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ABSTRACT

In this paper, we present a method for predicting the transcoding
time of videos given an input video stream and its transcoding pa-
rameters. Video transcoding time is treated as a random variable
and is statistically predicted from past observations. Our pro-
posed method predicts the transcoding time as a function of sev-
eral parameters of the input and output video streams, and does
not require any detailed information about the codec used. We
show the effectiveness of our method via comparing the result-
ing predictions with the actual transcoding times on unseen video
streams. Simulation results show that our prediction method en-
ables a significantly better load balancing of transcoding jobs
than classical load balancing methods.

Index Terms— Transcoding, Prediction, Machine Learning,
Load Balancing

1. INTRODUCTION

Video content is being produced, transported and consumed in
more ways and devices than ever. Meanwhile a seamless inter-
action is required between video content producing, transport-
ing and consuming devices. The difference in device resources,
network bandwidth and video representation types results in the
necessary requirements for a mechanism for video content adop-
tion. One such mechanism is called video transcoding. Video
transcoding is a process of converting one compressed video rep-
resentation to another. Currently transcoding is being utilized
for such purposes as: bit-rate reduction in order to meet net-
work bandwidth availability, resolution reduction for display size
adoption, temporal transcoding for frame rate reduction and error
resilience transcoding for insuring high quality of service (QoS)
[1, 2].

Transcoding is a computationally heavy process and several
methods has been proposed in order to increase its efficiency
[3, 4]. Among them many attempts have been made to decrease
its computational complexity through reusing information like
DCT coefficients and the motion vectors extracted from the orig-
inal coded data instead of fully re-encoding the video content.
On the other hand to realize multiple transcoding and speed up,
studies has been done to integrate multiple processors to fully de-
code and re-encode incoming video [5]. And more recently, new
large-scale cloud based elastic transcoding architectures and ser-
vices are emerging [6, 7, 8].

Runtime scheduling of transcoding jobs in multicore and
cloud environments is hard as their resource requirements may
not be known before hand. Currently for video transcoding jobs

one has to rely on worst-case values which lead to an over provi-
sioning of resources to maintain satisfactory QoS. This is due
to the fact that the resource requirement of a transcoding job
is highly dependent on the video data to be converted and its
conversion parameters. In order to allow such distributed and
multicore systems overcome the problem of over provisioning
a method for predicting the resource requirement of each job is
required.

Today, computing systems vary significantly from one an-
other and range from very small (e.g. cellphones, tablets, note-
books) to very large (servers, data centres, cloud ). However,
at the heart of each of these systems there are resource manage-
ment components that decide how to schedule the execution of
different tasks over time (i.e., ensuring high system utilization or
efficient energy use [9, 10] ) or allocate program resources such
as memory, storage and networking (i.e., ensuring a long battery
life or fair resource allocation). These management components
typically must be able to predict how a given task will perform
depending on its size and its other characteristics, so as to decide
how best to plan for the future. For example, considering a sim-
ple scenario in a cloud transcoding service with a set of two types
of transcoding requests, fast transcoding jobs in set A and slow
transcoding jobs in set B, A scheduler is often faced with the
decision of whether to run each set on different CPU resources,
potentially taking longer to execute; or to interleave between the
two sets and distribute the job fairly, potentially executing the
tasks much faster. If the scheduler can predict accurately how
long each job would take to execute on a given platform, it can
make an optimal decision, returning results faster, possibly mini-
mizing energy, waiting time and maximizing throughput. Figure
1 shows an example distribution of video transcoding times on a
set of randomly selected YouTube videos with randomly selected
but valid transcoding parameters. Notice the heavy-tailed distri-
bution in transcoding time values which will have a large impact
on the performance of the system if scheduled improperly [11].

Fig. 1. Transcoding Time Distribution Over Randomly Se-
lected YouTube Video Dataset



In order to leverage such opportunities, use of low over-
head and accurate prediction mechanism is required. In this pa-
per we present such prediction models trained based on an ex-
pert selected and easily obtainable video meta-data and transcod-
ing (conversion) parameters. By basing scheduling decisions on
such ahead of time knowledge, better resource utilization can be
achieved.

