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Abstract—Human behaviour representation and modelling in
Smart Spaces are crucial tasks in Ambient Intelligence envi-
ronments. A problem found among existing technologies is that
the environment sensor data is always provided as crisp events.
However, to model behaviour in reactive Smart Spaces we need
to identify user patterns, which are not always performed in the
same way or happening at the same time/frequency. Hence, the
handling of imprecision is essential to model human behaviour
in a realistic way. In order to connect these two paradigms,
we suggest a combined architecture to fill the gap between
quantitative Smart Space architectures (which provide raw crisp
events) and qualitative aspects such as fuzzy reasoning and
learning algorithms, that extract intelligence from data. With this
aim, we propose to use Semantic Web principles of independence
and interoperability to build an integrated framework to take
advantage of the benefits of both crisp and fuzzy models. Our
contribution in this work is a proof of concept to demonstrate
how a hybrid architecture, with a reactive rule-based subscription
mechanism, can empower users to model everyday activities
semantically or control what happens on their surroundings,
among other advantages.

I. INTRODUCTION

The idea of ubiquitous space was proposed as an ideal world
where humans and surrounding devices interact unobtrusively.
A Smart Space (SS) [29] is any physical environment equipped
with sensors and actuators able to perceive the human activity
and environmental conditions, to make decisions from these
perceptions, and to modify the space according to the system
goal. Smart Spaces support the vision in which computers
work on behalf of users, they have more autonomy, and they
are able to handle unanticipated situations. Therefore, the
development of a SS implies the usage of Artificial Intelligence
(AI) and machine learning, among other technologies.

SSs are considered to be context-aware systems; therefore,
a key requirement to design such systems is to give com-
puters the ability to understand situations and environmental
conditions [8]. To achieve this, contextual information should
be represented suitably for machine processing and reasoning.
Semantic technologies, and more specifically ontologies [12],
[11], are well suited for this purpose because ontologies
allow to share knowledge while minimizing redundancy. In
addition, they are good tools for knowledge representation and
reasoning.

On the other hand, the formal specification of human be-
haviour is difficult to handle when crisp reasoning mechanisms
are used for this purpose, since natural human patterns are
imprecise, imperfect and fully gifted with semantics. In this
way, fuzzy ontologies and fuzzy extensions of Description
Logics (DL)[3] arise as more appropriate formalisms to deal
with the vagueness inherent to real-worlds domains [4]. These
formalisms have been shown to be useful in applications on,
e.g., information retrieval and image interpretation [7].

We identify a gap among the quantitative aspects of SS, i.e.,
the infrastructure and technology that handles large amounts
of crisp sensor information [22], [34], [24], [20], and the
qualitative aspects of SS, i.e., the techniques for human
activity modelling and recognition [18], [27], [28], and the
formal specification of how the system behaviour should be
according to what the system is perceiving [26], [2], [29]. The
latter approach involves reasoning about imprecise and vague
information. In this way, our purpose is to develop a new
methodology able to entitle end-users to work with a vague
semantic specification of the SS. This new abstraction level
will allow to manage known human activities, their relation-
ships and environmental conditions, to provide expressiveness
to the specification of the SS behaviour, and therefore getting
closer to the end-user’s everyday language.

Regarding the quantitative view of SSs, we identify the
need for a semantic store with support for standards (OWL 2,
SPARQL, etc.), as well as a scalable enough rule engine with
subscription capability for real time rule-based applications.
By scalability we mean the capability of handling a wide
variety of heterogeneous events and data from different users
and activities. Supporting the standards is needed to represent
fuzzy ontologies, since nowadays, each reasoner uses its own
fuzzy DL language [7]. We argue that the integration of
these quantitative and qualitative requirements is important to
precisely model human behaviour in SS, as well as to ease
the development and deployment of semantic and intelligent
applications. However, to the best of our knowledge, there is
no integrated reasoning and storage solution supporting all our
requirements.

To illustrate the expected expressiveness of our approach
to program a SS system behaviour, we show the following



example: We should be able to model when a user is waking
up very early, the schedule for the activity to have breakfast,
and what it does mean in terms of the Smart Space behaviour.
In our approach, we will develop a system able to represent
rules such as If today is working day and Natalia wakes up
later than usual, then she is late; When Natalia is very late,
she usually does not have breakfast; etc. The system should
be able to infer that, if today is Monday and Natalia wakes up
much later than usual, then the possibility to have breakfast is
very low, and thus, it is not necessary for the SS to start the
coffee machine, turn on the lights of the kitchen, etc.

