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Abstract: - Thinning algorithms and related methods have been used to examine the void structure of porous 
materials.  While the goal is to divide the porous media into separate entities called pores, these algorithms tend to 
introduce problems with robustness and falsely identified pores due to digitalisation errors. In this paper we apply 
methods from mathematical morphology and studies on voids in sedimentary rocks to pore structure 
characterization of pigment coated paper. The Maximal Balls algorithm is subjected to various modifications and 
additions in order to make it more suitable for the needs of coated paper research, where porosities are typically 
relatively high. These modifications include methods for the removal of falsely identified pores inside the media, 
caused by digitalisation problems. Furthermore, we present different approaches to improve speed, such as the use 
of pre-calculated data and removal of unnecessary calculations. It is also evident that the previously proposed 
algorithms consume vast amounts of memory and in order to overcome this we present an approach that removes 
redundant information and avoids using objects for data representation. The most CPU-intense subalgorithm was 
reduced from O(n2) complexity to O(1) for nested calculations. Basic memory optimisations done allowed for a 
decrease in memory usage to around one half while a fundamental improvement was found in changing data 
structures. This allows for a closer to linear increase in memory consumption as a function of data size, while the 
original algorithm showed an unpredictable behaviour linking memory consumption to porosity of the set and the 
hierarchical structure and used data structures of considerable size. 
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1 Introduction 

The optimal set of end-use properties of coated paper 
is a function of its intended application. The 
microscopic structure of a coating contributes to both 
physical and functional properties such as light 
scattering, fluid absorption, surface strength, ink-
setting and printer runnability.  

In this paper we improve computer 
algorithms used to analyse the microstructures by 
dividing the porous media into separate entities 
called pores thus enabling the extraction of statistical 
data of the void structure such as pore size, pore 
connectivity, throat area, etc. . Various algorithms for 
accomplishing this task already exist, mainly 
different types of thinning algorithms [1,2,3,4] or 
closely related skeletonisation algorithms, which 
mostly depend on different types of erosion 
methodologies. These algorithms often show 

problems concerning robustness due to digitalisation 
problems, resulting in unpredictable results as 
pointed out by the authors of the Maximal Balls 
algorithm [4]. One of the main challenges of erosion 
types of algorithms is to ensure that the erosion 
process is proceeding with equal speed in all 
directions, since voxels diagonally offset from a 
central voxel are representing a larger distance than 
do voxels horizontally or vertically offset from the 
centre point. The maximal balls algorithm and 
skeletonisation algorithms using the same principles 
based on spherical volumes show promising results 
regarding these problems [4], therefore this path was 
chosen as a starting point for our research.  

Although it is possible to analyse an arbitrary 
3-dimensional structure using the methods described 
in this paper, we will focus on the problems specific 
to the particle shapes and porosities found in 
pigmented paper coatings. We suggest improvements 
to the original Maximal Balls algorithms [4] in order 



to increase efficiency on large scale problems and to 
customize it for paper coating requirements. Our aim 
is to successfully analyse the pore structure of 
complex random packings of arbitrarily shaped 
particles and considerable amounts of data (up to 
40003 voxels). We take advantage of some 
fundamental geometric properties for avoiding 
unnecessary calculations and to enable pre-
calculation of data. Furthermore, we use altered data 
representations for introducing significant memory 
optimisations by simplification and flattening of 
hierarchical structures essential to the algorithm. 
Moreover we introduce a straightforward solution to 
the false maxima and finally outline how to measure 
surface areas of voxel objects. 

We briefly recall the central ideas behind the 
Maximal Balls algorithm in chapter 2. In chapter 3 
we propose a simplified hierarchy to link the 
maximal balls and discuss various methods of 
speeding up the calculation and diminishing the 
memory consumption of the algorithm. And finally 
in chapter 4 we introduce an improved way of 
estimating pore surface area from a pore volume 
made up from voxels. 

