
Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

Optimized Deployment Plans for Platform as a Service Clouds
Benjamin Byholm

Åbo Akademi University

Department of Information Technologies

Turku, Finland

benjamin.byholm@abo.fi

Ivan Porres

Åbo Akademi University

Department of Information Technologies

Turku, Finland

ivan.porres@abo.fi

ABSTRACT

We approximately solve the problem of computing deployment

plans of multiple cloud services with soft real-time constraints.

We recognize that this is a generalized bin packing problem with

fragmentable items. We formalize the problem domain and develop

an autonomous deployment planning system with soft real-time

constraints. The system incorporates a genetic algorithm with qua-

dratic worst-case time complexity for approximately solving the

packing problem, providing a service deployment plan with an

optimal number of servers and an approximately optimal number

of service instances.

KEYWORDS

Cloud computing, Middleware, Packing and covering problems

1 INTRODUCTION

We approximately solve the NP-hard problem of computing de-

ployment plans for multiple cloud services by presenting approxi-

mate and heuristic algorithms that can operate under soft real-time

constraints. We wish to find an optimal assignment of services to

servers, minimizing the number of servers and service instances, as

service instances incur overhead through memory use and complex

management, while running servers cost money and energy. We

also wish to do this under soft real-time constraints, due to the high

volatility of many Internet-scale applications.

We target a platform as a service (PaaS) utility model where

the cloud provider offers a computing platform with automatic

resource management. This is in contrast to an infrastructure as

a service (IaaS) model, where the basic offering is the virtual ma-

chine (VM). In the IaaS model, a VM must not require more com-

puting resources than what is provided by a physical machine

(PM). In both models, the cloud provider allocates multiple VMs

to a single PM and tries to keep its utilization within allowable

limits in order to leverage its hardware investment. Commercial

PaaS providers include Amazon Elastic Beanstalk, Heroku, Google

AppEngine, Microsoft Azure and Oracle Cloud Platform, while

commercial IaaS providers include Amazon EC2, Google Compute

Engine, Microsoft Azure and Oracle Cloud Infrastructure. We men-

tion Microsoft Azure as both an IaaS provider and a PaaS provider,

since it offers both IaaS and PaaS solutions under the same brand.

UCC’17 Companion, December 5–8, 2017, Austin, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use.

Not for redistribution. The definitive Version of Record was published in UCC ’17:
10th International Conference on Utility and Cloud Computing Companion, https:
//doi.org/10.1145/3147234.3148112.

1.1 IaaS versus PaaS

The distinction between IaaS and PaaS is somewhat blurred [1], but

the traditional view of PaaS is that it provides customers access to

elastic computing resources without the need for explicit manage-

ment [20]. The PaaS model suits services which can be deployed in

multiple VMs, resulting in increased reliability and performance,

since the performance and reliability requirements of a service may

exceed that which is offered by a single physical server.

The platform in PaaS can be simply regarded as middleware,

which any IaaS user also can leverage to deploy a service in mul-

tiple VMs and then use a scaling and load balancing mechanism

to distribute the work among dynamically allocated VMs. Indeed,

many scholars have studied the problem of horizontal scaling from

the perspective of the IaaS user [2, 3, 17–20]. A common theme in

these works is that cloud providers leverage existing IaaS clouds to

deploy services in combination with an auto-scaling mechanism for

deciding how many VMs a given service will require at any given

moment, either now or in the future, as well as a load balancer

for distributing the load between these VMs. In this way, cloud

providers obtain the benefits of a PaaS cloud while using a basic

IaaS cloud, giving greater control to the downstream provider. How-

ever, from a holistic perspective, it is actually beneficial to leave the

responsibility of elastic scaling and resource management to the

upstream provider, which can optimize the entire system globally.

For example, assume that a data center hosts three services (a, b
and c), from three different customers in three servers. Each server

handles 500million instructions per second (MIPS). The demand

is 600MIPS for service a, 100MIPS for service b and 300MIPS for

service c . Since the resource demand for service a exceeds the capac-
ity of a server, the downstream provider deploys the service in two

VMs: a1 and a2, requiring 300MIPS each (horizontal scaling), using

a load-balancing mechanism to spread the requests evenly between

the VMs. Table 1a shows the resulting deployment plan, visualized

in fig. 1a, which shows that each server is underutilized, partially

due to the policy that the load associated with service a is evenly

distibuted among its two instances. The downstream provider can-

not know that this situation is suboptimal. However, if we take into

account the computing needs of all services in the data center, we

can find a better allocation of VMs to servers and consolidate the ser-

vices in only two servers, as shown in table 1b, visualized in fig. 1b.