In the next section, existing knowledge representation tech-
niques such as fuzzy reasoners and required technology such
as subscription-based RDF stores, are discussed. In Section
III, we motivate and describe a selection of components for
its integration in a single hybrid framework. Section III-A pro-
poses a subscription-based RDF store with SPARQL support,
M3, as basic infrastructure for the crisp Knowledge Base (KB)
part of the overall system’s rule engine. Section III-B adds
the capability of having imprecise modelling and reasoning in
the overall architecture through a fuzzy KB, consisting on the
fuzzyDL reasoner. Section III-C describes how the integration
of the previous components in the overall architecture happens
and how the experiment for benchmarking the proof of concept
is designed. Finally, Section IV discusses the approach and
concludes with future directions.

II. RELATED WORK

Typical challenges in human activity modelling are han-
dling missing event data, adaptability to different users, or to
changes in activities, etc. Ontology-based activity representa-
tion provides a number of advantages [9]: it supports incre-
mental progressive activity recognition, state based modelling
and a more robust reasoning since there is no fixed sequences
for an activity, especially for Activities of Daily Living (ADL).
Other benefits are the ability to discriminate importance and
urgency of activities through semantic descriptions, support
for course grained and fine-grained activity assistance and the
possibility for data fusion and semantic reasoning, including
activity learning and activity assistance.

For the quantitative part of human behaviour modelling,
i.e., the infrastructure, we find a great offer in storage as
well as reasoning solutions that push the Smart Spaces vi-
sion forward. Our requirement for these solutions is to be
able to handle event subscription for data scalability. With
regards to the fuzzy paradigm, imprecise knowledge reasoning,
fuzzy Description Logics appear as an alternative to crisp
DLs which lack the ability to represent uncertain or vague
information. We consider a set of available fuzzy reasoners
and evaluate a set of expressibility requirements, useful for
AmI applications. Furthermore, we identify SPARQL support
as a standardization requirement. Table I summarizes the
identified requirements for behaviour representation in SSs
and the fuzzy reasoners that support them to some extent
(marked with x). It can be seen that FiRE and DeLorean
allow the use of some DL constructs that fuzzyDL does not
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FiRE
[32],
[31],
[30]

F − SHIN x x

GURDL
[13]

F −ALC x

De-
Lorean

[5]

F − SROIQ x x x x x

GERDS
[14]

F −ALC

fuzzy
DL [6]

F − SHIF
(D)

x x x x x x

YADLR
[21]

SLG
algorithm

x

FRESG
[15]

F −ALC(G) x x

TABLE I
COMPARISON OF AVAILABLE FUZZY REASONERS AND THEIR SUPPORT

FOR SMART SPACE MODELLING REQUIREMENTS

support (cardinality restrictions and, in the case of DeLorean,
also nominals). On the other hand, GURDL supports a more
general representation of uncertainty, not being limited to
fuzzy logic [6]. At last, another useful feature in behaviour
modelling is stream reasoning to semantically annotate events.
This feature can be found in TrOWL [33], a tractable reasoning
infrastructure of OWL 2 with built-in OWL 2 QL reasoner
Quill and EL reasoner REL. fuzzyDL supports a series of
distinct features with respect to expressivity of the represen-
tation, such as explicit fuzzy sets, concepts modifiers, data
types and defuzzification [6]. However, none of the fuzzy
reasoners includes a listener/observer subscription mechanism
for effective changes notifications on real time.

No fuzzy reasoner includes at the moment subscription
features; it is only in crisp RDF stores where this can be found.
To the contrary, it is uncommon to have RDF stores including
imprecise reasoning. However, there are particular instances
such as f-SPARQL [10], a ”flexible extension of SPARQL”,
that allows in the FILTER constraint, the occurrence of fuzzy
terms and fuzzy operators (by using α-cut operation), as well
as weights in fuzzy constraints to have different importance
and efficiently compute the top-k answers.