2 The Maximal Balls algorithm 

The basic methodology of the maximal balls 
algorithm (hereafter referred to as MBA) will be 
presented in this section, for more detail, please refer 
to D. Silin et al[4]. Analysing porous structures 
statistically requires a division of the porous structure 
into separate entities. Essentially it is important to 
distinguish between two different types of entities, 
the pore bodies and the throats or necks between the 
pore bodies. The original definition of the MBA 
describes pores as being the larger bodies in the 
porous media with the main function of storing liquid 
whereas the throats are referred to as the smaller 3-
dimensional bodies forming connections between 
pores. In this paper a slightly different approach is 
taken. While the pores are still defined as the larger 
bodies storing liquid, the throats are redefined as an 
area describing the minimum of hydraulic radius 
between two pore entities.  

Basically, the MBA creates a hierarchical 
structure of so called maximal balls. A maximal ball 
is calculated for each point (x,y,z) inside a pore of a 
porous media by finding the maximum radius of a 
sphere centred at the point which is fully inside the 
porous volume. This process resembles inflating 
rubber balloons in hollow space until they touch a 
surrounding wall, without allowing the balloon to 

deform. These maximal balls, which will fill the 
porous media completely, are ordered hierarchically 
according to their radius compared to neighbouring 
balls. A ball is considered hierarchically lower if its 
centre point is contained in a ball with larger radius. 
Following this, the hierarchical structure is used to 
identify how to divide the pore space into separate 
entities. When the algorithm has refined the 
hierarchical structures, three classes of maximal balls 
remain, which can be used in the process of 
identifying pores. Firstly, we have spheres which 
have a locally maximal radius; a sphere of this class 
is a local master and describes the centre of a pore. 
The second class of balls is the slave of a locally 
maximal ball. This class of balls describes how the 
pore is decreasing in size towards a corner of a pore 
or towards a throat of another pore. The third class of 
balls consists of the balls which are slaves under at 
least two other locally maximal balls. These are 
lowest in rank, and they will describe the volume of 
the throat connecting two or more pores. As 
mentioned earlier we propose to define this throat as 
an area and the algorithm is modified accordingly. At 
this point, we assume that the number of pores 
connected through a single neck will not exceed two, 
and this has proven to be the case in the random 
packings analysed so far. If a different structure is 
found, it will certainly be identified as a pore of its 
own, as it would be difficult to avoid a local 
maximum to be created inside an connection of three 
or more pores. 

3 Dividing the pore space 

In this section most effort will go into describing in 
what way our implementation essentially differs from 
the original MBA implementation and in some cases 
defining how different parts of the algorithms not 
clearly specified in the original paper were 
implemented. In order to evaluate the robustness of 
the algorithm we used simple cubic packings and 
hexagonal close-packed spheres with varying 
rotations, as well as randomly packed sets to some 
extent. The space that we are analysing is represented 
as a matrix of voxels. A voxel is a cubic volume that 
represents one sample point of our digitalised 
material. A voxel can either be a solid phase voxel, 
representing a volume belonging to the solid material 
or a void phase voxel which represents the empty 
space between solid particles. 



 
Fig. 1 (Left) The blue spheres represent the solid phase. 
The red dot with its maximal ball in black shows that it 
will hit particle 1 much before having a chance to reach 
the others. (Right)  Illustration of the digitalisation of a 
sphere in 2D. A voxel subdivision is also illustrated 

3.1 The creation of the maximal balls 

The first part of the algorithm generates maximal 
balls for every voxel belonging to the pore space. 
The most straightforward method for accomplishing 
this task is a stepwise increase of the ball size, 
ensuring that there does not exist any position within 
the ball that overlaps any of the solid phase before 
continuing to the next step. To increase the efficiency 
of this procedure we generated a set of different size 
balls beforehand, say from radius 1 to 10. These balls 
ought to be generated on demand and stored for later 
use. In order to optimise this process, coordinates 
belonging to a ball are stored in a simple array and 
only one quadrant of the ball is generated at first. The 
other 7 quadrants are created by mirroring the 
original with respect to the centre point and the 
coordinate axes. When creating the array of 
coordinates it is straightforward to interleave the 
coordinates from the different quadrants in such a 
way that the corresponding point in every quadrant 
will be automatically checked before continuing to 
the next point. The reasoning behind this decision is 
that it is efficient to exit the algorithm checking for 
collision as rapidly as possible, and a conflict is more 
probable to occur if we spread out the coordinates 
that we are checking since we do not know a priori in 
which direction we will first hit a solid phase voxel. 
This is illustrated in Fig. 1.  

