in the actual system, but we record the
utility from the original, relaxed assignment. Similarly, we may
disallow dropping sessions in a variant of the algorithm and
instead choose the second most preferred alternative. In this
case, we do however account for the altered preference when
computing the utility. All this serves to still give us the upper
bound on achievable utility at that moment, while proceeding
to the next iteration of session management. While doing so
does affect future state of the system, we assume this error
to be negligible, taking into account that the algorithm runs
on-line, only optimizing at the current problem instance, not
accounting for possible future instances.

5.2. Greedy Algorithm

The classical greedy algorithm solves knapsack problems
by sorting the sessions in descending order on ui

ri
, the ratio

of utility to resource consumption, as the densest items will
come first this way [10]. While the greedy algorithm performs
quite well in the continuous case, where fractional allocations
are allowed, for a 0–1 knapsack as described in (1), the
greedy algorithm does not perform so well. However, it is
fast since it has the complexity of the chosen sorting algorithm.
Toyoda [22] proposed a measurement called aggregate resource
consumption for applying the greedy method to the multi-
dimensional knapsack problem (MDKP) [10]. Khan [8] applied

2. http://www.ibm.com/software/commerce/optimization/cplex-optimizer/

the concept to pick a new candidate item in a group when
solving the MMKP. Toyoda [22] defines the aggregate resource
consumption of choice j for session i as:

aij =

∑n

k=1 rijkCk

|C|
(13)

|C| =

√

√

√

√

n
∑

k=1

C2
k (14)

Where rijk is the amount of resource k consumed by session i
for choice j and Ck is the amount of resource k consumed by
the currently selected sessions. Our greedy algorithm works
by choosing the alternative with the highest density uj(si)

aij
for

each session si. The variant without dropping works similarly,
but selects the second best choice if the preferred choice is
dropping. The greedy algorithm is defined as:

1: for all si do

2: g ← sort(si,
uj(si)
aij

)

3: select(g0)
4: end for

5.3. Naïve Algorithms

As described in Section 4, there are 4 alternatives when
dealing with a session in a system with 2 stores: drop the
session, write to local, write to remote, and write to both. We
can construct a naïve session management algorithm based on
each of these alternatives. However, the algorithm based only
on dropping the session would not be very interesting, so we
decided to replace that with a uniformly random algorithm
instead. Thus we created the four naïve session management
algorithms: random choice, always using the local store, always
using the remote store, and always writing to both. As the
random algorithm had the possibility of dropping sessions, we
also created a variant of it that disallowed dropping sessions by
making a random choice only among the three other options.

6. Evaluation Using Discrete-Event Simulations

We used SimPy3 to develop a discrete-event simulation of a
web application using the proposed system. With the simulation,
we analyzed session management strategies to determine which
is better with respect to system utility from the point of view
of a web application provider.

6.1. Setting up the Experiment

We prepared 9 policy treatments: greedy, greedy without
dropping, LP-relaxation of the MMKP, LP-relaxation of the
MMKP without dropping, always writing to both, always local,
always remote, random, and random without dropping. The 2
revenue treatments were exponentially distributed revenues and
identical revenues. The 3 revenue/cost ratio treatments were:

3. http://simpy.sourceforge.net/

low, 10× higher, and 1000× higher. The base revenue for a
session v(si) was an exponentially distributed step function
with mean µv = $1× 10−4 and rate λv = 1

µv
in the interval

[$0, $1× 10−4], starting at v(si) = $1× 10−5 with probability
P (C) = 0.25 of growing or shrinking:

1: function ExpGrowth(x, λ,minimum,maximum)
2: X ∼ Exp(λ)
3: x← x±X
4: x← max(minimum, x)
5: x← min(maximum, x)
6: return x
7: end function

8: function StepExpRevenue(r, λv)
9: X ∼ U(0, 1)