Event subscription is not supported in the vast majority of
RDF stores. However, we can find exceptions such as M3 [17],
some versions of OWLIM [1] or RDFStore-js [16]. The latter
is a JavaScript implementation of an RDF quad store with
support for SPARQL 1.0, most of SPARQL 1.1/update and a
significant portion of SPARQL 1.1 query, that can be executed
in the browser. The great advantage of event subscription
features in semantic repositories is the capability of efficiently
get notified when data of interest changes. This feature can
avoid bottlenecks normally caused when rule conditions result



in a constant checking for the status of specific nodes.
To the best of our knowledge, and as Table I shows, there

does not exist a system which comprises support for all our
requirements: expressive fuzzy queries, event processing for
scalable, efficient and real time applications, as well as the pos-
sibility of federating queries with other SPARQL end-points.
These are crucial elements when tackling real life problems in
SS. For instance, decision support system or expert systems
must react on time against forgotten actions, against potential
errors produced in an industrial process or when following up a
certain procedure with guidelines. To solve these problems, not
only must standard query languages be supported to integrate
heterogeneous data, but also efficient notification mechanisms
must be supported to be alerted only when conditions we are
actually interested happen. Additionally, support for every-day
imprecise or vague terminology is to be provided. Lacking an
efficient subscription/notification based system makes a large
rule system impractical to real-time proactive applications. The
requirements detailed in this section, together with an easy and
reachable end-user language, can allow better modelling of
expert knowledge and better involvement of the end-user into
the problem modelling process. In next section we discuss
concrete components for our proposal and how they can be
connected.

III. A FRAMEWORK FOR CONTEXT-AWARE SMART SPACE
APPLICATION DEVELOPMENT

After identifying, in the previous section, the main com-
ponents required for realizing more powerful human activity
modelling in SSs, we detailed some technologies which con-
tribute to this aim. As no system was found fulfilling all the
needs for the development and deployment of our vision of
SSs, we suggest a configuration of technologies that allows
us to construct an AmI framework to enable human behaviour
representation and recognition through rules that include fuzzy
concepts in form of linguistic terms.

The overall system, in Figure 1, is composed by two parts, a
crisp KB and a fuzzy KB. These are connected by a main rule
engine, which handles the subscription to each type of event
condition (fuzzy and crisp) per rule. Next sections detail the
components of the system architecture.

A. A subscription-based RDF store with SPARQL support: M3

The crisp element of the KB in the overall system in Fig.
1 is formed by Smart-M3, a Multi part, Multi device and
Multi vendor platform consisting of independent agents which
communicate implicitly by inserting and querying information
in the space. M3 is an open source, cross-domain architecture
where the central repository of information, Semantic Infor-
mation Broker (SIB), is responsible for information storage,
sharing and management. Entities called Knowledge Proces-
sors (KPs) implement functionality and interact with the Smart
Space by inserting/querying common information through the
publish/subscribe Smart Space Access Protocol (SSAP) and
now, also through SPARQL. Communication happens not

Fig. 1. Overall framework with fuzzy and crisp Knowledge Bases

device to device but through the SIB. Entities and services
are described with OWL (Web Ontology Language).

Benefits of publish/subscribe (or ”push”) semantic architec-
tures, such as M3, include the inherent polling and a strong
decoupling of the communication clients with respect to time,
reference and data schema, increasing flexibility in application
design and allowing for more autonomous system architectures
[23]. M3 supports RDF triple pattern queries as well as WQL
1 and SPARQL queries. Furthermore, it allows to subscribe to
a certain triple pattern for efficient awareness of data changes,
as well as to join/leave a confined SS. Therefore, the role of a
module such as M3 is to serve as SPARQL persistent storage
for (crisp) event processing.

B. Imprecise rules and fuzzy reasoning

Crisp RDF infrastructures can achieve scalable SS appli-
cations. However, these are features not always considered
to be the main aim of fuzzy reasoners. The latter, on the
contrary, provide expressive languages to model, e.g., routine
activities or more complex processes. In order to allow not
only crisp but also fuzzy rules for describing the behaviour of
both, users and a semantic SS as a whole, the SW needs to
become more imprecise to accommodate everyday problems
and serve distinct kinds of users [25]. This is why the user
should be able to vaguely or imprecisely express knowledge.
We proceed to explain how a rule with imprecise concepts
and/or relations, is mapped to a representation in our fuzzy
KB.

In order to reason with human behaviours, as well as the
behaviour of the Smart Space system as a whole, we can
employ an expressive 2 fuzzy DL reasoner, such as fuzzyDL
[6]. Let’s assume the user wants to define rules such as:

1) IF (WeatherSituation isCurrently VeryStormy) OR (Na-
talia hasStatus AwayForWeekend), THEN (TurnOff-
AllElectricitySwitches(NataliasAppartment))).

