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2École Polytechnique Fédérale de Lausanne, Switzerland
3Turku Centre for Computer Science, Finland

Abstract—Dataflow programming is typically used as an in-
tuitive representation for describing multimedia and signal pro-
cessing applications as computation nodes which communicate
through FIFO queues. To run a dataflow network, consisting
of several nodes, either run-time or compile-time scheduling
is required. Compile-time scheduling techniques are typically
based on token rates between nodes and for languages such as
CAL, which are expressive enough to describe an actor with
any behavior, run-time scheduling is needed in the general case,
introducing an overhead. However, the well defined structure of
dataflow programs enables analysis of the dependencies of the
program and partitions with piecewise static schedules can be
derived. In this paper we describe how actor partitions with
control tokens can be modeled such that a correct scheduler,
where most scheduling decisions are taken at compile-time, can
be derived for the resulting composed actor.

Index Terms—Dataflow programming, actor composition,
MPEG-4 decoder

I. INTRODUCTION

The typical applications for dataflow programming are
from the domain of multimedia and signal processing. Signal
processing algorithms can often be described as functional
mappings between the inputs and the outputs and can be
implemented with static token rates. Multimedia applications
on the contrary, use various coding tools (i.e. algorithmic
blocks) and allow different combinations of coding tools to be
used for the processing. When implementing such applications
as dataflow programs, this means that, while many coding tools
such as various transforms can be implemented as synchronous
dataflow (SDF) [1], a well-known static dataflow model, the
programs implementing multimedia applications will include
choices that must be taken at run-time. These choices are a
result of the need to choose the appropriate coding tools but
also, in some cases, a result of implementation choices in the
dataflow program.

The RVC-CAL actor language has been standardized as
the language to be used to describe the different coding
tools of the MPEG Reconfigurable Video Coding (RVC)
standard [2]. RVC-CAL provides the expressiveness that is
needed to describe the various coding tools. The coding tools,
represented by RVC-CAL actors, are assembled into a program
by connecting the actors with unidirectional order preserving
queues. The actors are allowed to execute in parallel and define
their internal scheduling depending on the actors inputs and/or
internal state. As a consequence, compile-time scheduling of

an RVC-CAL program, consisting of a network of connected
actors, is not a trivial task. Scheduling in an SDF like manner
based on token rates at compile-time is in general not an
option as the actors does not have static token rates, instead the
token rates may depend on the input values of the actor or on
the current state of the actor. Dynamic (run-time) scheduling
introduces significant overhead from evaluating guards at run-
time, for this reason, quasi-static scheduling methods, where
piecewise static schedules are identified at compile-time while
a minimum number of scheduling decisions are left for run-
time, have been proposed [3], [4], [5].

Dynamic scheduling is needed when actors have input
dependent conditions and consequently, some of the queues
carry control tokens between the actors. The actors in turn
can retransmit control tokens by defining how an output
port depends on an input port. In this paper we focus on
constructing models that capture this essential information
which is needed for scheduling and also to decide on how to
partition a network such that the scheduling becomes efficient.
The abstract model of the control token propagation enables
reasoning about whether a partition after a composition still
accepts every input sequence allowed in the original program.
The problem is related to the actual control values entering
the partition and thereby also describes the guards required
to perform the scheduling. When the models are in place,
approaches such as [5] can be used to find the actual schedules.

II. BACKGROUND AND RELATED WORK

A CAL program consist of a set of actors exchanging
data tokens through First-In First-Out queues (FIFOs). The
actors execute the program by firing eligible actions. Actions
are eligible depending on the availability of input tokens,
the values of the input tokens, and the internal state of the
actor (inside guard statements). Each action may consume
and/or produce tokens from one or more input or output ports
connected to the FIFO channels; an action may also have no
input or output.

The execution of a CAL dataflow program is asynchronous
(i.e. it abstracts from time) and each actor can fire inde-
pendently from all the others as far as one of its actions
is eligible. However, sometimes the number of processing
elements is lower than the number of actors. In that case, actors
assigned on the same processing element must be scheduled
by an external scheduler. An actor can fire an action only



if one of its actions is eligible. An action is eligible if: 1.
tokens are available, 2. its guard expression (including any
state predicate) evaluates to true, 3. it is enabled by the action
scheduler, and 4. it has a higher priority if more than one
action is enabled by the action scheduler in that state. The
CAL action scheduler, if present, is a CAL language operator
that expresses, in the form of finite state machine (FSM)
transitions, when actions are eligible. An action is only fired if
the current state has a transition corresponding to that action.