2. RELATED WORK

Among others our work relates to video transcoding and predic-
tion. In this section, we briefly summarize the related work on
each topic.

2.1. Video Transcoding and Scheduling

Zhenhua Li et al. [12] implemented a cloud transcoder which
requires a user to provide a video link and other transcoding
parameters such as format, resolution, etc. Once a user pro-
vides the video link and other parameters, the required video is
downloaded from the Internet and transcoded in a Cloud. Af-
ter transcoding, the video is sent to the user. A copy of video
is stored in a cloud cache to avoid repeated transcoding opera-
tions. The paper mainly focus on providing video transcoding
service, and it does not talk about how such transcoding jobs are
scheduled.

In [13] a distributed video transcoding was implemented with
Message Passing Interface programming model. The video was
segmented statically at Group of Pictures (GOP) level. The main
focus of the paper was on parallelization and data distribution
among computing units for bit rate reduction video transcod-
ing. Although the paper provided a distributed video transcod-
ing, however job scheduling was not the main topic.

In [8] prediction-based dynamic resource allocation algo-
rithm to scale video transcoding service on a given Infrastructure
as a Service cloud were discussed. The proposed algorithm pro-
vides mechanisms for allocation and deallocation of virtual ma-
chines based on a regression model that tracks and predicts the
aggregate target transcoding rate required by the service. This
work only uses queue length when load balancing transcoding
jobs probably because tracking transcoding progress of individ-
ual streams is very expensive.

2.2. Machine Learning and Prediction

Roitzsch et al. [14] have presented per-frame decoding time pre-
diction for modern video decoding algorithms. In this work they
used expert selected metric to train and predict decoding time of
videos encoded in MPEG. This work is specific to the MPEG
family of codec and can not be applied directly to our problem
as transcoding application should support a set of codecs from
different codec families.

2.3. video characterization

There has been significant research on understanding the work-
loads of new generation video servers. These researches espe-
cially focus on the social aspect of videos and traffic character-

ization such as popularity, active life span, user access pattern,
growth pattern, request patterns, etc.

Yu et al. [15] study user behaviour, content access pattern
and their implications on the design of large-scale video-on-
demand systems. Possible improvements on UGC design were
proposed by Cha et al. [16] after studying YouTube and Daum,
a popular UGC in Korea. After tracking YouTube transactions
from a network edge, Gill et al. [17] have tried to understand
video access characteristics and discuss the implications of their
observation on key concepts such as caching. The caching prob-
lem in YouTube has been further studied by Zink et al. [18].
The social networking among videos was studied in the works of
Halvey et al. [19] and Mislove et al. [20].

In this work we will reuse the traffic model from [15] to drive
our experiments but further focus on collecting the missing statis-
tics on video characteristics such as video length, size, bitrate,
frame rate, codec type, resolution and etc that will be useful in
our experiments.

3. SYSTEM OVERVIEW

Our work provides an approach for transcoding time prediction
and shows its application in load balancing transcoding requests
of a transcoding service. The main contribution of our work
is to design an automated system that predicts the transcoding
time of videos given an input video and a transcoding param-
eter set. These predictions can then be used for load balanc-
ing and QoS predictions by the service provider. Our system
provides the opportunity for transcoding service providers to es-
timate the transcoding time of requests, and more intelligently
manage their transcoding servers through proactive load balanc-
ing. We employ the idea of machine learning to design a frame-
work that learns to predict transcoding time of videos. The key
component of our work is to select fundamental video features
that enable building precise transcoding time prediction model,
and then use the resulting model on unseen videos to strategically
load balance transcoding requests across multiple nodes. Figure
2 presents the overview of our framework. Typically transcoding
service providers possess a log about transcoding requests (i.e.
both transcoding parameter sets and the original video). Based
on these traces, we can build a training dataset listing samples
containing transcoding parameter set, the original video (or its
fundamental characteristics such as resolution and bitrate) and
measured transcoding time. Using such a dataset a prediction
model can be trained via machine learning algorithms such as
neural network and support vector machines (SVM). The model
can then be used to predict and properly distribute load across
transcoding nodes. The same prediction model can further be
used to estimate the cost of transcoding a video and the QoS to
be expected by the user.