This optimal solution cannot be obtained if the upstream provider

is bound by the decisions made by the downstream provider. Only

the upstream provider knows the complete picture, so by leaving

resource management to the upstream provider, a better outcome is

achievable. This leads to lower operational costs for the upstream

provider and a lower environmental footprint for all involved enti-

ties. The upstream provider can in turn reduce its prices, gaining an

https://doi.org/10.1145/3147234.3148112
https://doi.org/10.1145/3147234.3148112

Table 1: Example of deployment plans

(a) Fixed-size plan

Server

Service S1 S2 S3

a 3/5 3/5

b 1/5

c 3/5

(b) Variable-size plan

Server

Service S1 S2

a 5/5 1/5

b 1/5

c 3/5

a1
s = 3

5

b
s = 1

5

S1

a2
s = 3

5

S2

c
s = 3

5

S3

(a) Fixed-size services.

a1
s = 5

5

S1

a2
s = 1

5

b
s = 1

5

c
s = 3

5

S2

(b) Variable-size services.

Figure 1: Example of service deployment.

edge over its competitors, also benefiting the downstream provider.

1.2 Planning Algorithms

Due to the high volatility in the load of many Internet-scale ap-

plications, the algorithms involved in deployment planning must

be fast and produce good solutions before they become irrelevant

due to changed premises. That is, they must operate under soft

real-time constraints. The algorithms must cope with large clusters

consisting of millions of services and servers without spending too

much resources on producing the deployment plans, since they are

merely means to an end and do not possess any intrinsic value.

Several authors have used classic bin packing (BP) as the un-

derlying model for such algorithms, e.g. the approaches proposed

by Beloglazov et al. [3] and Gabay and Zaourar [8]. However, algo-

rithms based on classic BP must always produce deployment plans

using unaltered services with fixed size, as shown in fig. 1a, since

they cannot alter the sizes of the VMs which are to be deployed.

For this reason, we have devised an approach based on frag-

mentable items bin packing (FIBP), which is a generalization of clas-

sic BP and can produce variable-size deployment plans, as shown

in fig. 1b. This model enables full utilization of an optimal number

of servers, as opposed to a classic BP model, which leaves many

servers underutilized. It naturally incorporates services too large

to fit in any one server and is approximately solvable under soft

real-time constraints, as we will show in the rest of this paper.

This is the main contribution of this article: We present a formal

definition of the problem of deployment planning for cloud services

in a PaaS context, as well as planning algorithms based on FIBP

that work under soft real-time constraints.

2 PRELIMINARIES

In this section we describe the problem domain of service deploy-

ment planning, as well our models for cloud servers and computing

resources. The main concepts are servers, services and containers.

2.1 Problem Domain

Without loss of generality, consider a set of services S and a set

of serversM. A serverm ∈ M provides concurrent computing re-

sources to a set of containersCm ⊆ C, which implement services s ∈
S. A container isolates a service instance and provides access to a

guaranteed amount of its server’s resources. At least ks ≥ 0 con-

tainers implement any given service s ∈ S. The size of a container
is limited by the resources of its server, taking into account other

possible containers on the same server.

2.2 Services

Every service s ∈ S requires a nonzero amount of central processing

unit (CPU), measured in MIPS. In this paper, we assume that CPU

is the bottleneck resource of the system. Determining the resource

requirements of services is out of scope for this paper, but there are

several options, e.g. deriving an empirical performance model at

runtime, constructing an analytic model or directly measuring the

system [2].

2.3 Containers

Services are hosted in containers c ∈ C, which become service

instances. A service may use multiple containers. Our approach

is agnostic with respect to the underlying technology used for

containers. It works for VMs, Docker containers, sandboxes, policy

groups, etc. The only two requirements that we impose on such

technologies is that it is possible to deploy and concurrently run

multiple containers in the same server and that it is possible to

adjust the server resources allocated to each container.