The scheduling of a CAL program is distributed on each of
the actors and is described by the FSM, guards and priorities.
In a software implementation, where there is a smaller number
of processor cores than actors or the actors are too fine grained
for the architecture, actors mapped to the same core must be
scheduled.

Different quasi-static scheduling approaches, where static
schedules of parts of a CAL program can be derived, have been
presented. In [4] CAL actors are classified to belong to more
restricted models of computations such SDF [1], CSDF [6]
or PSDF [7], in order to allow more efficient scheduling. In
[8] static regions, spanning over several actors, are identified
and scheduled at compile-time. Other approaches such as [5]
and [3], make use of the network partition state, consisting
of the values of a subset of the variables or inputs to the
partition, to find deterministic sequences of action firings. For
such approaches it is of importance to identify the information
in a network that is of relevance for the scheduling of the
program in order to choose partitions and find the possible
scenarios of those partitions. Another approach, presented
in [9] constructs a model, called a machine model, which
captures the action selection process of the actors and can
be used to reduce the number of possible execution paths and
remove the evaluation of unnecessary conditions. This model
also enables actor composition based on token counts.

The difference in our approach is that we attempt to model
how actors interchange actual control values and not only the
number of tokens. The idea is to make control tokens a visible
part of the model such that one or more of the scheduling
approaches mentioned above can be used for the actual static
scheduling.

III. CONTROL TOKEN PROPAGATION

In a CAL actor, the token rates are fixed for each action. For
simple actors, it is therefore possible to describe the behavior
of individual actors as more restricted models of computation
with predictable token rates [4]. However, the existence of
control tokens makes actor composition based on token rates
impossible in the general case. While the token rates of actions
are explicitly defined, the propagation of control tokens must
be derived from the implementation of the actions. A value
on a FIFO is considered to be a control token if it will
eventually end up in a guard expression; the path of this control
token is analyzed backwards through the network, from the
guard towards the input-stream. This search either terminates
at an actor sending the value of a constant or a variable not
depending on inputs, or at the input stream. In any case, this

e ∈ Expressions
S ∈ Statements
x, y ∈ Variables
n ∈ Numerals
op ∈ Operators
p, q ∈ Ports
id, state ∈ Identifiers
e ::= x | n | e1 op e2
S ::= x := e | skip | S1; S2

| if (e) S1elseS2 | while(e)doS

actor ::= actor id () ...⇒ ...
vars

action

schedule fsm state : trans end
end

action ::= action : id : ports⇒ ports

vars

guard e

do S end
end
| action; action

vars ::= x := n | vars; vars

ports ::= p: [x] | ports; ports

trans ::= state ( id ) → state

| trans; trans

TABLE I
THE BASIC SYNTAX OF AN ACTOR DECLARATION

Network =(Actors,Ports, χ)

p, q ∈Pi ∪ Po

χ : Pi 7→ Po

TABLE II
NETWORK STRUCTURE

control token path describes what must be known in order to
schedule the program and where this information is generated.

In [10] a method for identifying the control token paths
by a compiler is presented and used to find the information
that is required for scheduling the program. The analysis is
used to find the variables and operations that have an impact
on scheduling while the other variables and operations are
removed from the model. By removing any variable not related
to scheduling, the state space of the program is reduced to
make the state space analysis feasible. The resulting model
is then used for extracting quasi-static schedules by using the
model checking technique presented in [5].

In order to construct a correct scheduling model to be used
for actor composition, the control tokens must be modeled
such that it is possible to verify that the guards used for a
composed actor cover all possible inputs of the composition.
To illustrate the approach we will use the, slightly simplified,
CAL syntax presented in Table I.