Nevertheless, interleaving will not help us to 
any greater extent when using an algorithm which is 
incrementing the radius by one and then rechecking 
for collision. We would only benefit from the 
interleaving when checking the size where the first 
collision occurs. It is preferable to use a smarter 
algorithm that makes use of the well known binary 
search algorithm [6] and apply this basic philosophy 
on our problem. The algorithm then begins by 

searching for the correct maximal ball size within 
specified limits, say between 0 and 50. The binary 
algorithm checks if the radius 25 is too large or too 
small. If it is too large, the next size to check is 13 
and if it is too small, the algorithm will go on to 19 
and so forth recursively. This will essentially result in 
an O(log n) complexity, and especially when trying 
spheres with radii exceeding the maximal size, the 
spreading of coordinates around the sphere when 
testing will ensure breaking out of the tests as swiftly 
as possible. 

Another decision to be taken is how to 
estimate the shape of the balls used. A digital 
representation of a sphere will always result in a 
more or less rough spatial estimate, depending on 
resolution. The easiest method is to include all voxels 
with a distance less than or equal to r from the centre 
point, where r is the radius. The question is: what 
kind of estimation does this result in? We argue that 
it is a fairly rough estimate and it also depends on 
how we define a voxel to be included in the domain 
of the sphere. In reality a sphere with a certain radius 
will always have the same volume, but when creating 
a digital representation the resulting volume will 
depend on how we define a voxel to be included in 
the domain of the ball. Especially when representing 
balls using a fairly low resolution the resulting 
volume will be poorly estimated. We need to 
consider if all of the voxel has to be inside or if it is 
enough that the centre point is included or any 
similar approach. A more accurate method would be 
to calculate the total voxel volume included in the 
domain of the sphere. Especially regarding curved 
surfaces this would make sense. Nevertheless, it 
might be considered cumbersome to use raw 
mathematics to accomplish this task, and there are 
certainly easier ways. Inspiration from the field of 
ray tracing, where it is common to use sub-pixel 
accuracy [7] for anti-aliasing effects and similar, was 
used to overcome this challenge easily. To solve our 
problem the idea of sub pixels can be applied to 
divide voxels found on the border area into sub-
voxels of an arbitrary subdivision, say 10 x 10 x 10. 
This makes it easy to check how many of the sub-
voxels are included inside the ball. This effectively 
gives an estimate of the volume of the voxel on the 
inside of the ball and the accuracy can be varied by 
specifying what subdivision of the voxel to use. This 
method tends to give us smoother spherical shapes 
with a volume that represents the true volume of a 
sphere with the same radius more accurately. This 
will also affect the connectivity between 
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neighbouring spheres when setting up the hierarchy, 
thus we chose to make use of the voxel sub-division. 

3.2 Elimination of inscribed maximal balls 

Once all maximal balls 
have been calculated, the 
next step is to remove 
balls that are completely 
inscribed in larger balls. 
Essentially these inscribed 
balls do not represent 
anything of the pore space 
that we did not already 
know from the larger ball. 
To achieve this removal, 
the domain of all maximal 
balls in the set is sought through, the domain 
essentially being the voxels inside the body of the 
ball. For every such voxel, its corresponding 
maximal ball will be removed if all voxels in its 
domain are inside the domain of the current ball. In 
the original MBA algorithm it was suggested that the 
maximal balls are sorted in a list according to their 
maximal radii and that a reference table with the 
same dimensions as the input data should be used for 
helping the search. We use a simplified approach, 
using only one representation for the maximal ball 
radii. A 3-dimensional matrix is used, where voxels 
belonging to particles or void space are defined with 
separate ids and maximal balls are identifed with a 
number representing their corresponding radii. In this 
approach we lose the benefit of scanning through 
larger balls, and thus removing many of the inscribed 
balls at an early stage and avoiding processing them 
later on. Instead we scan through all of the matrix 
once analysing all maximal balls. This means saving 
a considerable amount of memory and at the same 
time we avoid the process of building up a sorted list 
of the maximal balls as this may prove reasonably 
time consuming, especially when dealing with larger 
sets. 