10: if X < 0.25 then

11: r ← ExpGrowth(r, λv, 0, $1× 10−4)
12: end if

13: return r
14: end function

The local store had a capacity mlocal = 8MiB with an
LRU flushing policy implemented by random sampling of 3
sessions. While this might seem too low, it serves to show
the effects experienced in a setting where the memory on the
application server is not enough, possibly due to using all
available memory for the actual purposes of an application
server and not for storing sessions, in a reasonable amount of
time required for running the simulations. The average total
size of the user sessions is roughly 50MiB, so it actually
constitutes 20 % of the system. Session sizes were modeled in
a similar fashion to expected revenues, stepwise exponentially
distributed with mean µs = 256KiB and rate λs =

1
µs

in the
interval [1, 8192] KiB:

1: function StepExpSize(s, λs)
2: X ∼ U(0, 1)
3: if X < 0.25 then

4: s← ExpGrowth(s, λs, 1KiB, 8192KiB)
5: end if

6: return s
7: end function

Writing to the remote session store cost cw = $5 × 10−6,
reading cost cr = $4 × 10−7, and data in the store cost
cs = $3.413× 10−17 B−1 s−1, the prices of Amazon S3.
The observed variables were: system size, system revenue,
and system utility. The system was simulated as an open
network using exponential distributions with arrival rate λ = 1

3 s
and decay rate µ = 1

5 min . The sessions had write rate α = 1
10 s

and the failure rate for the local store was β = 1
1 h . Every

experiment lasted 6 hours sampled at interval ts = 1min.

6.2. Results

We simulated all 9 policies with 2 revenue treatments:
exponentially distributed revenues and identical revenues and
3 revenue / cost ratio treatments. The results are represented in
Figures 2, 3 and 4. In the legend of the figures, the ND-modifier

indicates that a policy disallowed dropping sessions, while the
2-suffix indicates that the session revenues remained constant
at the initial revenue v(si) = $1×10−5. The results are shown
as pairs of policies subject to both revenue treatments.

As can be seen from the system size plots in Figures 2a,
3a and 4a, the random and the greedy policies, as well as
the local and the remote policy were consistent across all
revenue/cost ratios, whereas the optimal policies grew in size
as the revenue/cost ratio increased. The system revenues in
Figures 2b, 3b and 4b show a similar pattern as the system
sizes, usually with slightly more revenue when the revenue
distribution was identical revenues. The real difference can be
seen in Figures 2c, 3c and 4c, which show the system utilities.

With a low revenue/cost ratio as in Figure 2c, local was
the only feasible approach not based on utility. The other
non-utility-based approaches operated at a loss. At 10 times
higher revenue/cost ratio, like Figure 3c, no approach operated
at a loss, but the optimal and the policy storing to both
achieved the highest utility, with the greedy policies achieving
low utility, although they appear more stable than the local
policy. The remote policy performed among the best, contrary
to the previous scenario. Finally, with 1000 times higher
revenue/cost ratio, as presented in Figure 3c, the policies
performed in a similar way, but with greater disparity between
the local and the both policy. The local policy now performed
worst, except in the simulations with constant values, where
there now was a considerable difference between results of
several policies.

6.3. Analysis

The results indicate that utility-based session management is
a viable option in the general case, usually outperforming
the naïve methods, but it becomes especially useful in a
situation with a low revenue/cost ratio. Utility-based session
management can open up new markets and mean the difference
between a business venture operating at a loss or a profit. A
real-world example of such a scenario would be delivering
a service financed through advertisement revenue. The local
policy also turned a profit under these circumstances, but is
limited by the lack of space and lack of reliability inherent
to relying solely on local memory and will perform worse
with longer sessions. The results show many outliers for the
local policy. Due to its unstable nature, it is nonviable as a
real-world option.