A. Dataflow Analysis (at Instruction Level)

The information we are interested in is the relationship
between guards, variables, and ports. We have both global and
local variables, V = Vg∪Vl , where global variables mean state
variables of the actor and local means variables local to the
action that are used to perform the calculation. The actors also
have input and output ports, P = Pi ∪ Po and for simplicity,
we consider ports to be a special type of variables P ⊆ V and
these correspond to local variables according to the patterns
specified in the actions (as p:[x] in Table I).

The dependencies between variables in an actor can be
described as a binary relation, R ⊆ V × V , which is a subset
of the pairs of variables in the actor such that (x, y) ∈ R
indicates that variable x depends on variable y. The relation is
built according to the rules in Table III for each actor. For each
action of an actor we add to R the variable pairs resulting from
the action code and the variables accessed by guards as pairs
of guards and variables. We use a special set of variables,
grdaction ∈ V , to represent the result of evaluating a guard
and to indicate that a variable is used in a guard. Table III
describes the generation of R from the actors as an annotated
type system where a judgement of the form S : Σ

V−→
R

Σ indicates
that statement S modifying the program state between two
program states in Σ modifies the variables in V and produces
the relations R.

For a single actor, the set of variables used for scheduling
can be described as VS = {x ∈ V | (grd, x) ∈ R+}, where
R+ is the transitive closure of R. For a partition with more
than one actor, this is not enough as we also need to take into
account the scheduling information passed between actors. To
do this, we identify, for each actor, the set of ports used for
scheduling Pg = P∩VS and use the relation χ from the network
description, which describes how ports are connected in the
dataflow network, to find the output ports connected to these
input ports and add {p ∈ Po | q ∈ Pi ∩Pg ∧ (q, p) ∈ χ} to Pg.
These newly added output ports may in turn depend on input
ports and Pg must be updated to include {q ∈ Pi | (p, q) ∈
R+∧p ∈ Pg} to Pg. We need to iterate these two steps until no
new ports are added and finally add the resulting scheduling
variables V ′

S = VS ∪ {x ∈ V | (p, x) ∈ R+ ∧ p ∈ Pg ∩ Po}.
The next step is then to transform R into something that

gives a simple representation of the variable dependency of
the network partition. We simply want to describe the state
variables that either a guard or a control output port depends
on. The exact behavior is not required and is unnecessarily
complex, what is actually needed is the variables and the
abstract behavior of these variables. There are only a few types
of possible behavior: a guard (or control port) may depend
on an input port or on variables, these variables may or may
not depend on input ports and may or may not have memory
by depending on themselves. We introduce another relation
RS = {(x, y) ∈ R+ | x ∈ C ∨ (x = y ∨ y ∈ Pi) ∧ ∃ z ∈
C, (z, x) ∈ R+} where C = Pg ∩ Po ∪ {grd} to represent the
control value dependencies for the current partition, this is a
partition specific relation which means that it may not be valid

[var] x : {x}
[num] n : ∅

[op]
e1 : V1 e2 : V2

e1 op e2 : V1 ∪ V2

[ass]
e : V

x := e : Σ
{x}−−−−→
{x}×V

Σ

[skip] skip : Σ
{∅}−−−→
{∅}

Σ

[seq]

S1 : Σ
V1−−→
R1

Σ S2 : Σ
V2−−→
R2

Σ

S1; S2 : Σ
V1∪V2−−−−→
R1∪R2

Σ

[if ]
e : Vc S1 : Σ

V1−−→
R1

Σ S2 : Σ
V2−−→
R2

Σ

if (e) S1 else S2 : Σ
V1∪V2−−−−−−−−−−−−−−−→

R1∪R2∪((V1∪V2)×Vc)
Σ

[wh]
e : Vc S1 : Σ

V−→
R

Σ

while (e) do S1 : Σ
V−−−−−−→

R∪(V×Vc)
Σ

[action]
e : Vg S1 : Σ

V−→
R

Σ

action grd e do S1 : Σ
Vg∪V

−−−−−−−−−→
({grd}×Vg)∪R

Σ

[a seq]

action1 : Σ
V1−−→
R1

Σ action2 : Σ
V2−−→
R2

Σ

action1; action2 : Σ
V1∪V2−−−−→
R1∪R2

Σ

[actor]
action : Σ

V−→
R

Σ

actor ... action... end : R

TABLE III
BUILDING VARIABLE DEPENDENCY RELATION R OF AN ACTOR. THE

JUDGMENTS (ARROWS) INDICATES WHICH VARIABLES V ARE ASSIGNED
AND WHICH RELATIONS R ARE PRODUCED.

if an actor is added to or removed from the partition.