When eliminating an inscribed maximal ball, 
the most straightforward method would be to ensure 
that all voxels belonging to the inscribed ball is 
inside the domain of the larger ball. It is feasible to 
apply some easy and effective optimisations here. 
Firstly, if a ball is inside a certain quadrant of the 
larger ball, it is sufficient to check that all the voxels 
of the same quadrant in the inscribed ball are also 
included in the domain of the larger ball. This 
argument follows from how the ball is shifted 
towards the quadrant in question as seen in Fig. 2. 

Thus, we remove 7/8 of the voxels that need to be 
tested. Another important observation is that it is 
only the outermost shell of the inscribed ball that 
need to be checked if it is completely inside; if it is 
then all the other parts of the ball will also be inside. 

The inclusion of these optimisations we save 
considerable amounts of processing. Still, the 
elimination of the maximal balls has proved to be one 
of the most expensive tasks in the whole set of 
algorithms. There is another optimisation that can be 
done which will save us notable amounts of 
calculations: our problem is limited to the size of the 
larger ball, the size of the inscribed ball and the 
position of the two balls relative to each other. This 
observation enables us to use pre-calculated tests as 
long as the shapes of the balls remain the same, in 
other words, as long as the algorithm for generating 
the sphere remains the same. The basic idea is to 
create a datafile where for every ball size up to a 
certain limit, all possible positions and sizes of 
inscribed balls are calculated. This means that for a 
ball of size x, x-1 arrays containing all possible 
positions (using the quadrant optimisation) for the 
balls with the sizes varying from 0 to x-1 will be 
generated. Every position in the array defines only if 
it is a valid position or not, in other words, it tells us 
if a ball of size y is completely inscribed if it is 
centered at a given point (a,b,c). These calculations 
do not require considerable amounts of 
computational time if we include only sizes of 0-20, 
but the required processing needed increases 
cubically with increasing radius of the sphere. When 
running the pre-calculation on a computer cluster of 
around 20 nodes it was possible to calculate the 
positions of a radius up to around 60 in roughly 50 
days. The data file storing this data is closer to 60 Mb 
when calculating such a set and we would prefer to 
keep it fairly small. It is reasonably safe to claim that 
a maximal ball with a radius larger than around 50 is 
not likely to exist in most situations, since that would 
result in a pore with the diameter of 100. This is of 
course in principle possible but it is better to handle 
those few cases separately. When the pre-calculated 
data is not covering the sizes needed, the algorithm is 
allowed to fall back to the basic method. In the end, 
this gives us a radical improvement in speed since we 
only need to do an array lookup O(1) to check if a 
ball is included, instead of an O(n2) algorithm for 
testing it manually. Manual testing requires testing 
all voxels a in the master sphere for collision with all 
voxels b in the slave sphere, this gives us O(a*b) 
which is essentially O(n2) 

Fig. 2 Only one 
quadrant needs to be 
checked 



3.3 Elimination of problems in the hierarchy 

The original implementation [4] does not mention 
any specific problems in the hierarchy; this might 
possibly be due to the reasonably low porosities that 
were analysed, typically below 20%. In our structures 
the porosities found are often around 30-50% and we 
found related problems that need to be dealt with. 
These high porosities introduced the possibility for so 
called false local maxima. They are often formed in 
narrow throats which are reasonably long, creating a 
row of maximal balls of equal size as in Fig 3B. This 
results in the following problem: the algorithm never 
adds balls of the same size to the hierarchy, but it 
allows these equally sized balls to form their own 
local maxima. The easiest solution to this problem 
seems to be to use the information gathered in the  
 

  