We observe no greater difference between scenarios with
constant revenue and those with stepwise exponentially dis-
tributed growth until the revenue/cost ratio reaches 1000. The
only policy unaffected by the change in revenue model was
the local policy, suggesting that its achievable income was
limited by an external factor. As expected, a look at the size
plot shows this limiting factor as the available size in the
local store. The greedy policy also appears constrained in
size for the same reason. It appears to have made too risky
decisions. An improved algorithm should perform better, as
indicated by the optimal reference policies. Both models should

g
re

e
d
y

g
re

e
d
y
_
2

g
re

e
d
y
_
N

D

g
re

e
d
y
_
N

D
_
2

b
o
th

b
o
th

_
2

lo
c
a
l

lo
c
a
l_

2

o
p
ti
m

a
l

o
p
ti
m

a
l_

2

o
p
ti
m

a
l_

N
D

o
p
ti
m

a
l_

N
D

_
2

ra
n
d
o
m

ra
n
d
o
m

_
2

ra
n
d
o
m

_
N

D

ra
n
d
o
m

_
N

D
_
2

re
m

o
te

re
m

o
te

_
2

0

5

10

15

20

25

30

Size (Low Revenue / Cost Ratio)

Policy

S
iz

e
 (

M
B

)

(a)

g
re

e
d
y

g
re

e
d
y
_
2

g
re

e
d
y
_
N

D

g
re

e
d
y
_
N

D
_
2

b
o
th

b
o
th

_
2

lo
c
a
l

lo
c
a
l_

2

o
p
ti
m

a
l

o
p
ti
m

a
l_

2

o
p
ti
m

a
l_

N
D

o
p
ti
m

a
l_

N
D

_
2

ra
n
d
o
m

ra
n
d
o
m

_
2

ra
n
d
o
m

_
N

D

ra
n
d
o
m

_
N

D
_
2

re
m

o
te

re
m

o
te

_
2

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Revenue (Low Revenue / Cost Ratio)

Policy
R

e
ve

n
u
e
 (

$
)

(b)

g
re

e
d
y

g
re

e
d
y
_
2

g
re

e
d
y
_
N

D

g
re

e
d
y
_
N

D
_
2

b
o
th

b
o
th

_
2

lo
c
a
l

lo
c
a
l_

2

o
p
ti
m

a
l

o
p
ti
m

a
l_

2

o
p
ti
m

a
l_

N
D

o
p
ti
m

a
l_

N
D

_
2

ra
n
d
o
m

ra
n
d
o
m

_
2

ra
n
d
o
m

_
N

D

ra
n
d
o
m

_
N

D
_
2

re
m

o
te

re
m

o
te

_
2

−0.003

−0.002

−0.001

0.000

0.001
Utility (Low Revenue / Cost Ratio)

Policy

U
ti
lit

y

(c)

Fig. 2. System size, revenue, and utility with low revenue/cost ratio. ND indicates that a policy disallowed dropping

sessions; the 2-suffix indicates that the session revenues remained constant at the initial revenue v(si).

g
re

e
d
y

g
re

e
d
y
_
2

g
re

e
d
y
_
N

D

g
re

e
d
y
_
N

D
_
2

b
o
th

b
o
th

_
2

lo
c
a
l

lo
c
a
l_

2

o
p
ti
m

a
l

o
p
ti
m

a
l_

2

o
p
ti
m

a
l_

N
D

o
p
ti
m

a
l_

N
D

_
2

ra
n
d
o
m

ra
n
d
o
m

_
2

ra
n
d
o
m

_
N

D

ra
n
d
o
m

_
N

D
_
2

re
m

o
te

re
m

o
te

_
2

0

20

40

60

80

Size (10X Revenue / Cost Ratio)

Policy

S
iz

e
 (

M
B

)

(a)

g
re

e
d
y

g
re

e
d
y
_
2

g
re

e
d
y
_
N

D

g
re

e
d
y
_
N

D
_
2

b
o
th

b
o
th

_
2

lo
c
a
l

lo
c
a
l_

2

o
p
ti
m

a
l

o
p
ti
m

a
l_

2

o
p
ti
m

a
l_

N
D

o
p
ti
m

a
l_

N
D

_
2

ra
n
d
o
m

ra
n
d
o
m

_
2

ra
n
d
o
m

_
N

D

ra
n
d
o
m

_
N

D
_
2

re
m

o
te

re
m

o
te

_
2

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Revenue (10X Revenue / Cost Ratio)