IV. ACTOR COMPOSITION WITH CONTROL TOKEN
DEPENDENCY

We use the information generated in the previous section to
decide how actors can be composed. The actor compositions
of interest is any two actors where one produces a control
token which is used by the other actor. The idea is to compose
actors with redundant scheduling and for this the scheduler
(guards, FSM, priority) of the front actor is used to schedule
the composition. The requirement for this to be possible, is
that, a specific firing sequence in the front actor implies a
specific firing sequence in the second actor. When this is not
the case, and the guards does not completely describe the
behavior of the composition, we either must transform the
front actor to have appropriate guards or not compose the two
actors.

The state of an actor is described by the state variables
in VS, and the states of the actor FSM. The scheduling
states ΣS = {σ1, σ2, ..., σM} ⊂ Σ is the smallest possible
subset of the set of program states, initially including the
initial state and the states with input dependent transitions, of
the front actor. The generated scheduler is a state machine



grd ≺ a1 ≺ a2 ≺ a1 ≺ a2 ≺ ..
⇓

grd ≺ b1 ≺ b2 ≺ b1 ≺ b2 ≺ ..

Fig. 1. Action a2 of the front actor sends an control value that enables a
guarded sequence in the second actor, the scheduling of the composed actor
is then about interleaving the actions from the two actors after this point.

where the states correspond to the program states ΣS and
the transitions correspond to firing a sequence of actions i.e.
a schedule. We define SA = {s1, s2, s3, ..} to be the set of
action firing sequences between scheduling states in actor A
and si = a1 ≺ a2 ≺ ... ≺ aN to be a schedule where a1 is fired
before a2 etc. For a composition, each state in ΣS corresponds
to some specific value of the variables in VS and the FSM of
the second actor. When a scheduling state is reached with other
values on these, we need to add a new state to ΣS as this state
may require slightly different schedules.

A. Control Token Graph and Guard Expressions

We will consider the composition of two actors where the
first actor produces a control token consumed by the other.
Given two actors, the objective is to find to what extent
the scheduling in these is redundant. The two actors can be
described as a set of actions such that A,B ⊆ {a, b, c, ...}. The
control tokens produced or consumed are defined as T ⊆ Z.
Actor A is the front actor of the composition and it produces
a control value for actor B, the objective is to check if firing
a control token generating action in A implies that a specific
action will become enabled in B (see Figure 1).

We define two relations, OA ⊆ A×T and IB ⊆ T×B where,
OA is the relation from actions to possible output tokens for
actor A and IB is the function 1 from potential input tokens to
actions with a guard accepting this token in actor B. We also
define the functions grda(t) ∈ {true, false} and bodya(t) =
t′ representing the guard and calculations in action a where
t, t′ ∈ T are the input and output tokens.

We have a relation between the control token produc-
tion/consumption in the two actors f : A × B such that
f = {(a, b) ∈ A × B | (a, t) ∈ Oa ∧ (t, b) ∈ Ib ∧ t ∈ T}.
Alternatively we can say that f is the composition of the two
relations f = OA ◦ IB. If f is functional, that is, each element
in A maps to an unique element in B, then the scheduling of
A can be used to schedule B. We can derive the circumstances
when there is a functional relation between the schedule in
the two actors. To make the discussion easier to follow, the
action that produces a control token can be put in one of the
groups shown in Figure 2.

We can decide how the control token is produced by actor
A, simply by performing some checks on the variable relation
RS and we simply check from which input ports and state

1We require that IB is a function, that is, one input value will only enable
one action in the specific state. OA on the other hand is not necessarily a
function as an action can produce outputs with different values.