2.4 Servers

A server m ∈ M hosts a set of containers Cm ⊆ C which im-

plement services. A container c ∈ C may only be assigned to a

single server m ∈ M. Containers reserve a dedicated amount of

their servers’ resources. Since each server has a finite amount of

resources, it can only host a finite number of containers, depending

on their sizes. Servers can be homogeneous or heterogeneous, i.e.

all servers may be identical, or their capacities may vary.

2.5 Resources

Resources are discrete quantities. To make the problem tractable,

we must quantize resource supply and demand at some resolution.

While we might waste some capacity when quantizing resources,

there exists a quantum εr for which all smaller quanta drown in

noise and overhead dominates. Hence, we do not consider this a

problem in practice, particularly since cloud systems have high

volatility and we can pick an arbitrarily small quantization error.

Finer granularity, i.e. smaller quantization error, may result in more

containers, since the likelihood of finding a set of services that fill

a server decreases. Performance may also suffer if all container

resources are consumed by overhead. However, this can always be

alleviated by using more servers, since there is less need to fill them

completely. The cloud provider determines the quantization.

Quantization works the same for the homogeneous and the het-

erogeneous cases: Suppose three servers offer 1200MIPS, 400MIPS

and 300MIPS respectively. We also have two services, requiring

1000MIPS and 800MIPS respectively. Let us decide to quantize at a

resolution of 100MIPS per unit. This gives 1200 MIPS/100 MIPS =

12, 400 MIPS/100 MIPS = 4 and 300 MIPS/100 MIPS = 3 for the

servers. Similarly, the two services yield 1000 MIPS/100 MIPS =

10 and 800 MIPS/100 MIPS = 8. We wish to find an allocation of

services to servers with the fewest containers and servers, since

containers introduce overhead and complex routing requirements,

while running servers cost money and energy.

3 PROPOSED SOLUTION

A deployment planner finds a good deployment of service instances

to servers. This should be done under soft real-time constraints, so

that obtained plans can be realized before they become outdated.

3.1 Packing Services in Containers and Servers

We represent the problem of assigning services to containers and

containers to servers as an instance of the minimum fragmentable

items bin packing (Min-FIBP) problem, as presented by Byholm and

Porres [4]. FIBP is a generalization of the classic, NP-complete BP

problem, which permits cutting items into smaller fragments. In the

optimization version of classic BP, we are given n items (services)

and n bins (servers) and produce an assignment X of items to bins.

Each bin i has integer capacity c and item j requires w j capacity.

The objective (1a) is to minimize the number of used bins z, with
the constraint that the total capacity required by the items in each

bin does not exceed c (1b). Every item must be assigned to some

bin (1c), and the decision variables are boolean, (1d) and (1e). A

possible formulation of classic BP is [14]:

min

z
z =

n∑
i=1

yi (1a)

subject to

n∑
j=1

w jxi j ≤ cyi , ∀i ∈ N = {1, . . . ,n}, (1b)

n∑
i=1

xi j = 1, ∀j ∈ N, (1c)

yi ∈ B, ∀i ∈ N, (1d)

xi j ∈ B, ∀i, j ∈ N. (1e)

Min-FIBP is the optimization version of FIBP. Since cutting items

is permitted, we always know howmany servers are required in the

homogeneous case. In fact, FIBP even works with a heterogeneous

set of servers. The objective in Min-FIBP is to minimize the number

of fragments for given sets of items and bins. A solution with no

cuts is equivalent to a classic BP solution.