Policy

R
e
ve

n
u
e
 (

$
)

(b)

g
re

e
d
y

g
re

e
d
y
_
2

g
re

e
d
y
_
N

D

g
re

e
d
y
_
N

D
_
2

b
o
th

b
o
th

_
2

lo
c
a
l

lo
c
a
l_

2

o
p
ti
m

a
l

o
p
ti
m

a
l_

2

o
p
ti
m

a
l_

N
D

o
p
ti
m

a
l_

N
D

_
2

ra
n
d
o
m

ra
n
d
o
m

_
2

ra
n
d
o
m

_
N

D

ra
n
d
o
m

_
N

D
_
2

re
m

o
te

re
m

o
te

_
2

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Utility (10X Revenue / Cost Ratio)

Policy

U
ti
lit

y

(c)

Fig. 3. System size, revenue, and utility with 10× revenue/cost ratio. ND indicates that a policy disallowed dropping

sessions; the 2-suffix indicates that the session revenues remained constant at the initial revenue v(si).

g
re

e
d
y

g
re

e
d
y
_
2

g
re

e
d
y
_
N

D

g
re

e
d
y
_
N

D
_
2

b
o
th

b
o
th

_
2

lo
c
a
l

lo
c
a
l_

2

o
p
ti
m

a
l

o
p
ti
m

a
l_

2

o
p
ti
m

a
l_

N
D

o
p
ti
m

a
l_

N
D

_
2

ra
n
d
o
m

ra
n
d
o
m

_
2

ra
n
d
o
m

_
N

D

ra
n
d
o
m

_
N

D
_
2

re
m

o
te

re
m

o
te

_
2

0

20

40

60

80

Size (1000X Revenue / Cost Ratio)

Policy

S
iz

e
 (

M
B

)

(a)

g
re

e
d
y

g
re

e
d
y
_
2

g
re

e
d
y
_
N

D

g
re

e
d
y
_
N

D
_
2

b
o
th

b
o
th

_
2

lo
c
a
l

lo
c
a
l_

2

o
p
ti
m

a
l

o
p
ti
m

a
l_

2

o
p
ti
m

a
l_

N
D

o
p
ti
m

a
l_

N
D

_
2

ra
n
d
o
m

ra
n
d
o
m

_
2

ra
n
d
o
m

_
N

D

ra
n
d
o
m

_
N

D
_
2

re
m

o
te

re
m

o
te

_
2

0.0

0.5

1.0

1.5

Revenue (1000X Revenue / Cost Ratio)

Policy

R
e
ve

n
u
e
 (

$
)

(b)

g
re

e
d
y

g
re

e
d
y
_
2

g
re

e
d
y
_
N

D

g
re

e
d
y
_
N

D
_
2

b
o
th

b
o
th

_
2

lo
c
a
l

lo
c
a
l_

2

o
p
ti
m

a
l

o
p
ti
m

a
l_

2

o
p
ti
m

a
l_

N
D

o
p
ti
m

a
l_

N
D

_
2

ra
n
d
o
m

ra
n
d
o
m

_
2

ra
n
d
o
m

_
N

D

ra
n
d
o
m

_
N

D
_
2

re
m

o
te

re
m

o
te

_
2

0.0

0.5

1.0

1.5

Utility (1000X Revenue / Cost Ratio)

Policy

U
ti
lit

y

(c)

Fig. 4. System size, revenue, and utility with 1000× revenue/cost ratio. ND indicates that a policy disallowed dropping

sessions; the 2-suffix indicates that the session revenues remained constant at the initial revenue v(si).

work, dependent on which best suits the application provider’s
needs. The consistency in the results shows that the model
works regardless of whether expected revenues grow or remain
constant. But, as the revenue/cost ratio increases, the choice
of strategy becomes less important. When comparing system
sizes with their respective utilities, it shows that splurging on
size becomes less of an issue as the cost shrinks in comparison
to the revenue. The same applies when comparing system sizes
with system revenues.