Fig. 2. Possible paths a control token can take through an action: a) generated
within the action, i.e. a constant, b) depending on a counter, c) generated from
an input value, d) a combination of a counter and an input value, e) generated
from previous input values stored in state variables, f) depending on current
and previous inputs, and g) depending on a variable with memory of previous
inputs.

variables the control value is generated and whether the state
variables in VS depend on input ports or themselves. The result
is the information about if we know the actual values of the
control tokens that can be generated or only some properties
described by a guard in actor A. For actor B which receives
the control token, the control token is either used directly in a
guard or passed through one or more variables before ending
up in a guard. When the control token passes through variables
in actor B, it becomes necessary to prove that we know every
possible value of the control token as these variables are used
to describe the scheduler state.

1) When an Actor is the source of the Control Token: In
the first two cases (in Figure 2) the actor is the source of the
control token as it does not depend on input in any sense.
Case (a) describes the — from a scheduling point of view —
best situation, where the action outputs a constant, meaning
that the action always produces the same output value. This
situation occurs when RS does not contain a pair connecting
the output port to either an input port or a state variable which
depend on itself.

∀(x, y) ∈ RS : [x ∈ Pg ∩ Po ⇒ y 6∈ Pi ∨ (y, y) 6∈ RS] (1)

In the second case (b), there is a variable (y, y) ∈ RS, this
means that the variable updates its value as a function of itself
and typically is a counter.

In both cases the control token t′ is generated from variables
which does not depend on the input t. As there is no input



dependency, each of the variables, related to generating this
control value, is seen as having a known value in that state
σs ∈ ΣS and therefore the output is generated from a set of
constants. This means that OA = {(a, t′) | grda(t) = true∧t′ =
bodya(σs)}, and OA is clearly a function for the state σs. As
Ib is required to be a function, f = OA ◦ IB is also a function
and A makes the scheduling of B redundant. The actor A is
in both cases the actual source of the control value and the
generated control values can be determined from the sequence
of actions fired. For case b, where there is a counting variable,
the scheduler may get more states if there is a scheduling state
in actor A which can be reached with different values of the
counting variable.

For the second actor, receiving the control token, we know
that we cover every possible control token, and for this reason
there are no restriction on how this token is used (state
variables etc.). Having a counter variable in the receiving actor,
of course, may lead to many scheduler states but will not affect
the correctness.

2) When Control Token Passes Through Actor: For the
following two cases (c and d), the output control value depends
on an input port and cannot be derived from the actor only.
In case (d) the control token is a combination of the counter
and the input value which means that the state of the actor
also affects the output value. For a specific state σs, including
the counter variable, the generated output value is a function
of the input and a specific input value always corresponds to
a specific output value for a specific state σs. This situation is
found if RS connects the control output port to an input port
but not through a state variable.

∃(p, q) ∈ RS : p ∈ Pg ∩ Po ∧ q ∈ Pi∧
¬∃ x ∈ VS : (p, x) ∈ RS ∧ (x, q) ∈ RS

(2)

Here, it is not always the case that the behavior of actor
B can be derived from the behavior of actor A. For the
composition to make sense, the control token must be used
in a guard in actor A before actor B uses it in a guard, this is
implied if the action sending the control token have a guard
using the input control token (through a peek). The generated
control tokens can then be expressed as OA = {(a, t′) ∈ A×T |
grda(t) = true ∧ t′ = bodya(σs, t)}, if t′ = t this case also
corresponds to two actors sharing the same input token. Now,
Oa is not necessarily a function; if grda accepts more than
one value then Oa may contain several output values for one
action. It can still be possible to show that f is functional by
showing that Proposition 3 holds.

∀(a, t1), (a, t2) ∈ OA : [(t1, b), (t2, c) ∈ IB ⇒ b = c] (3)

We also get more restrictions for the second actor. If the
second actor has a guard directly reading the control token
from the input port (peek) and there is a functional dependency
between the guards in the two actors, the actors can be
composed. If the second actor reads the control value to a
variable before using it in a guard, this variable is also used

to describe the scheduler state and may introduce new states
in ΣS. The problem is that the guard often accepts a wide
range of values and the program behavior should be analysed
for each of these.

3) When there are Input Dependent Control Variables: The
last four cases have one thing in common - the control token
is produced from an input port and passes through a state
variable.