The problem comprises an assignment X of services s ∈ S to

serversm ∈ M. The objective (2a) is to minimize the number of

fragments, i.e. integer entries χsm greater than zero. The first con-

straint (2b) is that each service s ∈ Smust be fully assigned to some

serversm ∈ M, so the sizes of all containers of service s must add

up to its quantaψ (s). The second constraint (2c), states that each

server m ∈ M has a capacity Ψ(m) we cannot exceed. The third

constraint (2d) restricts containers to multiples of unit-sized parts,

so the size of each container must be a natural number:

min

X

∑
1X >0 (2a)

subject to

∑
m∈M

χsm = ψ (s), ∀s ∈ S, (2b)∑
s ∈S

χsm ≤ Ψ(m), ∀m ∈ M, (2c)

χsm ∈ N, ∀ (s,m) ∈ S ×M. (2d)

We approximately solve the Min-FIBP problem using a grouping

genetic algorithm [4]. The grouping genetic algorithm yields a

guaranteed 5/4-approximationwith complexityO(|S|2) in theworst
case. After constructing the initial population, the grouping genetic

algorithm proceeds to improve the population through grouping

crossover and mutation until it finds an optimal solution, stagnates

or reaches the maximum number of generations. The length of

this phase is variable and the termination condition can be set to a

predefined time limit, a fixed number of iterations, or a convergence

criterion. In this way, we have a parametrizable trade-off between

solution quality and execution time.

3.2 Why FIBP is a Better Model than BP

FIBP is a strictly better model than BP for deployment planning in

cloud computing. We shall give three primary reasons for this:

Firstly, in the FIBPmodel, we always know the minimum number

of servers required to deploy the services. In the BP model, we do

not know if a deployment of a given set of services is possible with

a given set of servers. A natural lower bound on the number of

servers necessary for BP is the linear relaxation [14]:

L1 =

⌈∑
s ∈S

ψ (s)

c

⌉
. (3)

The FIBP model is always solvable with this number of identical

servers, while the BP model usually requires more servers.

Secondly, the FIBP model supports heterogeneous servers in

addition to homogeneous servers. Although a single data center

might well use homogeneous servers, this is unlikely to extend to

multiple independent data centers or cloud providers. Moreover,

if heterogeneous servers are permitted, a data center can upgrade

its hardware in stages, without having to shut down entirely for a

full upgrade of the server pool. Thus, support for heterogeneous

servers can be highly beneficial for all involved parties.

Thirdly, the FIBP model supports services that cannot be de-

ployed in a single server, while the BP model does not. Several

Internet-scale applications offer services that require far more com-

putational resources than what can be offered by a single server.

Thus, the FIBP model is strictly superior to the BP model for

deployment planning in cloud computing.We shall further illustrate

these points with examples and experiments.

a
s = 9

7

b
s = 3

7

c
s = 3

7

d
s = 3

7

e
s = 3

7

⊗

A B C

⇒
a1

s = 7
7

A

a2
s = 2

7

b
s = 3

7

c1
s = 2

7

B

c2
s = 1

7

d
s = 3

7

e
s = 3

7

C

Figure 2: Five services are deployed in three servers. Two ser-

vices are deployed into two containers each.

3.3 Example

We want to find a good configuration for five different services:

a, b, c , d and e . Each service requires some amount of CPU. Ser-

vice a requires 900MIPS, while each of services b, c , d and e require
300MIPS. Each server has a capacity c of 700MIPS. Together, all

services require 2100MIPS, so L1 = ⌈2100 MIPS/700 MIPS⌉ = 3.

For FIBP, this is the minimum number of servers necessary to host

the services and is always achievable.

Figure 2 depicts the example. Service a requires more capacity

than any server can offer, so it must operate in more than one

container on more than one server. Preprocessing in the Min-FIBP

solver will cut it into one container of 700MIPS and another of

200MIPS. The larger fragment will be placed in its own, dedicated

server. The remaining fragment goes to another server, together

with service b. At this point, said server has 200MIPS to spare, but

none of the remaining services fit in 200MIPS. Thus, one of them

(service c in this example) is cut into two fragments of 200MIPS and

100MIPS respectively. The larger fragment fills server B, while the
smaller goes in the last server, together with the remaining services.

All services have now been deployed in only three servers.

Contrast this elegant solution to that of the classic BP model.

As is, the problem has no solution, since service a does not fit in

any bin. If permitted to redefine the problem, we might replace

service a with two services: a1 and a2. Let us also assume that we

again make a1 require 700MIPS and a2 require 200MIPS. Then, a1

is again placed in a dedicated server, while a2 goes in server B. All
remaining services require 300MIPS each, so server B can fit one

of them, but must leave 200MIPS unused. Server C fits two more

services, leaving 100MIPS unused. One service has still not been

placed, so we require a new server, D, which will have 400MIPS

unused. Now all services have been placed, but it required one

server more yet left 700MIPS, i.e. an entire server’s worth, unused.