7. Increased Reliability with Multiple Stores

So far we have assumed that our system has only two
stores and that the second level store is ideal. However, this
assumption may be too restrictive for practical use. It is possible
that an application provider wants a collection of cheaper but
unreliable stores. In this section, we remove that assumption
and discuss how to increase reliability by considering more
stores and how this affects the utility model.

The relationship between mean time to failure (MTTF) and
availability can be modeled as follows: Given a MTTF of 1

µi
,

store failure can be modeled as a Poisson process with rate µi.
Similarly, writes for a user’s data can be modeled as a Poisson
process with rate λ. The session expiration time will then be 1

λ
.

A session needs to exist for a time interval τ , the predefined
expiration time. Thus, the write rate λ has to be at least high
enough to satisfy 1

λ
≤ τ . The ratio of MTTF to mean time

between writes is given by ρi =
λ
µi

, the operability ratio [23].
A session will be lost only if all copies of the session are

lost. All copies of a session are recreated on each write. In
other words: given n copies of a session, it will not be lost if
at most n− 1 copies are lost before the next write. According
to [23], we can define unavailability of a unit as

Ui = 1−Ai =
1

ρi + 1
(15)

and unavailability of a session consisting of n copies as

Us =

n
∏

i=1

Ui (16)

to obtain availability of that session as

As = 1−

n
∏

i=1

Ui (17)

By expanding the polynomial
n
∏

i=1

(Ai + Ui) = 1 (18)

we can rewrite (17), providing the probabilities of being in
any one of the possible states. By adding the probabilities of
the acceptable states, we obtain the availability of a session.
We can now compute the operability ratio required to achieve
a desired reliability guarantee with a given amount of copies
at unequal stores. Figure 5 shows the probability of data loss
and Table 2 shows the necessary ratio for one to three copies

100 101 102 103

10−9

10−7

10−5

10−3

10−1

Ratio of MTTF to mean time between writes

P
ro

b
a

b
ili

ty
o

f
d

a
ta

lo
s
s

P
n=1

P
n=2

P
n=3

Fig. 5. Probability of data loss for a given ratio of MTTF to

mean time between writes, given n identical copies.

TABLE 2. Required ratio ρ of failure rate µ to write rate λ
for different data loss probabilities P with n uniform copies

Ploss ρn=2 ρn=3

10−1 3 2

10−2 9 4

10−3 31 9

10−4 99 21

10−5 316 46

10−6 999 99

with different reliability guarantees at equal session stores.
Two to three copies is most likely in practical use [1].

As mentioned in Section 1, the session management policy
affects both reliability and cost. We have shown that it is rather
easy to increase reliability by using more stores, but doing so
will lead to increased costs. In the general case, with n stores
for every session si, there are 2n lotteries L0 . . . L2n−1. Every
lottery Lij has an expected utility uij given by

uij = v(si)× (1− Pfail)−
∑

cw −
∑

cr −
∑

cs (19)

Where
∑

cw is the cost of writing to all the stores used,
∑

cr
is the cost of reading, which might increase if a cheaper store
loses data that is available at another location, and

∑

cs is
the cost of storing data over time at the stores in question.
Because the read cost may vary, it can be modeled in greater
detail by accounting for individual data loss probabilities of
the affected stores, like we did in the example with two stores.
The binomial formula

(

n
k

)

tells us, for n stores, how many
lotteries use a given number k of stores. Likewise, we can
use the binary representation of a lottery ordinal to represent
which stores each lottery uses. For example, with 3 stores,
lottery 6 would use the second and third store, as its binary
representation is 1102. Accordingly, lottery 0 stores nowhere.