∃(p, x), (y, q) ∈ RS : [p, q ∈ Pg ∧ x = y] (4)

For a composition using the guards of the front actor to be
possible, either the action setting the value of the variable from
the input port or the action setting the value of the output port
from the variable must have a guards to be compared with
the guard in the receiving actor. To resolve these cases, it is
necessary to analyze the order in which these variables are read
and written and to check at what point there is a guard using
this value. An alternative solution is to remove the variable
from the scheduler state and instead use its value in the same
fashion as an input port. The strategy for scheduling each of
these cases is to, if possible, transform the actor to resemble
case c and then perform the analysis accordingly.

Case e may correspond to case c if the action a1 that sets
the variable from the port precedes the action a2 that writes
the control token, ∀ s ∈ SA : b ∈ s ⇒ a ∈ s ∧ a ≺ b, if these
actions are always fired in sequence, they could be merged and
correspond to case c. If this is not the case, the state variable
must be seen as an input port and the schedule with the action
producing the control token must have a guard depending on
this variable. In this case, the same rules as for case c applies.

In the sixth case (f) the output is a combination of current
and previous inputs. As we cannot assume that we know every
possible input that can be read to the state variable, the state
variable must be seen as an input port in the same fashion as
case e, then for the guard using this variable, we can apply
the same rules as for case c. The same applies for cases g
and h, where the state variable depends on input but also on
the history of (potentially all) previous inputs. The variable
is likely to have many states and should not be part of the
scheduler state, instead we can consider the variable to act
as an input port, but only in the case the front actor uses
this variable in a guard which either is the same as the one
producing the control or precedes it in each schedule.

B. Partitioning, Composition, and Scheduling

From the discussion above it is clear that the scheduling
of some compositions with control tokens requires much less
work from the compiler or design tools than other. What
can easily be identified are the actors which are the source
of the control token. When, for some reason, a partitioning
where the front actor is not the source of the control token
is requested, it may still be possible to show that there is a
functional relation between the actions in the actors making
the composition feasible. Otherwise, searching upstream for
the actor with the source and performing that composition
first, may resolve the problem. Figure 3 describes the different



Fig. 3. The state of the partitions is defined by state variables, FSMs and FIFO
states. The scenarios of the partitons are decided by the input sequences S. The
number of schedules needed is M×N where M is the number of scheduling
states and N is the number of input sequences.

aspects of a partition constructed for composition, here A
describes the control tokens entering a partition and how these
may be propagated inside the partition. For the scheduling
of a partition, it is these guards that need to be analyzed as
described above.

While there are restrictions on control values entering a
partition from the outside, control tokens with dependencies
inside the partition only, can not affect the correctness of
the model and therefore we can allow any type of variable
dependency inside the partition. This kind of control structure
is illustrated as B in Figure 3 where a guard depends on several
variables, possibly from different actors, but does not depend
on the partition inputs. Depending on the structure of the
variable dependency, some variables, where there is a cyclic
dependency, can hold many values and cause the partition
scheduler to have many states.

A scheduler for a partiton can be described as the FSM
in Figure 3 where each state has an outgoing transiton cor-
responding to the possible input sequences of the partition.
How the transitions connect the states depend on what the
program state is after the corresponding schedule and does
not necessarily follow the example in Figure 3. The number
of states needed in the FSM depends on the number of states
the rest of the partition will end up in when the actor used as
front actor executes between its scheduling states. The number
of schedules needed is the number of states times the number
of alternative transitions in the scheduling states.

V. CASE STUDY AND EXPERIMENTAL RESULTS

The presented analysis is implemented as a set of compiler
passes generating graphs describing scheduling dependencies.
The idea is that the compiler can use this information to decide
how to partition the program and whether to compose some
actors into a larger actor or run these separately; also the
programmer could use this information to find and remove
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Fig. 5. An abstract dependency graph for the intra prediction network of an
MPEG-4 decoder. Circles represent state variables, diamonds represent ports.