4. TRANSCODING TIME PREDICTION

Machine learning techniques are often used as decision making
mechanisms for a variety of systems. Basically, machine learn-
ing allows computers to evolve behaviours based on empirical
data, in our case, this is a collection of samples with important
video characteristics, transcoding parameter sets and measured



Fig. 2. Architecture of the prediction system

transcoding times. In this section, we present the detailed design
of the proposed transcoding time prediction method based on the
machine learning approaches.

4.1. Video Transcoding

An initial stage in building any prediction model is to understand
the process itself, in our case video transcoding. The basic idea
of video transcoding is to convert unsupported video formats
in to supported ones. Unsupported videos include videos that
are not playable by a given device due to luck of format support
or those that require relatively higher system resources than
the device can offer. The main types of video transcoding
include, resolution transcoding, bitrate transcoding, temporal
transcoding, container transcoding, codec transcoding , error
reliance transcoding and any combination of these.

Resolution transcoding enables change of resolution of a
given video allowing devices with lower or higher resolution
to get served with the most appropriate resolution depending
on the size of their display. Resolution of a video is defined
by the number of pixels in its two dimensions. Transcoding
rate and resolution have a clear correlation, the higher the
resolution difference between the input and output video the
more processing is needed and thus the lower the transcoding
rate becomes.

Bitrate transcoding enables change of bitrate of the video
allowing a given video to be served with the appropriate
bitrate depending on the bandwidth capacity of the network the
consumer device is connected to or storage media it has. Bitrate
is one of the most important characteristics of a video stream.
It indicates the number of bits in a video per unit time. Video
transcoding rate correlates with the bitrate of the input and

output video as it is directly proportional to the amount of bit
that need to be processed. Larger bitrates enable higher quality
but will require larger bandwidth and more processing power.

Temporal transcoding enables change of frame rate of a
given video. The human visual system can perceives a sequence
of more than 25 pictures per second as a video. This type of
transcoding is sometimes used by video on demand providers to
provide service with a lower frame rate (quality) in case of live
events where encoding resources can become scares. Framerate
indicates the number of frames (pictures) in a given video per
unit time. The framerate of a video has a correlation with the
transcoding rate of the video, the higher the framerate of the
input or output video the lower the transcoding rate becomes.

Container transcoding also known as format transcoding
is used to change the container (header) of a compressed video.
Several container types such as flv and mp4 has been developed
over the years to package video, audio and subtitle streams into
one file. Each of these containers have some useful features that
serve different purposes or are associated with a specific codec.

Codec transcoding Over the years different codecs (com-
pression algorithms) have been developed. Usually the newer
the codec the more advanced the algorithm it uses, allowing an
ever increasing compression efficiency and quality. Example
codecs that are being used today include h264, h263, vp8, and
mpeg4. Backward (forward) compatibility with devices and
infrastructures based on older (newer) codecs is maintained
through codec transcoding. A video codec is a hardware or soft-
ware implementation of video compression and decompression
algorithms.

Video transcoding services provide parameters that control
each of the transcoding types listed before. In addition to those
parameters such applications (services) take the original video
as an input which among others have fundamental characteris-
tics such as bitrate, framerate, resolution, video duration, codec,
frame types and count.

4.2. Dataset preparation and understanding

In order to build our model we need a training data. As we have
discussed in the previous subsection transcoding time of a video
is mainly dependent on a set of input and output video features.
Based on expert knowledge we have partly presented in the pre-
vious subsection we have picked a set of features (metrics) that
can be used in building our prediction model. This features in-
clude, bitrate, framerate, resolution, codec, number of i frames,
number of p frames, number of b frames, size of i frames, size of p
frames and size of b frames of the input video and the desired bi-
trate, framerate, resolution and codec of the output video which
are given as a parameter to a transcoding service.