Assuming that we have a preference for reading from stores,
so that the first store is preferred to all others, and the second

store is preferred to the third, the total cost of reading is
∑

cr = p1cr1+(1−p1)(p2cr2+(1−p2)(p3cr3+. . .)) (20)

Where pn is the probability of store n surviving. Storage
cost depends on how many stores survive. A store can be
in two states, failed with probability (1 − pn) or functional
with probability pn. Taking all combinations of states gives 2n

possible outcomes, as usual we ignore the null option, adding
them up gives the total cost. For 2 stores the store cost is
∑

cs = p1(1−p2)cs1+(1−p1)p2cs2+p1p2(cs1+cs2) (21)

8. Conclusions

We presented a model based on von Neumann-Morgenstern
utility [2] for management of session state. The concept of
utility gave us a way of taking risk into account when making
decisions, by using a probabilistic reliability model for session
stores in a cloud setting. In this way, we were able to formulate
the session management problem as an MMKP, which can
be heuristically solved in real-time. We designed a utility-
based session management system based on our model and
presented its proposed architecture along with two utility-based
session management policies, a greedy policy and a reference
policy based on solving the LP-relaxation of the MMKP.
By constructing a discrete-event simulation and comparing
9 different policies and variants in 6 different scenarios, we
have found a significant difference between utility-based and
naïve session management strategies.

Our results show that otherwise unprofitable services become
profitable through utility-based session management. In a sce-
nario with a low revenue/cost ratio, such as an advertisement-
funded website, expected profits varied from −$0.002 to $0.001
between different session management policies. When the costs
were three orders of magnitude lower than the revenues of
sessions, all policies managed to turn a profit. Different policies
performed the best under different circumstances. When relative
costs are low, always storing at both works well, as the extra
cost is insignificant. As our work was of an exploratory nature,
we did not directly measure the execution time of the algorithms.
Instead, we provided the computational complexity of the
algorithms. We did not consider possible penalties for losing a
session, but this could easily be added in an implementation.

Future work includes implementing the proposed session
manager in a real cloud and performing an evaluation through
realistic experiments. We should also study various utility
functions with different risk attitudes. We seek to determine
the feasibility of solving the model in real-time using different
approaches for a realistic problem size to ensure a reliable and
scalable solution with satisfactory efficiency and effectiveness.

Acknowledgments

This work was supported by the Cloud Software Finland
research project. We also wish to thank Adnan Ashraf at Åbo
Akademi University for helpful feedback on this paper.

References

[1] B. C. Ling, E. Kiciman, and A. Fox, “Session state: Beyond soft state,”
in Proceedings of the 1st Symposium on Networked Systems Design and

Implementation - Volume 1, ser. NSDI’04. Berkeley, CA, USA: USENIX
Association, 2004, pp. 295–308.

[2] J. von Neumann and O. Morgenstern, Theory of Games and Economic

Behavior, 3rd ed. Princeton, NJ: Princeton University Press, 1953.
[3] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier,

“Cluster-based scalable network services,” SIGOPS Oper. Syst. Rev.,
vol. 31, no. 5, pp. 78–91, Oct. 1997.

[4] D. W. Goldberg, “State considerations in distributed systems,” Crossroads,
vol. 15, no. 3, pp. 7–11, Mar. 2009.

[5] C. Gray and D. Cheriton, “Leases: An efficient fault-tolerant mechanism
for distributed file cache consistency,” SIGOPS Oper. Syst. Rev., vol. 23,
no. 5, pp. 202–210, Nov. 1989.

[6] D. Clark, “The design philosophy of the DARPA internet protocols,”
SIGCOMM Comput. Comm. Rev., vol. 18, no. 4, pp. 106–114, 1988.

[7] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to

the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman
& Co., 1979.

