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Abstract

In this paper we will summarize some normative properties of pos-
sibility distributions.

1 Probability and Possibility

In 2001 Carlsson and Fullér [1] introduced the possibilistic mean value, vari-
ance and covariance of fuzzy numbers. In 2003 Fullér and Majlender [4] in-
troduced the notations of crisp weighted possibilistic mean value, variance and
covariance of fuzzy numbers, which are consistent with the extension prin-
ciple. In 2003 Carlsson, Fullér and Majlender [2] proved the possibilistic
Cauchy-Schwartz inequality. Drawing heavily on [1, 2, 4, 5] we will sum-
marize some normative properties of possibility distributions.
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In probability theory, the dependency between two random variables can be
characterized through their joint probability density function. Namely, if X
and Y are two random variables with probability density functions fX(x) and
fY (y), respectively, then the density function, fX,Y (x, y), of their joint ran-
dom variable (X,Y ), should satisfy the following properties

∫
R

fX,Y (x, t)dt = fX(x),
∫
R

fX,Y (t, y)dt = fY (y), (1)

for all x, y ∈ R. Furthermore, fX(x) and fY (y) are called the the marginal
probability density functions of random variable (X,Y ). X and Y are said to
be independent if

fX,Y (x, y) = fX(x)fY (y),

holds for all x, y. The expected value of random variable X is defined as

E(X) =
∫
R

xfX(x)dx,

and if g is a function of X then the expected value of g(X) can be computed
as

E(g(X)) =
∫
R

g(x)fX(x)dx.

Furthermore, if h is a function of X and Y then the expected value of h(X,Y )
can be computed as

E(h(X,Y )) =
∫
R2

h(x, y)fX,Y (x, y)dxdy.

Especially,

E(X + Y ) = E(X) + E(Y ),

that is, the the expected value of X and Y can be determined according to
their individual density functions (that are the marginal probability functions
of random variable (X,Y )). The key issue here is that the joint probability
distribution vanishes (even if X and Y are not independent), because of the
principle of ’falling integrals’ (1).

Let a, b ∈ R ∪ {−∞,∞} with a ≤ b, then the probability that X takes its
value from [a, b] is computed by

P(X ∈ [a, b]) =
∫ b

a
fX(x)dx.



The covariance between two random variables X and Y is defined as

Cov(X,Y ) = E
(
(X − E(X))(Y − E(Y ))

)
= E(XY )− E(X)E(Y ),

and if X and Y are independent then Cov(X,Y ) = 0, since E(XY ) =
E(X)E(Y ). The covariance operator is a symmetrical bilinear operator and it
is easy to see that Cov(λ,X) = 0 for any λ ∈ R.

The variance of random variable X is defined as the covariance between X
and itself, that is

Var(X) = E(X2)− (E(X))2 =
∫
R

x2fX(x)dx−
(∫

R

xfX(x)dx
)2

.

For any random variables X and Y and real numbers λ, µ ∈ R the following
relationship holds

Var(λX + µY ) = λ2Var(X) + µ2Var(Y ) + 2λµCov(X,Y ).

A fuzzy set A in R is said to be a fuzzy number if it is normal, fuzzy convex
and has an upper semi-continuous membership function of bounded support.
The family of all fuzzy numbers will be denoted by F . A γ-level set of a fuzzy
set A in Rm is defined by [A]γ = {x ∈ Rm : A(x) ≥ γ} if γ > 0 and
[A]γ = cl{x ∈ Rm : A(x) > γ} (the closure of the support of A) if γ = 0. If
A ∈ F is a fuzzy number then [A]γ is a convex and compact subset of R for
all γ ∈ [0, 1].

Fuzzy numbers can be considered as possibility distributions. Let a, b ∈ R ∪
{−∞,∞} with a ≤ b, then the possibility that A ∈ F takes its value from
[a, b] is defined by [7]

Pos(A ∈ [a, b]) = max
x∈[a,b]

A(x).

A fuzzy set B in Rm is said to be a joint possibility distribution of fuzzy
numbers Ai ∈ F , i = 1, . . . ,m, if it satisfies the relationship

max
xj∈R, j �=i

B(x1, . . . , xm) = Ai(xi), ∀xi ∈ R, i = 1, . . . ,m.

Furthermore, Ai is called the i-th marginal possibility distribution of B, and
the projection of B on the i-th axis is Ai for i = 1, . . . ,m.

Let B denote a joint possibility distribution of A1, A2 ∈ F . Then B should
satisfy the relationships

max
y

B(x1, y) = A1(x1), max
y

B(y, x2) = A2(x2), ∀x1, x2 ∈ R.



Figure 1: Independent possibility distributions.

If Ai ∈ F , i = 1, . . . ,m, and B is their joint possibility distribution then
the relationships B(x1, . . . , xm) ≤ min{A1(x1), . . . , Am(xm)} and [B]γ ⊆
[A1]γ × · · · × [Am]γ , hold for all x1, . . . , xm ∈ R and γ ∈ [0, 1].

In the following the biggest (in the sense of subsethood of fuzzy sets) joint
possibility distribution will play a special role among joint possibility distribu-
tions: it defines the concept of independence of fuzzy numbers.