This is significant waste, despite the BP packing being optimal.

3.4 Heterogeneous Servers

As mentioned in sections 2.4 and 3.1, the FIBP model also supports

heterogeneous servers, since heterogeneous problem instances can

be polynomially reduced to homogeneous instances [4]. As ex-

plained in section 2.5, resources provided by servers and resources

required by services must be quantized at a given resolution.

The three example servers mentioned in section 2.5 offer a total

of 19 CPU units. We pick a value larger than this, say 20, and define

this as the unique capacity c for each of the three servers. We then

proceed by adding a dummy service requiring c − Ψ(mi) units for

each original servermi ∈ M to the set of services S, that is we add
three dummy services requiring 20 − 12 = 8, 20 − 4 = 16 and 20 −

3 = 17 CPU units respectively. After solving the transformed Min-

FIBP problem, we simply remove the dummy services and shrink

the servers to their original sizes to undo the transformation and

proceed with deploying the services to their servers.

4 EXPERIMENT

This section describes an experimental comparison of our approach

and a classic BP approach. Unlike our approach, solutions based

on classic BP cannot directly support services that require more

capacity than the one provided by a single server or servers with het-

erogeneous capacity. Therefore we focus on homogeneous servers

where no service requires more capacity than a server can offer.

4.1 Design

We generated ten random problems with uniform distribution of

service sizes and attempted to solve them using our approach and

CPLEX. CPLEX is an award-winning, state of the art solver for

mathematical programming, widely used in industry and academia.

Each problem involved 256 services. Server capacity was quantized

at a resolution of 1/32. Each service needed between 1 and 32 units

of CPU capacity, inclusively. We consider these problems to be

very small, but this is required to allow CPLEX to produce good

solutions in a reasonable amount of time, since the branch-and-cut

methods used by CPLEX for mixed integer linear programming

(MILP) problems require time exponential in the size of the problem.

We conducted two experiments with the generated problem

set. The first experiment sought to compare the applicability of

FIBP and classic BP in terms of number of servers required in

a cloud computing context. As explained in section 3.2, the BP

model always requires at least as many servers as the minimum

number of servers needed for the FIBP model, usually more, since

the classic BP model does not permit cutting items into smaller

fragments. For this reason, we also restricted the maximum service

size in the generated problems to fit in a single server, since the

resulting problems would otherwise be unsolvable under the classic

BP model. Additionally, the classic BP model does not support

heterogeneous server configurations, which is why we limited

ourselves to homogeneous servers.

The second experiment sought to compare the speed and quality

of our solver to that of CPLEX under the FIBP model. Since CPLEX

is an exact solver and Min-FIBP is strongly NP-hard, it requires

computation time exponential in the size of the problem to find

and verify that a candidate solution truly is optimal. However,

CPLEX does produce valid solutions throughout its execution, so

Table 2: Servers required by the FIBP and BP models. The

results of the BP model are approximate

FIBP 132 134 140 130 130 134 133 129 127 136

BP 136 138 143 134 133 138 136 131 129 140

Table 3: Containers used by our solver versus CPLEX

Our 264 262 267 262 262 271 265 261 259 268

CPLEX 350 348 357 344 344 350 343 349 339 341

by limiting its execution with a time budget, we should hopefully

produce reasonably good solutions. Since we are operating under

soft real-time constraints, it is not reasonable to spend days on

computing solutions. It should be possible to produce reasonably

good solutions in less than 10ms for problems of this size. However,

already the presolving step used by CPLEX to reduce input problems

before commencing with the main optimization actually requires

two orders of magnitude more time than this. For this reason, we

generously awarded CPLEX a time budget of 100 s to solve each

problem for both experiments.

Both experiments were conducted on a regular desktop com-

puter equipped with an Intel Core i7-4770 CPU running at 3.4 GHz

and 16GiB of random access memory (RAM). The processor has 4

physical CPU cores with Hyper-threading, giving 8 logical cores.

CPLEX is fully multi-threaded and used all 8 logical cores, while

our solver is single-threaded and only used 1 logical core.