[8] M. S. Khan, “Quality adaptation in a multisession multimedia system:
Model, algorithms, and architecture,” Ph.D. dissertation, University of
Victoria, Victoria, B.C., Canada, Canada, 1998, aAINQ36645.

[9] M. M. Akbar, M. S. Rahman, M. Kaykobad, E. G. Manning, and G. C.
Shoja, “Solving the multidimensional multiple-choice knapsack problem
by constructing convex hulls,” Comput. Oper. Res., vol. 33, no. 5, pp.
1259–1273, May 2006.

[10] M. Rouf, “Incremental convex hull approach applied to optimal admission
control & QoS adaptation in multimedia systems,” Bachelor’s Thesis,
Bangladesh University of Engineering and Technology, 2005.

[11] M. M. Akbar, E. G. Manning, G. C. Shoja, S. Shelford, and T. Hossain,
“A distributed heuristic solution using arbitration for the MMMKP,” in
Proceedings of the Eighth Australasian Symposium on Parallel and

Distributed Computing - Volume 107, ser. AusPDC ’10. Darlinghurst,
Australia, Australia: Australian Computer Society, Inc., 2010, pp. 31–40.

[12] C. Ykman-Couvreur, V. Nollet, F. Catthoor, and H. Corporaal, “Fast
multidimension multichoice knapsack heuristic for MP-SoC runtime
management,” ACM Trans. Embed. Comput. Syst., vol. 10, no. 3, pp.
35:1–35:16, May 2011.

[13] H. Shojaei, A. Ghamarian, T. Basten, M. Geilen, S. Stuijk, and
R. Hoes, “A parameterized compositional multi-dimensional multiple-
choice knapsack heuristic for CMP run-time management,” in Design

Automation Conference, 2009. DAC ’09. 46th ACM/IEEE, 2009, pp.
917–922.

[14] M. Bateni and M. Hajiaghayi, “Assignment problem in content distribu-
tion networks: Unsplittable hard-capacitated facility location,” ACM T.

Algorithms, vol. 8, no. 3, pp. 20:1–20:19, Jul. 2012.
[15] R. Cohen and L. Katzir, “The generalized maximum coverage problem,”

Information Processing Letters, vol. 108, no. 1, pp. 15–22, 2008.
[16] N. Poggi, T. Moreno, J. Berral, R. Gavaldà, and J. Torres, “Self-adaptive

utility-based web session management,” Comput. Netw., vol. 53, no. 10,
pp. 1712–1721, Jul. 2009.

[17] L. L. Yu, “Multicommodity flow applied to the utility model: A heuristic
approach to service level agreements in packet networks,” Master’s thesis,
University of Victoria, 2003.

[18] M. M. Akbar, E. G. Manning, and G. C. Shoja, “Distributed utility
model for distributed multimedia server system,” in Proceedings of the

Fifth International Conference on Computer and Information Technology,
vol. 2. Citeseer, 2002, pp. 108–112.

[19] A. Ashraf, B. Byholm, and I. Porres, “A session-based adaptive
admission control approach for virtualized application servers,” in The

5th IEEE/ACM International Conference on Utility and Cloud Computing.
IEEE Computer Society, 2012, pp. 65–72.

[20] D. W. Pentico, “Assignment problems: A golden anniversary survey,”
Eur. J. Oper. Res., vol. 176, no. 2, pp. 774–793, 2007.

[21] C. Archetti, L. Bertazzi, and M. G. Speranza, “Reoptimizing the 0-1
knapsack problem,” Discrete Appl. Math., vol. 158, no. 17, pp. 1879–
1887, Oct. 2010.

[22] Y. Toyoda, “A simplified algorithm for obtaining approximate solutions to
zero-one programming problems,” Management Science, vol. 21, no. 12,
pp. 1417–1427, 1975.

[23] MIL-HDBK-338B, Electronic Reliability Design Handbook, Air Force
Research Laboratory, 525 Brooks Road, Rome, NY 13441-4505, 1998.