Scenario Port read/write
start BTYPE 1 (2048) + 2 (data)

START 1 (constant)
inter ac BTYPE 1 (514)

START 1 (constant)
other BTYPE 1 (0)

START 1 (constant)
intra BTYPE 1 (1024)

START 1 (constant in if-statement)

TABLE IV
THE DIFFERENT SCENARIONS OF THE DCPred ACTOR. THE TABLE SHOWS
THE ACTION STARTING A SCENARIO, THE CONTROL PORT AFFECTED AND

THE PATTERN OF THIS PORT IN THE SPECIFIC SCENARIO.

unnecessary dependencies from the program or simply to
create partitions manually.

To demonstrate the approach we will use the texture pro-
cessing part of an MPEG-4 decoder as example. The control
value graph shown in Figure 5 gives a graphical view of the
relation RS, for the decoder sub-network, where ovals and
diamonds represent variables and ports respectively and arrows
indicate that there is a dependency in RS.

The graph of this sub-network shows three different types
of dependencies between actors, we will investigate how the
actor DCPred, which according to the graph has control
dependencies to several of the other actors of the network,
can be used to schedule the partition. This actor depends on
an input value from outside the partition, shares this same
input value with one of the actors (Sequence) and produces
the control tokens for three of the actors. Two actors do not
depend on any values from other actors.

The first dependency to be resolved is the one between the
two actors sharing the control value from outside the partition
and to find the guards that describes the behavior of these.



seqBTYPE

A

B

C
dcpred

A

B

C

BTYPE

QP

IN

OUT

PTR

QUANT

SIGNED

START

dcsplitIN
DC

AC

zzaddrSTART ADDR
zigzag

START

ADDR

AC

OUT

acpredSTART

AC

PTR

OUT

dequant

AC

DC

QP

OUTBTYPE

data

QP

out

signed

Fig. 4. The intra prediction network of a RVC-CAL MPEG-4 decoder, with the queues carrying control tokens high-lighted (red color).

In practice this means that we must show that the guards
of these actors are compatible; according to Proposition 3 in
Section IV-A there must be, for each token accepted by one
of the guards in actor A, one specific guard in actor B that
accepts these tokens. The idea is to use a similar technique as
in [4] to check this property, in this case study it was done by
hand to give an example of the property. Figure 6 describes
the resulting relation, it shows that the relation is functional as
for each accepted input in DCPred, there is a specific guard
in Sequence that accepts this token. This means that we can
use the guards of DCPred to schedule Sequence but note that
the opposite would not work.

The second dependency to be resolved is the control value
sent from DCPred to three of the other actors in the sub-
network. The graph in Figure 5 shows that the control value
is produced from constants and does not depend on input nor
on the state of the actor, Table IV, however, shows that the
intra scenario chooses one of several possible constants inside
an if-statement. In the case of an if-statement, the options are
to either keep a dependency to the condition and include it
in the model or remove this dependency and check how the
different constants affect the scheduling. In this case, as this if-
statement depends on input values, we remove it and analyze
the different possible cases.

We know that the output value is generated from constants
and that there will be one value from each case in the if-
statement, the values of the outputs can therefore be found,
simply by executing each of the branches. Figure 7 shows the
relation between the scenarios in DCPred, the output values,
and the scenarios in ACPred; the relation to the other two
actors using this control value is omitted as these are similar
to this one. According to Section IV-A the relation between the
guards of the scenarios must be functional for the scheduling
of the second actor to be redundant. For Figure 7, we can see
that while the relation from DCPred to the output value is not
functional, the relation from DCPred to ACPred is functional
as the guard of start in ACPred accepts each of the values
generated by intra in DCPred.

The result of the analysis of this specific network, is, that
the scheduler (guards, FSM) of the DCPred actor completely
describes how to schedule the rest of this partition. The actors
of this partition can therefore be composed into one single
actor, the benefits of this is that every scheduling decision of
the other actors than DCPred will be removed and the FIFOs
inside the composition can be replaced with variables/arrays
as soon as the action firing sequences have been specified by
methods such as [5].

Fig. 6. The relation between the guards of actions triggering each of the
scenarios in the two actors sharing the control input value of the sub-network.

Fig. 7. The relations between the scenario run in DCPred, the produced
control value and the guards accepting these control values in ACPred.