2) IF (Natalia hasPhone P) AND (Natalia hasCalendar
C) AND (P isInLocation L) AND (L isVeryNearTo Jo-

1Wilbur Query Language: http://wilbur-rdf.sourceforge.net/
2Allowing needed DL constructs as well as flexible behaviour descriptions



% Concrete features (Classes and Relations)
(instance Natalia Person)
(define-concept NataliasAppartment (and HousingProperty (some rent-
edBy Natalia))
(instance WeatherSituationTurku WeatherSituation)
(instance TurnOffAllElectricitySwitches ExecutableApplication)
(instance StartAudioRecording ExecutableApplication)
(instance TranscribeMeetingAgenda ExecutableApplication)
(functional isCurrently)
(functional hasStatus)

% Labels for the variables
VeryStormy = triangular (50,100,150)

% A) Definition of Logical Rules as Mamdani rules
(define-concept Rule1 = (g-and (Natalia (some hasStatus AwayFor-
Weekend)) (WeatherSituationTurku (some isCurrently VeryStormy))
(TurnOffAllElectricitySwitches (some withParams NataliasAppart-
ment))))
% Encoding of Mamdami Rule Base
(define-concept MamdaniRuleBase (g-or Rule1 (...) RuleN))

% Input to the controller/Facts
(instance input (= and WeatherSituationTurku (some isCurrently Near-
lyCloudy)))
(instance input (= and Natalia (some hasStatus AtWork))) (...)

% Defuzzification
(defuzzify-lom? MamdaniRuleBase input TurnOff-
AllElectricitySwitches)

% B) Definition of Logical Rules as implication rules
(define-concept antecedents1 (and (Natalia (some hasStatus Away-
ForWeekend)) (and WeatherSituationTurku (some isCurrently Very-
Stormy))))
(define-concept consequents1 (and (TurnOffAllElectricitySwitches
(some withParams NataliasAppartment))))
(define-concept Rule1 (l-implies antecedents1 consequents1))

(define-concept antecedents2 (and (Natalia (some hasPhone P) (and
(Natalia (some hasCalendar C)) (and (P (some isInLocation L))) (and
L (some isVeryNearTo JohansOffice))))))
(define-concept consequents2 (and (StartAudioRecording (some with-
Params P)) (TranscribeMeetingAgenda (some withParams (P and
C))))))
(define-concept Rule2 (l-implies (g-and antecedents2) (g-and conse-
quents2)))

% Input to the controller/Facts
% Query for the consequent’ satisfiability degree
(min-instance? input consequents1)

TABLE II
EXAMPLE: KB AND RULES IN fuzzyDL FOR RULES 1 AND 2.

hansOffice), THEN (StartAudioRecording(P) AND Tran-
scribeMeetingAgenda (P, C))

These rules follow the Mamdani structure and can be
mapped to a set of statements in a fuzzy KB as a fuzzy control
system [6]. For instance, for Rules 1 and 2 we would have the
mapping to fuzzy axioms in Table II.

We chose fuzzyDL because it supports important features for
expressing imprecise common knowledge when users model
knowledge in SS. fuzzyDL provides fuzzy rough set reasoning
and fuzzy reasoning for fuzzy SHIF , which includes concrete
fuzzy concepts (ALC) augmented with transitive roles, a role
hierarchy, inverse, reflexive, symmetric roles, functional roles,
and explicit definition of fuzzy sets. We believe that letting
end-users express domain-specific knowledge by allowing
imprecise terms, can bring technology closer to them and thus,
it can be better exploited.

SPARQL query fuzzyDL query Subscription in M3

SELECT
DISTINCT ?user
WHERE ?user
mo:hasStatus
mo:AwayFor-

Weekend. ?user
mo:hasName

”Na-
talia”xsd:string.

(min-related?
Natalia Away-
ForWeekend
hasStatus)

triple = [Triple(
URI(NS+”Natalia”),
URI(NS+”hasStatus”),
URI(NS+”AwayForWeekend”))]
self.st =
self.CreateSubscribeTransaction(
self.ss handle)
initialResult =
self.st.subscribeRDF(triple,
subscriptHandler(self))

TABLE III
EXAMPLE: MAPPING OF RULE ANTECEDENT ”IF Natalia hasStatus

AwayForWeekend” TO SPARQL AND fuzzyDL QUERIES

C. Overall framework integration and implementation

Once described, in last subsections, the main components of
the reactive context-aware SS architecture, we proceed to study
its integration within an event based hybrid rule-based system.
Figure 1 shows the structure and main processing modules of
the fuzzy-crisp overall architecture, as well as the information
flow.