4.2 Results

Table 2 shows the results from the first experiment, which sought

to compare the applicability of the FIBP model and the BP model.

As we can see, the FIBP model used strictly fewer servers than the

BP model for every problem. CPLEX did not manage to conclude

that any obtained solution for BP was optimal before exhausting

the time limit of 100 s. On the other hand, the results for the FIBP

model were instantly computed using eq. (3).

Table 3 shows the results from the second experiment, which

sought to compare the performance and quality of our solver ver-

sus CPLEX under the FIBP model. As we can see, the solutions

produced by CPLEX consistently required 30 % more containers

than those produced by our solver. Table 4 shows the computation

time required for both solvers. CPLEX only terminated because it

exceeded the preset time limit of 100 s. We would again like to stress

the point that 100 s is far too much time for solving the problems

under soft real-time constraints.

4.3 Analysis

Table 2 verifies that the FIBP model allows using fewer servers than

the BP model for deploying a given set of services. We have thus

experimentally demonstrated the claims in section 3.2.

From table 4, we can tell that problem 0 and problem 7 were

solved to optimality while generating the initial population, and

that the solver successfully determined that they were optimal.

Table 4 combined with table 3 tells us that CPLEX required five

orders of magnitude more computation time to produce solutions

Table 4: FIBP runtime of CPLEX and our solver

Time (ms)

Problem # CPLEX Our

0 99690 0.02

1 99690 2.64

2 99680 1.09

3 99700 2.85

4 99810 1.96

5 99720 2.14

6 99810 2.72

7 99730 0.02

8 99700 1.57

9 99660 3.19

which were 30 % worse than those produced by our solver. All but

problem 4 were solved to optimality by our solver. We had previ-

ously determined that this problem requires only 261 containers.

5 RELATEDWORK

The classic BP problem is a well-known combinatorial optimization

problem, first introduced by Johnson et al. [11]. The decision form

of BP is strongly NP-complete [9]. The classic BP problem has

many variants, one of which is FIBP. The FIBP problemwas recently

formalized by LeCun et al. [12]. While there have been a couple

earlier variants of BP dealing with fragmentable items [13, 15], they

have not explicitly attempted to minimize the number of fragments

for given sets of items and bins. LeCun et al. [12] also presented ap-

proximation algorithms for a special case of minimum fragmentable

items bin packing with equal capacities (Min-FIBP-EQ), which we

generalized in addition to reducing their computational complex-

ities [4]. In addition to FIBP, Casazza and Ceselli [5] also studied

other variants of BP with fragmentation and presented algorithms

for exactly solving these problems. However, since FIBP is strongly

NP-complete [12], any deterministic, exact algorithm requires time

exponential in the size of the input, unless P = NP. The problems

studied by Casazza and Ceselli [5] involve no more than 100 items

and require several minutes or hours to solve, which means that

they are unsuitable for applications with real-time constraints and

even moderately large problem sizes.

OurMin-FIBP solver [4] combines fast approximation algorithms

with a metaheuristic known as a grouping genetic algorithm, in-

spired by the work of Quiroz Castellanos et al. [16] for classic BP.

The grouping genetic algorithms form a family of genetic algo-

rithms different from the traditional Holland-style genetic algo-

rithms [10], more suitable for grouping problems. They were first

introduced by Falkenauer [6] 25 years ago. Falkenauer [7] found

that a certain form of grouping genetic algorithms produce results

far better than those obtained from their underlying heuristics in

isolation and the work of Quiroz Castellanos et al. [16] is a further

refinement thereof. Our Min-FIBP solver [4] is the first application

of a grouping genetic algorithm to Min-FIBP.

BP is an intuitive model for service deployment with several

variations. For this reason, many scholars have studied service

deployment and consolidation under these models. However, we

have not seen any previous works using FIBP, which, as we have

shown, is strictly superior to classic BP.