4.3. Modelling

To predict the transcoding time of a video, we use two of the
most widely used supervised machine learning algorithms, the
support vector regression (SVR) and Neural net. The fundamen-
tal idea behind any regression problem in machine learning al-



gorithms such as SVR and the Neural Net can be summarized
as: given a set of t observations with n features (in our case the
input and output bitrate, framerate, codec, etc) each and a target
variable (transcoding time) y as {(x1, y1), (x2, y2), ..., (xt, yt)}
where x ∈ <n, y ∈ < the objective is to find a function (model)

f(x) = 〈ω, x〉+ b = w · x+ b with ω ∈ <n, b ∈ < (1)

with the best fit as in equation 1.

Neural nets The idea of neural networks was first inspired
by nervous system of human beings which consists of a number
of simple processing units called neuron. Each neuron receives
some input signals from outside or from other neurons and
processes them with an activation function to produce its output
and sends it to other neurons. These neurons can be understood
as a mathematical function that take n element input vector and
scale each data element xi, by a weight wj . The scaled data is
offset by some bias b and put through a differentiable activation
function such as equation 2. The output of a neuron can be
analytically viewed as equation 1. The impact of Each input is
weighted differently from other inputs thus a neuron is able to
interpret the data differently depending on the weight and bias.
Consequently the more is the weight the stronger the connection
would be allowing that data point to influence the output
more. The activation function f can be linear or non-linear.
Non-linear activation functions are useful in mapping non-linear
relationships. One such function is called sigmoid which is
represented as

1

1 + exp(−f) (2)

A network of these neurons forms a feed forward multilayer
neural networks as in 3. These networks are made of layers
of neurons. The first layer is the layer connected to the input
data. After that there could be one or more middle layers called
hidden layers. The last layer is the output layer which shows the
results. One of the learning methods in multilayer perception

Fig. 3. Mluti-layer neural network used in our prediction

Neural Networks is the error back propagation in which the
network learns the pattern in data set and justifies the weight
of the connections in the reverse direction with respect to the
gradient vector of Error function which is usually regularized
sum of squared error.

Support vector machines treats the regression problem as
a convex optimization problem:

minimize
1

2
‖ω‖2 (3)

subject to =

{
yi − ‖w, xi‖ − b ≤ ε
‖w, xi‖+ b− yi ≤ ε

(4)

Similar to the neural net the SVR allows for non-linear solution
through the use of radial basis function (RBF) kernels which are
represented as

exp(− 1

2σ2
‖f‖2) (5)

5. EVALUATION

5.1. Experimental Setup

To evaluate our proactive load balancing scheme, we simulate
the throughput and job waiting time performance in CloudSim
[21]. Every transcoding service provider has traces from its own
log at its disposal. Although we do not possess such data, there
are a number of sources (such as [15]) that provide information
about web traffic in large-scale video-on-demand systems. In or-
der to draw a realistic scenario, we imitate the video transcoding
service request patterns with a shifted Poisson distribution as in
[15]. We attempt to evaluate our proactive load balancing al-
gorithm in a cloud environment. The largest provider of cloud
infrastructure services in the world, Amazon, has published its
virtual machine types, CPU types and the costs associated with
them [22]. Under our CloudSim simulation environment, we de-
ploy nodes, assign link capacities, and specify CPU and virtual
machine characteristics according to data published by Amazon.
The instance we used to base the characteristics of our CloudSim
nodes is the c1.xlarge which is a 64-bit Intel Xeon E5-2680 ma-
chine with 8 virtual cores [22]. For generating the transcoding
parameters and input source video associated with each request
we used video characteristics data collected from YouTube.

5.1.1. YouTube Video Data Collection

For obtaining a realistic online video content statistics we use
YouTube, the largest video sharing portal in the world. It is one
of the most well known and widely used UGC (user generated
content) website allowing users to upload, tag and share videos
effortlessly. Users can also view, rate and comment on videos
which brings a powerful social aspect to the site and in turn
to its success. YouTube provides some statistics for its videos.
Such information as view-count, number of likes/dislikes, dura-
tion and comments are public. However, more detailed statistics
about fundamental video characteristics such as video bitrate,
framerate, resolution and codec, which are essential to our ex-
periment for generating realistic transcoding request parameters
are not made publicly available by YouTube or any other simi-
lar service. Therefore we have implemented a crawler that uses
the random prefix sampling method presented in [23] to sample
over a million YouTube videos. For each video we sampled, we
have probed, analysed and collected its fundamental character-
istics using Ffprobe [24]. These collected video characteristics



are then used to generate valid transcoding parameters associ-
ated with our requests. For each transcoding request we simulate
we obtained its actual transcoding time through measurement on
a cloud instance (c1.xlarge) provided by Amazon EC2. Note that
the characteristics of c1.xlarge is used to instantiate the nodes in
our simulation environment.