The first module, Rule Parser, takes as input a Mamdani
format IF-THEN rule’s antecedent and extracts a set of
(ontologically correspondent) RDF triples. These will be the
event triple patterns to be subscribed to (for modification-
awareness) when executing the equivalent subscription. The
second module is called Subscriber and takes as input the
RDF triples produced by the Mamdani Rule Parser, as well
as the consequent of the rule. The consequent represents the
actions to be performed every time the subscription’s triple
pattern is inserted, removed or updated in any of the KBs.
The Subscriber then creates a subscription as output (either
SPARQL or RDF based).

When an event notification is received, the consequent of
the rule is to be updated, in both KBs, to keep consistency. In
the case of having a fuzzy term in the antecedent of the rule, an
explicit fuzzy query needs to be executed from the subscription
handler method -subscriptHandler in Table III-. The types of
different subscription patterns, and the correspondent fuzzyDL
queries 3 that they origin, are shown in the mapping on Table
IV. In this table, the subscription patterns containing s, p,
and o represent fixed values for subject, predicate and object
respectively, while ? represents a wild-card entity. As for the
query results, the entities returned will be of interest (for rule
triggering) if their satisfiability degree is >0.

In order to test the feasibility and practicality of the pro-
posed hybrid architecture, benchmarking over the proof of
concept is required. It can be noted that, with the technology
available, the current solution assumes data redundancy, as it
initially requires two (crisp and fuzzy) databases, where up-
dates need to be twofold. Accepting this current technological
drawback, we can design the experiment, where the objective
is to realize a viability study of the framework. The main

3fuzzyDL syntax available in: http://gaia.isti.cnr.it/ straccia/software/fuzzy-
DL/syntax.html



Subscrip-
tion

pattern
fuzzyDL query

(?, ?, ?) ∀ Concept C: (all-instances? C)
(s, ?, ?) If s is a Concept: (min-sat? s)

If Individual s ∈ Concept C: (min-instance? s C)
(?, p, ?) If D is p’s Domain and R is p’s Range; ∀ Individual d ∈ D

and ∀ Individual r ∈ R: (min-related? d r p)
(?, ?, o) If o is a Concept: (min-sat? o)

If Individual o ∈ Concept C: (min-instance? o C)
(s, p, ?) If R ∈ p.Range: ∀ Individual i ∈ R: (min-related? s i p)
(?, p, o) If D ∈ p.Domain: ∀ Individual i ∈ D: (min-related? i o p)
(s, ?, o) ∀ Role r, (min-related? s o r)
(s, p, o) (min-related? s o p)

TABLE IV
MAPPING OF SUBSCRIPTION TYPES TO fuzzyDL QUERIES

variable factors to consider are the time for a) Reasoning, b)
Querying/Updating and c) Subscription response with respect
to ontology size. For c), we account the time difference
between the update of the data of interest, and the time when
the notification is received. Likewise, different types of hybrid
ontologies must be used, containing different proportions of
both fuzzy and crisp entities. For this purpose, datasets of very
large number of triples, such as the provided by the LUBM
benchmark’s data generator4, can be used. As for the test
queries, three main kinds of queries are to be considered with
regard to the type of rule antecedent and consequent, which
can be fuzzy, crisp, or hybrid (i.e., involving triples with crisp
and fuzzy entities). Rules with different order of performance
needs, are to be studied. Different kinds of rule antecedent
translate into different implementation of subscription. In the
case of existence of a fuzzy entity, explicit polling queries are
executed in the fuzzyDL reasoner every time this is updated.
For these cases, the crisp RDF store’ subscription capability
is used.

As we commented before, in an IF(x) THEN(y) rule, x and y
can contain RDF triples with only crisp, only fuzzy or hybrid
terms. Due to the disparity on both KBs’ capabilities and
content, tasks involving different kind of rule antecedent will
result having different performance. This can be due, e.g., to
the fact that fuzzy rules can require more computing resources,
because of the explicit continuous querying required if manual
subscription is implemented, or due to the use of specialized
semantics. However, having both crisp and fuzzy KBs can be
used as an advantage for optimizing the execution time of
different types of queries and datasets.