Beloglazov et al. [3] used a variable size BP model to manage

data centers in an energy-aware and efficient manner. Gabay and

Zaourar [8] used a variable-size vector bin packing model. However,

aswe have shown in this paper, amodel such as FIBP, where services

can be divided among several containers naturally allows for denser

packings and can be solved much quicker. As noted by Gabay and

Zaourar [8], problems with heterogeneous bins can be reduced to

problems with uniform bin sizes. Similarly, instances of Min-FIBP

can be reduced to equivalent instances of Min-FIBP-EQ. However,

Gabay and Zaourar [8] make a fair assessment that this may lead

to complications when dealing with multiple resources. This aspect

should be closely investigated in possible generalizations of FIBP

to multiple dimensions.

Zabolotnyi et al. [20] compared IaaS and PaaS solutions and pre-

sented a middleware solution called JCloudScale for the purpose of

providing the convenience of PaaS in an IaaS environment. Zabolot-

nyi et al. [20] claim that one of the problems with PaaS offerings is

limited customer control over the elasticity behavior of deployed

applications. Utilization of physical servers was not reported in the

experiments. We take the opposite point of view and argue that

this property is, in fact, a strength of PaaS, since the provider has

the best possible information about the status of the cluster and

can perform global optimization of the entire system, as opposed

to local optimization by individual actors.

6 CONCLUSION AND FUTUREWORK

We presented a new take on the NP-hard problem of computing

deployment plans for multiple cloud services. We recognized that

the FIBP model is a better fit than the classic BP model, since it

enables using fewer servers, supports heterogeneous server config-

urations and copes with Internet-scale services too large to fit in

any single server. This is the first work in cloud computing based

on FIBP, which enables denser packings with less wasted capacity.

Less waste saves both money and energy.

Future work involves a practical generalization of FIBP to multi-

ple dimensions, allowing us to efficiently handle multiple resources.

We are currently working on a combined migration and consolida-

tion algorithm, which can transition a system from an old deploy-

ment to a new deployment plan, minimizing the amount of data

that must be migrated under soft real-time constraints. A further

extension is support for incompatibility constraints, where two or

more containers cannot reside in the same server, e.g. because of

redundancy concerns, if they implement the same service, or due

to possible interference between two containers of highly different

natures. We look forward to seeing new works based on FIBP in

the field of cloud computing in the future.

ACKNOWLEDGMENTS

Benjamin Byholm received scholarships from the Nokia Foundation

and the Finnish Foundation for Technology Promotion (TES).

REFERENCES

[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,

Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and

Matei Zaharia. 2010. A View of Cloud Computing. Commun. ACM 53, 4 (April

2010), 50–58. https://doi.org/10.1145/1721654.1721672

[2] Adnan Ashraf, Benjamin Byholm, and Ivan Porres. 2016. Prediction-Based VM

Provisioning and Admission Control for Multi-Tier Web Applications. Journal of
Cloud Computing 5, 1 (2016), 15. https://doi.org/10.1186/s13677-016-0065-9

[3] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. 2012. Energy-aware

resource allocation heuristics for efficient management of data centers for Cloud

computing. Future Generation Computer Systems 28, 5 (2012), 755–768. https:

//doi.org/10.1016/j.future.2011.04.017

[4] Benjamin Byholm and Ivan Porres. 2017. Fast Algorithms for Fragmentable Items
Bin Packing. Technical Report 1181. TUCS.

[5] Marco Casazza and Alberto Ceselli. 2016. Exactly Solving Packing Problems with

Fragmentation. Computers & Operations Research 75, C (Nov. 2016), 202–213.

https://doi.org/10.1016/j.cor.2016.06.007

[6] Emanuel Falkenauer. 1992. The grouping genetic algorithms — widening the

scope of the GAs. Belgian Journal of Operations Research, Statistics & Computer
Science 33, 1 (1992), 2.

[7] Emanuel Falkenauer. 1996. A hybrid grouping genetic algorithm for bin packing.

Journal of Heuristics 2, 1 (1996), 5–30. https://doi.org/10.1007/BF00226291
[8] Michaël Gabay and Sofia Zaourar. 2016. Vector bin packing with heterogeneous

bins: application to the machine reassignment problem. Annals of Operations
Research 242, 1 (2016), 161–194. https://doi.org/10.1007/s10479-015-1973-7

[9] Michael Randolph Garey and David Stifler Johnson. 1990. Computers and In-
tractability. W. H. Freeman & Co., New York, NY, USA.