Fig. 3 (A) Extension of pores into an unoccupied 
intersection.  (B) Three false maxima caused by a 
narrow throat. All three smaller balls have the same 
radius.  (C) Pores evenly divided in a simple cubic 
packing 

hierarchical structure to remove the false maxima. 
All the maximal balls are scanned through once 
identifying those masters without any masters higher 
up in the hierarchy. If a maximal ball is found in its 
domain with an equal radius and subordination to 
another ball, it means that the current ball ought to be 
classified as a slave under it. When scanning through 
once, the false maxima closest to the normal structure 

will be included, and the same procedure will be 
repeated until there are no more false maxima to be 
added. In some occasions, though, the set of false 
maximal balls are separated too much from each 
other. To account for this, the algorithm is rerun 
scanning a larger volume around the false maxima in 
order to enable the joining of all false maxima into 
the hierarchy. After this modification was made, no 
false maxima were found on inspection of the test 
sets, although this is sometimes difficult to judge on 
random packings. 

3.4 The final division of pores  

When the hierarchy has been refined so that all local 
maxima are masters over all maximal balls in its 
pore, it is possible to use the structure to divide the 
pores. The idea of the original MBA-algorithm was 
to use balls with two or more masters as a volume 
defining pore throats. As previously mentioned, we 
will define this as an area. This is easily done by 
ignoring the balls with two masters when defining 
which voxels belong to which pore. This will leave 
us with an empty volume between pores which could 
essentially be seen as the intersection between two 
pores. This empty space is filled up by stepwise 
growing all pores towards the empty space. 
Essentially this is done by stepwise finding voxels 
that do not belong to any pore and assigning them to 
the closest neighbouring pore voxels. Thus, all pores 
will be expanded towards each other until all 
intersections are filled up as in Fig 3A.  Since the 
throat volume tends to be reasonably small and 
uniform the algorithm does surprisingly well at 
dividing the volume evenly. 

3.5 Reduction of memory consumption 

The application of hierarchy is straightforward, but 
we also have to consider how to use less memory. It 
is difficult to give exact estimates of memory 
consumption because it varies significantly 
depending on the porous structure. Typically a 200^3 
matrix with a particle volume concentration of 
around 60% might easily use up to 1GB of memory. 
The algorithm is supposed to build a list of masters 
and a list of slaves to every node or maximal ball. 
When adding a slave to a master, the master-list of 
the new slave also gets an element linking it to the 
new master. This means that for every master-slave 
link there will also be a slave-master link. The latter 
is actually not necessary since the only information 
needed is if the ball is a slave under another ball or 
not. The links themselves are not used in any part of 
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the algorithm. A Boolean value is 
thus adequate for this purpose. 

Although the optimisation 
above helps us to some extent, it is 
possible to make further 
improvements. There are basically 
two important observations that 
can be made, when aiming for a 
radical decrease in memory 
consumption. Firstly, the authors 
of the maximal balls algorithm 
suggest the use of objects for 
representing the hierarchical 
structure. This helps creating easy 
to understand code, but tends to 
consume more memory. We 
replace these objects with simple 
arrays. Furthermore, the 

initialisation of the hierarchy is a two step process. 
First, we analyse all maximal balls, and then we 
assign as their slaves balls inside their domain with a 
lesser radius. Following this, the hierarchy is refined, 
ensuring that only the balls highest up in the 
hierarchy will be masters of their subordinate balls. 
This latter operation removes significant amounts of 
master-slave relations, since the first step creates 
considerable amounts of extraneous downward 
relations to the same balls. It might as first seem as 
though this would be an unusual phenomenon but 
especially balls with smaller radii tend to be 
incorporated many times into the hierarchy. It is a 
waste of memory since all balls in the same pore will 
belong to the same local maximum or cluster of local 
maxima after refining the structure.  Moreover, if we 
succeed in flattening the hierarchy from the 
beginning, it will be much easier to represent the 
hierarchical structure. An array map the same size as 
the one representing the size of the maximal balls 
could be used. This map contains the id of the 
maximal ball that it belongs to.  We only have to 
handle separately balls with two masters. This will 
occur only in the thinner neck areas, and on those 
occasions a negative id that will point to a list of 
masters for the maximal ball in question can be used. 
Fig. 5 illustrates how memory consumption is 
affected by the improved algorithm. 
 To apply the memory optimisation, we need 
to identify all pores that are local maxima, in other 
words, those that reside in the centre of a pore. This 
process is easy to undertake when removing 
inscribed balls. When removing all smaller balls 
inscribed in a ball, we assign negative radii to those 
balls that are not removed but have a smaller radius. 