To show the equivalence among SPARQL and fuzzyDL
queries and a subscription in M3, we present an example. Let
us assume the user wants to add the following rule to the
KB: ”IF Natalia hasStatus AwayForWeekend, THEN TurnOff-
AllElectricitySwitches”. Table III shows the expressions for
the equivalent mapped queries to be executed in both crisp
(SPARQL) and fuzzy (fuzzyDL) KBs. Note that the fuzzyDL
expression in Table III can be formulated in different ways
depending on the rule’s triggering criteria that best fulfils the
application’s needs. Another option could be querying the min.

4http://swat.cse.lehigh.edu/projects/lubm/

or max. satisfiability degree of the IF condition and set the
triggering of our rule when, e.g., it has a satisfiability degree of
min. 0.8. This is an example on how fuzzy reasoning provides
more flexible or loose querying.

We identified some technical inconvenience. The program-
ming languages of crisp and fuzzy systems do not coincide at
the moment of writing (Python and Java respectively). How-
ever, both M3 and fuzzyDL are under continuous development,
and a Java Knowledge Processor Interface for M3-Redland
is expected to fully support SPARQL-based subscriptions.
Therefore, a complete realization of the described experiment
is part of future work.

IV. DISCUSSION AND FUTURE WORK

When defining and modelling human activity, to ultimately
achieve behaviour learning and recognition in Smart Spaces,
its characterization is not intrinsically crisp. However, the data
stream of events, i.e., the SS’ input that serves as base to
model these human behaviours, is crisp. Therefore, we identify
a gap, where connecting the qualitative view of SSs with the
quantitative approach of SSs (i.e., the machinery around SS
frameworks and architectures such as RDF stores and query
languages) seems evident. Joining quantitative and qualitative
paradigms would be crucial for expressing behaviour and adapt
the SS to the user.

More concretely, our contribution consists of the proposal
of a hybrid architecture with a common interface that does not
only support a quantitative view of SS, with crisp (SPARQL)
queries and event-based rules, but also provides a qualitative
factor that takes advantage of fuzzy reasoning’s expressive
power to handle imprecise knowledge and rules, i.e., queries
with imprecise expressions or with higher complexity, abstrac-
tion or semantic levels. Such an integrated framework can
be applied in a wide range of domains, from monitoring or
automating activities in assisted living or e-health, to home
automation or industry processes.

An alternative to our proposed hybrid system could be
implementing subscriptions within the fuzzy reasoner itself,
as well as supporting SPARQL fuzzy querying by providing
a crisp-to-fuzzy mapping. Then, issues on maintaining crisp
or fuzzy semantics arise. This option would suppose extra
engineering. Thus, we proposed a first basic approach, that
keeps both architectures, to provide benefits from both crisp
and fuzzy paradigms. In this way, the system is optimized
to avoid continuous querying for changes when it is not
needed (i.e., when rule conditions are fully crisp and, in some
cases, hybrid). This implementation avoids computationally
expensive approaches such as continuous polling/querying,
or fuzzy discretization-based solutions such as the one that
DeLorean [5] employs. The latter results on an exponential
growth of data. However, rules with hybrid antecedent (i.e.,
with crisp and fuzzy terms) can be generalized by setting
their subscription condition to a set of semantically wider
crisp entities, reducing in this way, the number of explicit
queries to the fuzzy reasoner, any time there is a change.
For instance, hybrid antecedent conditions represented by RDF



triples such as (Natalia, isVeryNearTo, JohansOffice) can be
mapped to a semantically more general subscription, formed
by a crisp-only pattern: (Natalia, isNearTo, JohansOffice).
Additionally, there can be cases where strict semantics are to
be preserved, but we want to balance it with query efficiency.
In this case, the condition (WeatherSituationTurku, isCurrently,
VeryStormy) can be mapped to create a subscription for
(WeatherSituationTurku, isCurrently, ?). Therefore, this hybrid
architecture’ strategy allows for loosening of either semantics
or efficiency, depending on our needs.

In the future, scalability and performance of the proposed
architecture will be studied, as well as possible alternatives
against data redundancy (due to having dual crisp and fuzzy
KBs), apart from managing consistency (e.g., double update
synchronization) in the joint KB. The proposed architecture,
the crisp to fuzzy- language extension and the support for
fuzzy reasoning show the path for dealing with current issues
on SSs’ usability as well as for setting the base for precise,
and at the same time flexible, personalized and adaptive Smart
Spaces.
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