[10] John Henry Holland. 1992. Adaptation in Natural and Artificial Systems. MIT

Press, Cambridge, MA, USA.

[11] David Stifler Johnson, Alan JohnDemers, Jeffrey David Ullman,Michael Randolph

Garey, and Ronald Lewis Graham. 1974. Worst-Case Performance Bounds for

Simple One-Dimensional Packing Algorithms. SIAM J. Comput. 3, 4 (1974),

299–325. https://doi.org/10.1137/0203025

[12] Bertrand LeCun, Thierry Mautor, Franck Quessette, and Marc-Antoine Weisser.

2015. Bin packing with fragmentable items: Presentation and approximations.

Theoretical Computer Science 602 (2015), 50–59. https://doi.org/10.1016/j.tcs.2015.
08.005

[13] Chittaranjan A. Mandal, Partha Pratim Chakrabarti, and Sujoy Ghose. 1998.

Complexity of fragmentable object bin packing and an application. Computers
& Mathematics with Applications 35, 11 (1998), 91–97. https://doi.org/10.1016/
S0898-1221(98)00087-X

[14] Silvano Martello and Paolo Toth. 1990. Knapsack Problems. John Wiley & Sons,

Chichester, England.

[15] Nir Menakerman and Raphael Rom. 2001. Bin Packing with Item Fragmentation,

Frank Dehne, Jörg-Rüdiger Sack, and Roberto Tamassia (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 313–324. https://doi.org/10.1007/3-540-44634-6_

29

[16] Marcela Quiroz Castellanos, Laura Cruz Reyes, José Torres Jiménez, Claudia

Gómez Santillán, Héctor Joaquín Fraire Huacuja, and Adriana Cesário de Faria

Alvim. 2015. A grouping genetic algorithm with controlled gene transmission

for the bin packing problem. Computers & Operations Research 55 (2015), 52–64.

https://doi.org/10.1016/j.cor.2014.10.010

[17] Weijia Song, Zhen Xiao, Qi Chen, and Haipeng Luo. 2014. Adaptive Resource

Provisioning for the Cloud Using Online Bin Packing. IEEE Trans. Comput. 63, 11
(Nov. 2014), 2647–2660. https://doi.org/10.1109/TC.2013.148

[18] Andreas Wolke, Boldbaatar Tsend-Ayush, Carl Pfeiffer, and Martin Bichler. 2015.

More than bin packing: Dynamic resource allocation strategies in cloud data

centers. Information Systems 52 (2015), 83–95. https://doi.org/10.1016/j.is.2015.
03.003

[19] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif. 2009.

Sandpiper: Black-box and gray-box resource management for virtual machines.

Computer Networks 53, 17 (2009), 2923–2938. https://doi.org/10.1016/j.comnet.

2009.04.014

[20] Rostyslav Zabolotnyi, Philipp Leitner,WaldemarHummer, and SchahramDustdar.

2015. JCloudScale: Closing the Gap Between IaaS and PaaS. ACM Trans. Internet
Technol. 15, 3, Article 10 (July 2015), 20 pages. https://doi.org/10.1145/2792980

https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1186/s13677-016-0065-9
https://doi.org/10.1016/j.future.2011.04.017
https://doi.org/10.1016/j.future.2011.04.017
https://doi.org/10.1016/j.cor.2016.06.007
https://doi.org/10.1007/BF00226291
https://doi.org/10.1007/s10479-015-1973-7
https://doi.org/10.1137/0203025
https://doi.org/10.1016/j.tcs.2015.08.005
https://doi.org/10.1016/j.tcs.2015.08.005
https://doi.org/10.1016/S0898-1221(98)00087-X
https://doi.org/10.1016/S0898-1221(98)00087-X
https://doi.org/10.1007/3-540-44634-6_29
https://doi.org/10.1007/3-540-44634-6_29
https://doi.org/10.1016/j.cor.2014.10.010
https://doi.org/10.1109/TC.2013.148
https://doi.org/10.1016/j.is.2015.03.003
https://doi.org/10.1016/j.is.2015.03.003
https://doi.org/10.1016/j.comnet.2009.04.014
https://doi.org/10.1016/j.comnet.2009.04.014
https://doi.org/10.1145/2792980