Thus, only balls with a locally maximal radius will 
have positive radii after this process. We then join 
clusters of local maxima and use those as a starting 
point for creating the hierarchy. We select one local 
maximum at a time and then recursively add their 
slaves to their slave list. This can be implemented as 
an array map, making further analysis quick and 
efficient. The arrays can easily be kept only partly in 
memory by temporarily storing them onto the hard 
disk if we need to analyse very large sets of data.  
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Fig. 5 Memory consumption presented with a 
logarithmic scale on the y-axis, illustrating the increase 
in memory usage for the original and the improved 
maximal balls algorithm 

 
Fig. 6  (A) Different classes of voxel configurations 
used. (B) It is easy to see in the 2D case that the length 
of a line would be overestimated if one would add the 
side lengths of the pixels 

4 Statistical analysis 

After dividing all pores into separate entities, it is 
reasonably straightforward to extract statistical data. 
As of now, the algorithm extracts porosity (void 
volume / total volume), pore volume, surface area, 
throat area and connectivity.  It is trivial to extract 
pore volume but when it comes to areas, we need a 
good method for estimating the area from a digital 
surface. 
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Fig. 4 Three 
balls will 
create slave-
to-master 
relations for 
the same 
smaller ball 
in the middle 



4.1 Estimating area in a voxel data set 

It is easy to understand that it is not possible to get a 
realistic area estimate of a voxel surface by adding 
the sides of the voxels together. This will in most 
cases overestimate the area. This is illustrated in the 
2-dimensional example in Fig 6B. If we count the 
length as the sum of the sides of the pixels, we will 
clearly end up with an overestimation of the red 
lines.  One way of achieving a better estimate would 
be to use an algorithm that estimates the curvature of 
the surface more precisely. One solution is to apply 
the marching cubes algorithm [8]. Every voxel is 
converted to a set of triangles by using neighbouring 
voxels.  It results in a smoother surface giving a more 
correct estimate. 

Although the marching cubes algorithm 
could be a good choice, it forces us to modify the 
input data before the area calculation; this will be 
time consuming and use extra memory. Furthermore 
the algorithm has problems with more odd shapes 
like narrow stick-like particles. It would be better to 
be able to scan through the voxel matrix once, 
quickly determining the surface areas. 

To achieve this, a method based on statistical 
data was chosen [9], [10]. There are basically nine 
standard configurations of neighbouring voxels, 
which are all assigned a weight of their own. The 
weight is the area that they add to the whole set and 
the weights are statistically obtained. This allows 
scanning through the data only once checking all the 
26 neighbours of every voxel to decide its weight. 
Basic testing of shapes with known areas showed that 
the algorithm returned values close enough to the real 
values, typically with much less than 1% deviation 
for radii greater than 10 when calculating the surface 
area of spheres. 

5 Conclusions 

As was shown in [4], the Maximal Balls algorithm is 
a robust tool for extracting vital information from 
porous structures. Its capability to store the complete 
porous structure in the hierarchy of maximal balls 
helps us to enhance the stability of the algorithm. We 
have added straightforward extensions to the 
algorithm that enable the removal of false maxima 
and the identification of the throat as an area, and this 
will further increase the robustness of the algorithm. 
Furthermore, improvements in algorithm speed were 
found using different optimisation techniques, such 
as pre-calculation of data and reductions of 
calculations. Most improvements show a radical 
reduction in algorithmic complexity, from cubical to 

constant time in the most extreme case. Furthermore, 
we have suggested how to reduce memory 
consumption considerably, primarily by flattening 
the hierarchy. 

The greatest challenges regarding the 
algorithm is the management of resources, both 
memory and computational power. The extreme 
amounts of data that would be needed to realistically 
capture the properties of a poly-disperse particle 
packing with large particle size distribution give rise 
to the need for processing considerable amounts of 
data. It is interesting to see that these kinds of 
algorithms can be used in very diverse fields of 
science as petroleum science, medicine and paper 
science. 
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