Definition 1.1. Fuzzy numbers Ai ∈ F , i = 1, . . . ,m, are said to be indepen-
dent if their joint possibility distribution, B, is given by

B(x1, . . . , xm) = min{A1(x1), . . . , Am(xm)},

or, equivalently, [B]γ = [A1]γ × · · · × [Am]γ , for all x1, . . . , xm ∈ R and
γ ∈ [0, 1].

Marginal probability distributions are determined from the joint one by the
principle of ’falling integrals’ and marginal possibility distributions are deter-
mined from the joint possibility distribution by the principle of ’falling shad-
ows’.



LetA ∈ F be fuzzy number with [A]γ = [a1(γ), a2(γ)], γ ∈ [0, 1]. A function
f : [0, 1] → R is said to be a weighting function [4] if f is non-negative,
monotone increasing and satisfies the following normalization condition

∫ 1

0
f(γ)dγ = 1. (2)

2 Possibilistic expected value, variance, covariance

Definition 2.1. [5] Let A ∈ F be a fuzzy number with [A]γ = [a1(γ), a2(γ)],
γ ∈ [0, 1]. The central value of [A]γ is defined by

C([A]γ) =
1∫

[A]γ dx

∫
[A]γ

xdx.

It is easy to see that the central value of [A]γ is computed as

C([A]γ) =
1

a2(γ)− a1(γ)

∫ a2(γ)

a1(γ)
xdx =

a1(γ) + a2(γ)
2

.

Definition 2.2. Let A1, . . . , An ∈ F be fuzzy numbers, and let g : Rn →
R be a continuous function. Then, g(A1, . . . , An) is defined by the sup–min
extension principle [6] as follows

g(A1, . . . , An)(y) = sup
g(x1,...,xn)=y

min{A1(x1), . . . , An(xn)}.

Definition 2.3. [5] Let A1, . . . , An ∈ F be fuzzy numbers, let B be their joint
possibility distribution and let γ ∈ [0, 1]. The central value of the γ-level set of
g(A1, . . . , An) with respect to their joint possibility distribution B is defined
by

CB ([g(A1, . . . , An)]γ) =
1∫

[B]γ dx

∫
[B]γ

g(x)dx,

where g(x) = g(x1, . . . , xn).

Definition 2.4. [5] Let A,B ∈ F be fuzzy numbers, let C be their joint pos-
sibility distribution, and let γ ∈ [0, 1]. The dependency relation between the
γ-level sets of A and B is defined by

RelC([A]γ , [B]γ) = CC
([

(A− CC([A]γ))(B − CC([B]γ))
]γ)

,



which can be written in the form,

RelC([A]γ , [B]γ) =

1∫
[C]γ dxdy

∫
[C]γ

xydxdy −
1∫

[C]γ dx

∫
[C]γ

xdx×
1∫

[C]γ dy

∫
[C]γ

ydy.

Figure 2: The case of ρf (A,B) = 1.

The covariance of A and B with respect to a weighting function f is defined
as [5]

Covf (A,B) =
∫ 1

0
RelC([A]γ , [B]γ)f(γ)dγ

=
∫ 1

0

[
CC([AB]γ)− CC([A]γ) · CC([B]γ)

]
f(γ)dγ.

In [5] we proved that if A,B ∈ F are independent then Covf (A,B) = 0. The
variance of a fuzzy number A is defined as [5]

Varf (A) = Covf (A,A) =
∫ 1

0

(a2(γ)− a1(γ))2

12
f(γ)dγ.



Figure 3: The case of ρf (A,B) = −1.

In [5] we proved that the that the ’principle of central values’ leads us to the
same relationships in possibilistic environment as in probabilitic one. It is why
we can claim that the principle of ’central values’ should play an important
role in defining possibilistic dependencies.

Theorem 2.1. [5] Let A, B and C be fuzzy numbers, and let λ, µ ∈ R. Then

Covf (λA+ µB,C) = λCovf (A,C) + µCovf (B,C),

and

Varf (λA+ µB) = λ2Varf (A) + µ2Varf (B) + 2λµCovf (A,B),

where all terms in this equation are defined through joint possibility distribu-
tions.

Furthermore, in [2] we have shown the following theorem.

Theorem 2.2. Let A,B ∈ F be fuzzy numbers (with Varf (A) �= 0 and
Varf (B) �= 0) with joint possibility distribution C. Then, the correlation



coefficient between A and B, defined by

ρf (A,B) =
Covf (A,B)√

Varf (A)Varf (B)
.

satisfies the property
−1 ≤ ρf (A,B) ≤ 1.

for any weighting function f .

Figure 4: The case of ρf (A,B) = 1/3.

Let us consider three interesting cases. In [4] we proved that ifA andB are in-
dependent, that is, their joint possibility distribution isA×B then ρf (A,B) =
0. Consider now the case depicted in Fig. 2. It can be shown [2] that in this
case ρf (A,B) = 1. Consider now the case depicted in Fig. 3. It can be shown
[2] that in this case ρf (A,B) = −1. Consider now the case depicted in Fig. 4.
It can be shown that in this case ρf (A,B) = 1/3.



3 Summary

We have illustrated that by choosing appropriate operators we can establish
probability-like theorems in possibilistic environment.
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