5.2. Evaluating Prediction Accuracy

We evaluate the performance of our prediction accuracy by com-
paring it with measured transcoding time. First we have built
a dataset containing input video, video transcoding parameters,
and a measured transcoding time while transcoding the input
video with the parameters on an Amazon EC2 c1.xlarge instance.
The input video and the transcoding parameters are obtained
through randomly picking videos from our crawled data from
YouTube. Our dataset contains 2733 instances. We have di-
vided this set into 2/3 training plus validation set and 1/3 test set.
This means we have 820 instances of unseen test set. Finally we
trained two prediction models based on neural network and SVR
using the training and the validation set. In our Neural net model
we have used 12 nodes in the hidden layer and the input layer
takes 19 input attributes, 1 id and 1 label. The number of itera-
tion for the back-propagation is set to 500. For our SVM model
we used the grid search method to search for hyper-parameters
using training and validation set. The number of support vectors
used is 1795.

Figure 4 shows the prediction accuracy as compared to the
actual transcoding time on the unseen test set. The result shows a
mean absolute percentage error of 8.78% for our neural network
model and a mean absolute percentage error mean absolute error
of 18.64% for our SVR model.

Fig. 4. Prediction Performance. Only 100 out of 820 results
for figure readability

5.3. Evaluating Proactive Loadbalancing

We evaluate our proactive load balancing algorithms (see algo-
rithm 1 )in comparison with two widely used algorithms in video
service systems. 1) queue length based load balancing. Load
is being balanced based on queue length associated with each
server. 2) Round robin approach, where transcoding requests are
routed to transcoding servers in a round robin fashion.

Algorithm 1 Proactive load balancing algorithm
1: server ← servers(0)
2: for all req in requests do
3: for all s in servers do
4: if predLoad(s) < predLoad(server) then
5: server ← s
6: end if
7: end for
8: send(req, server)
9: load(req)← predictTranscodingT ime(req, algo)

10: predLoad(server) ← predLoad(server) +
load(req)

11: end for

Transcoding rate which measured in frames per second (fps)
is defined as the number of frames transcoded per unit time (sec).
Higher transcoding rate indicates better throughput, reduced de-
lay and total cost of the system. Figure 5 illustrates the total
transcoding rate of the system for a three hour load modelled
from a realistic scenario described so far.

We observe that our proactive load balancing algorithms
based on predicted load with our Neural Net and SVR models
can achieve up to 15% improvement in terms of system through-
put over the round robin and The queue length approaches before
over provisioning occurs (i.e. 300 servers). One can also note
that use of queue length or round robin produces the same result
as the curves for these approaches overlap all the way.

Fig. 5. Throughput

Average waiting time reflects the average waiting time of a
transcoding request before it is given a resource and start being
processed. Figure 6 shows the results from the simulation on
the average waiting time of a job. Our proactive load balancing
approaches enables reduction of average waiting time of a job by
up to 18% enabling a better QoS.

6. CONCLUSION

This paper addresses the challenges exposed by the modern on-
line video transcoding services. We design a proactive load bal-
ancing scheme to aid throughput and quality of service for video
transcoding services. Our novel method explores the opportuni-
ties provided by trends from transcoding load of requests. Due



Fig. 6. Average waiting time for different load balancing ap-
proaches

to the correlation between transcoding time and transcoding pa-
rameters, we can predict transcoding time of a video given the
fundamental characteristics of the input video and the transcod-
ing parameters which in turn is used to properly load balance
video transcoding requests across servers. In our experiment,
we have used real-world data and designed the simulation sce-
nario imitating real world Internet transactions. Our proactive
load balancing algorithm shows effectiveness and significant im-
provement over the traditional methods. For the future work, we
would like to further explore the effect of our load balancing on
dynamic resource provisioning.
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