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Péter Majlender
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Abstract

In 2001 Carlsson and Fullér introduced
the possibilistic mean value, variance and
covariance of fuzzy numbers. In 2003
Fullér and Majlender introduced the nota-
tions of crisp weighted possibilistic mean
value, variance and covariance of fuzzy
numbers, which are consistent with the ex-
tension principle. Summarizing our results,
in this paper we will consider fuzzy num-
bers from a normative point of view and
will illustrate the concepts of possibilistic
covariance and correlation by several exam-
ples.

1 Probability

In probability theory, the dependency between two
random variables can be characterized through their
joint probability density function. Namely, if X and
Y are two random variables with probability den-
sity functions fX(x) and fY (y), respectively, then
the density function, fX,Y (x, y), of their joint random
variable (X,Y ), should satisfy the following proper-
ties
∫
R

fX,Y (x, t)dt = fX(x),
∫
R

fX,Y (t, y)dt = fY (y),

for all x, y ∈ R. fX(x) and fY (y) are called the the
marginal probability density functions of random vari-
able (X,Y ). X and Y are said to be independent if
fX,Y (x, y) = fX(x)fY (y), holds for all x, y.

The covariance between two random variables X and

Y is defined as

Cov(X,Y ) =
∫
R2

xyfX,Y (x, y)dxdy

−
∫
R

xfX(x)dx
∫
R

yfY (y)dy,

and ifX and Y are independent then Cov(X,Y ) = 0.
LetX and Y be random variables with finite variances
Var(X) and Var(Y ). Then the correlation coefficient
between X and Y is defined by

ρ(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )
,

and it is clear that −1 ≤ ρ(X,Y ) ≤ 1.

2 Possibility

A fuzzy set A in R is said to be a fuzzy number if
it is normal, fuzzy convex and has an upper semi-
continuous membership function of bounded support.
The family of all fuzzy numbers will be denoted by
F . A γ-level set of a fuzzy set A in Rm is defined
by [A]γ = {x ∈ Rm : A(x) ≥ γ} if γ > 0 and
[A]γ = cl{x ∈ Rm : A(x) > γ} (the closure of the
support of A) if γ = 0. If A ∈ F is a fuzzy number
then [A]γ is a convex and compact subset of R for all
γ ∈ [0, 1].

Fuzzy numbers can be considered as possibility distri-
butions [6]. A fuzzy set B in Rm is said to be a joint
possibility distribution of fuzzy numbers Ai ∈ F ,
i = 1, . . . ,m, if it satisfies the relationship

max
xj∈R, j �=i

B(x1, . . . , xm) = Ai(xi),

for all xi ∈ R, i = 1, . . . ,m. Furthermore, Ai is
called the i-th marginal possibility distribution of B,



Figure 1: Non-interactive possibility distributions.

and the projection of B on the i-th axis is Ai for i =
1, . . . ,m.

Definition 2.1 Fuzzy numbersAi ∈ F , i = 1, . . . ,m,
are said to be non-interactive if their joint possibility
distribution,B, is given by

B(x1, . . . , xm) = min{A1(x1), . . . , Am(xm)},

or, equivalently,[B]γ = [A1]γ × · · · × [Am]γ , for all
x1, . . . , xm ∈ R andγ ∈ [0, 1].

It is clear that in this case any change in the member-
ship function ofA does not effect the second marginal
possibility distribution and vice versa. On the other
hand, A and B are said to be interactive if they can
not take their values independently of each other [3].

Note 2.1 Marginal probability distributions are de-
termined from the joint one by the principle of ’falling
integrals’ and marginal possibility distributions are
determined from the joint possibility distribution by
the principle of ’falling shadows’.

3 Central values

Let B be a joint possibility distribution in Rn, let γ ∈
[0, 1] and let g : Rn → R be an integrable function. It
is well-known from analysis that the average value of
function g on [B]γ can be computed by

C[B]γ (g) =
1∫

[B]γ dx

∫
[B]γ

g(x)dx

We will call C as the central value operator [5].

If g : R→ R is an integrable function andA ∈ F then
the average value of function g on [A]γ is defined by

C[A]γ (g) =
1∫

[A]γ dx

∫
[A]γ

g(x)dx.

Especially, if g(x) = x, for all x ∈ R is the identity
function (g = id) and A ∈ F is a fuzzy number with
[A]γ = [a1(γ), a2(γ)] then the average value of the
identity function on [A]γ is computed by

C[A]γ (id) =
1∫

[A]γ dx

∫
[A]γ

xdx =
a1(γ) + a2(γ)

2
,

which remains valid in the limit case a2(γ)−a1(γ) =
0 for some γ. Because C[A]γ (id) is nothing else, but
the center of [A]γ we will use the shorter notation
C([A]γ) for C[A]γ (id).

Definition 3.1 [4] A functionf : [0, 1]→ R is said to
be a weighting function iff is non-negative, monoton
increasing and satisfies the following normalization
condition ∫ 1

0
f(γ)dγ = 1.