A. Resulting Scheduler

The scheduler for the composed network partition can be
based on the DCPred actor. This actor has one FSM state
where the actions depend on input and these actions describes
the different types of input the network can process. From this
we know that the scheduler is an FSM with at least one state
and four transitions, corresponding to schedules leaving that
state. If it is not possible to construct each schedule such that
it consumes the inputs and runs the partition to a state where
the FSMs and scheduling state variables VS corresponds to the
initial state, more states are needed to describe the scheduling
of the partition.

For the actual scheduling, the variables in Figure 5 and
the FSM states of the actors define the state of the partition.
The internal FIFOs of the partition are required to be empty
after a schedule has terminated. Using the model-checking
technique in [5], we generate a model-checker using the
Promela backend of the Orcc compiler and provide input
accepted by each of the four guards according to Table IV.
The actual schedules are generated by searching for a path to
a state where this input has been consumed and the DCPred
actor is ready for the next control input. Then, we check if the



Guard Nr. actions (State0) Nr. actions (State1)
start 9 268
inter ac 135 330
other 8 267
intra 136 331

TABLE V
THE LENGTH OF THE SCHEDULES GENERATED FOR THE EXAMPLE

NETWORK. A SCHEDULE IS CHOSEN BASED ON WHICH GUARD EVALUATES
TO TRUE AND THE CURRENT SCHEDULER STATE. THE NUMBERS INDICATE

HOW MANY ACTIONS ARE FIRED BASED ON ONE GUARD EVALUATION.

found state is an already known state or if we must add this
state to the scheduler. When a new state is required, schedules
for each input type are also generated for this state. When each
state has, in this case, four transitions connected to a known
state, the scheduling is completed.

The scheduling of this network results in a scheduler with
two states and eight transitions representing static schedules
(see Table V). The reason for the second state is that in this
particular implementation, the zigzag fills an internal buffer at
the first block of a frame and flushes the buffer at a new frame,
having different FSM states indicating whether the buffer is
filled or not. This implies that two different schedules are
needed for each block type. The scheduling variables named
count each return to the initial value after each schedule, the
scheduling variable comp, however, does not as it indicates
which block of the macro block currently is processed. For
this reason this scheduling decision needs to be taken at run-
time, either by adding more states to the scheduler or, as in this
case was possible by first applying the tools presented in [4],
merging the actions depending on this variable and removing
the variable from the scheduling state space.

A scheduler for the partition in this case study, can be
described as in Table VI. This scheduler is somewhat sim-
plified and indicates that we need to check that the control
token is available and based on the guards from DCPred,
choose the appropriate schedule. The schedules are sequences
of actions that can fire without any further guard evaluations.
Comparing this result to [5], we end up with a corresponding
set of schedules for this network, and obviously similar results
regarding speed-up; about 22% increase in frame rate for the
texture coding part (acdc, idct) of the decoder. However, the
scheduler is generated with evidence that the set of schedules
completely describes the original program behavior and works
for all possible input while in [5] this was verified manually
by inspecting the code.

VI. CONCLUSIONS

In this paper we have shown how control tokens can be
modelled to enable composition and scheduling of dynamic
dataflow programs. Control token paths are analyzed in an
abstract manner to deduce if there is a real data dependency
or if a control token is used to distribute some information in
the dataflow network, which, if the actors are composed, can
be removed. As a result, many of the guards can be resolved
at compile-time, resulting in less scheduling overhead at run-
time. The actual speed-up a program gains, however, depends

void decoder_acdc_scheduler() {

if ( has_tokens(BTYPE, 1) )
btype = peek(BTYPE)

else return

if (state == 0)
{

if (btype == grd_DCPred_start)
dcPred_start();
acPred_newvop();
...
state = 0;

else if (btype == grd_DCPred_inter_ac)
dcPred_inter_ac();
acPred_start();
...
state = 1;

else if ...
}
else if (state == 1)
{
...
}

}
TABLE VI

EXAMPLE PSEUDO CODE OF GENERATED SCHEDULER.

on how large partitions are composed and how well these fit
on the target platform i.e. how well the schedules fit in the
cache. The goal with the methods presented in this paper is to
make the control tokens of a dataflow program a visible part
of the model such that actors that can be efficiently composed
are highlighted and can be scheduled using existing methods.
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