Different weighting functions can give different (case-
dependent) importances to γ-levels sets of fuzzy num-
bers.

We can use the principle of central values to introduce
the notion of expected value of functions on fuzzy
sets. Let g : R → R be an integrable function and
let A ∈ F .

Definition 3.2 [5] The expected value of functiong
onA with respect to a weighting functionf is defined
by

Ef (g;A) =
∫ 1

0
C[A]γ (g)f(γ)dγ

=
∫ 1

0

1∫
[A]γ dx

∫
[A]γ

g(x)dxf(γ)dγ.

Especially, if g is the identity function then we get

Ef (id;A) = Ef (A) =
∫ 1

0

a1(γ) + a2(γ)
2

f(γ)dγ,

which is thef -weighted possibilistic expected value
value of A introduced in [5].



Let us denoteR[A]γ (id, id) the average value of func-
tion g(x) = (x − C([A]γ))2 on the γ-level set of an
individual fuzzy number A. That is,

R[A]γ (id, id) =
1∫

[A]γ dx

∫
[A]γ

x2dx

−
(

1∫
[A]γ dx

∫
[A]γ

xdx

)2

.

Definition 3.3 [5] The variance ofA is defined as the
expected value of function g(x) = (x− C([A]γ))2 on
A. That is,

Varf (A) = Ef (g;A) =
∫ 1

0
R[A]γ (id, id)f(γ)dγ.

After some calculations we get,

Varf (A) =
∫ 1

0

(a2(γ)− a1(γ))2

12
f(γ)dγ.

Definition 3.4 [5] Let C be a joint possibility distri-
bution with marginal possibility distributions A,B ∈
F , and let γ ∈ [0, 1]. The measure of interactivity
between the γ-level sets of A and B is defined by

R[C]γ (πx, πy)

= C[C]γ
(
(πx − C[C]γ (πx))(πy − C[C]γ (πy))

)
= C[C]γ (πxπy)− C[C]γ (πx) · C[C]γ (πy)

The interactivity relation computes the average value
of the interactivity function

g(x, y) = (x− C[C]γ (πx))(y − C[C]γ (πy)),

on [C]γ .

Based on the notion of central values we introduced
a novel definition of covariance, that agrees with the
principle of ’falling shadows’.

Definition 3.5 [5] Let C be a joint possibility distri-
bution in R2. Let A,B ∈ F denote its marginal pos-
sibility distributions. The covariance of A and B with
respect to a weighting function f (and with respect to
their joint possibility distributioin C) is defined by

Covf (A,B) =
∫ 1

0
R[C]γ (πx, πy)f(γ)dγ =

∫ 1

0

[
C[C]γ (πxπy)− C[C]γ (πx) · C[C]γ (πy)

]
f(γ)dγ.

The covariance between marginal distributions A and
B of a joint possibility distribution C is nothing else
but the expected value of their interactivity function
on C (with respect to a weighting function f ). Fur-
thermore, the covariance has been interpreted as a
measure of interactivity between marginal distribu-
tions [5].

Theorem 3.1 [5] If A,B ∈ F are non-interactive
then Covf (A,B) = 0 for any weighting function f .

However, zero correlation does not always imply non-
interactivity (see Fig. 2).

Figure 2: ρf (A,B) = 0 for interactive fuzzy num-
bers.

Theorem 3.2 [2] Let A,B ∈ F be fuzzy numbers
(with Varf (A) = 0 and Varf (B) = 0) with joint
possibility distribution C. Then, the correlation coef-
ficient between A and B, defined by

ρf (A,B) =
Covf (A,B)√

Varf (A)Varf (B)
.

satisfies the property −1 ≤ ρf (A,B) ≤ 1 for any
weighting function f .

Let us consider some interesting cases. In [2] we
proved that if A and B are non-interactive, then
ρf (A,B) = 0. Consider now the case when shadows
of the joint possibility distribution move in tandem
(Fig. 3): ifA(u) ≥ γ for some u ∈ R then there exists
a unique v ∈ R that B can take, furthermore, if u is
moved to the left (right) then the corresponding value
(that B can take) will also move to the left (right). It
can be shown [2] that in this case ρf (A,B) = 1.



Figure 3: ρf (A,B) = 1.

Consider now the case when the shadows of the joint
possibility distribution move in the opposite direction
(Fig. 4): if A(u) ≥ γ for some u ∈ R then there
exists a unique v ∈ R that B can take, furthermore,
if u is moved to the left (right) then the corresponding
value (that B can take) will move to the right (left).
We have shown [2] that ρf = −1.

Figure 4: ρf (A,B) = −1.

Consider now the case depicted in Fig. 5. Since,

Covf (A,B) = −
1
36

∫ 1

0
(1− γ)2f(γ)dγ,

Varf (A) =
1
12

∫ 1

0
(1− γ)2f(γ)dγ,

therefore ρf (A,B) = −1/3 for any weighting func-
tion f .

Figure 5: ρf (A,B) = −1/3.

4 Summary

In this paper we have summarized our results on in-
teractive fuzzy numbers.
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