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Abstract—As the scale of a cloud data center becomes larger
and larger, the energy consumption of the data center also
grows rapidly. Dynamic consolidation of Virtual Machines (VMs)
presents a significant opportunity to save energy by turning
off unused Physical Machines (PMs) in data centers. In this
paper, we present a distributed controller to perform dynamic
VM consolidation to improve the resource utilizations of PMs
and to reduce their energy consumption. Moreover, we use
the ant colony system to find a near-optimal VM placement
solution based on the specified objective function. Experimental
results on the real workload traces from more than a thousand
PlanetLab VMs show that the proposed approach reduces energy
consumption and maintains required performance levels in a
large-scale data center.
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I. INTRODUCTION

Several major Information and Communication Technol-
ogy (ICT) companies, such as Amazon, Google, Microsoft,
and Facebook, are operating large-scale data centers around
the world to handle the ever-increasing cloud infrastructure
demand. However, the growing demand has considerably
increased the energy consumption of the cloud data centers [1].
High energy consumption not only translates to a higher cost,
but also leads to higher carbon emissions. Therefore, energy-
related costs have become a major economical factor for data
centers and research communities are being challenged to
find efficient energy-aware resource management strategies.
Moreover, achieving the desired level of Quality of Service
(QoS) between cloud providers and their customers is critical
in a data center. The QoS requirements are formalized via
Service Level Agreements (SLAs) that describe the required
characteristics, such as minimal throughput and maximal re-
sponse time or latency of the system.

Dynamic server provisioning and Virtual Machine (VM)
consolidation are two high-level approaches to reduce power
consumption in data centers. Dynamic server provisioning
approaches [2] save power by powering only a minimum
amount of resources needed to satisfy the workload require-
ments. Therefore, unnecessary servers are brought offline or
put into a low-power mode if the workload demand decreases.
Similarly, when the demands increase, additional servers are
turned online. Dynamic VM consolidation is another effective

way to improve the utilization of resources and their energy ef-
ficacy [1], [3]. It leverages virtualization technology [4], which
shares a Physical Machine (PM) among multiple performance-
isolated platforms called VMs, where each VM runs one
or more application tasks. The sharing of the PM resources
among multiple VMs is handled by the Virtual Machine Mon-
itor (VMM), which resides in a PM. Therefore, virtualization
takes dynamic server provisioning one step further and allows
different applications to be allocated on the same PM to
improve the resource utilizations. Moreover, it allows live VM
migration and consolidation to pack VMs on a minimum num-
ber of PMs, reducing the power consumption [5]. However,
resources must be properly allocated and load balancing must
be guaranteed in order to maximize resource utility. Therefore,
how to efficiently place VMs is an important research problem
in the VM consolidation approaches. Furthermore, the VM
placement optimization should be performed in an online
manner to cope with the workload variability of different
applications.

In this paper, we present a distributed controller to perform
dynamic VM consolidation to improve the resource utilizations
of PMs and to reduce their energy consumption. We also
propose a dynamic VM consolidation algorithm that uses a
highly adaptive online optimization metaheuristic called Ant
Colony Optimization (ACO) to optimize VM placement. The
proposed approach uses artificial ants to consolidate VMs into
a minimum number of active PMs according to the current
resource requirements. These ants work in parallel to build
VM migration plans based on the specified objective function.
The performance of the proposed dynamic VM consolidation
approach is evaluated by using CloudSim [6] simulations on
real workload traces, which were obtained from more than a
thousand VMs running on servers located at more than 500
places around the world. The simulation results show that the
proposed approach maintains the desired QoS while reducing
energy consumption in a large-scale data center. In contrast
to the existing benchmark algorithms in the CloudSim toolkit,
it provides a more energy-efficient solution with fewer SLA
violations.

The remainder of this paper is organized as follows. Sec-
tion II discusses some of the most important related works
and briefly reviews the ACO metaheuristic. Section III and
Section IV present the system architecture and the proposed



dynamic VM consolidation approach, respectively. Section V
describes the experimental design and setup. Finally, we
present the experimental results in Section VI and our con-
clusions in Section VII.

II. BACKGROUND AND RELATED WORK

The existing VM consolidation approaches, such as [7],
[8], [9], [10] are used in data centers to minimize under-
utilization of PMs and optimize their power-efficiency. The
main idea in these approaches is to use live VM migration [5]
to periodically consolidate VMs so that some of the under-
loaded PMs could be released for termination. Determining
when it is best to reallocate VMs from an overloaded PM
is an important aspect of dynamic VM consolidation that
directly influences the resource utilization and QoS. In [11],
two static thresholds were used to indicate the time of VM
reallocation. This approach keeps the total CPU utilization
of a PM between these thresholds. However, setting static
thresholds is not efficient for an environment with dynamic
workloads, in which different types of applications may run
on a PM. Therefore, Beloglazov and Buyya [12] improved the
idea by considering adaptive upper and lower bounds based
on the statistical analysis of the historical data.

In our previous works [13], [14], we proposed two re-
gression methods to predict CPU utilization of a PM. These
methods use the linear regression and the K-nearest neighbor
regression algorithms to approximate a function based on the
data collected during the lifetimes of the VMs. Therefore, we
used the function to predict an overloaded or an under-loaded
PM for reducing the SLA violations and power consumption.

In some approaches, VM consolidation has been formulated
as an optimization problem [15], [16], [17]. Since an optimiza-
tion problem is associated with constraints, such as data center
capacity and SLA, these works use a heuristic to consolidate
workload in a multi-dimensional bin packing problem. The
PMs are bins and the VMs are objects. These algorithms solve
this problem to minimize the number of bins while packing all
the objects. In this paper, we formulate energy-efficient VM
consolidation as a combinatorial optimization problem and
apply a highly adaptive online optimization [18] metaheuristic
called Ant Colony Optimization (ACO) [19], [20] to find a
near-optimal solution.

ACO is a multi-agent approach to difficult combinatorial
optimization problems, such as, traveling salesman problem
(TSP) and network routing [19]. It is inspired by the forag-
ing behavior of real ant colonies. While moving from their
nest to the food source and back, ants deposit a chemical
substance on their path called pheromone. Other ants can
smell pheromone and they tend to prefer paths with a higher
pheromone concentration. Thus, ants behave as agents who
use a simple form of indirect communication called stigmergy
to find better paths between their nest and the food source.
It has been shown experimentally that this simple pheromone
trail following behavior of ants can give rise to the emergence
of the shortest paths [19]. It is important to note here that
although each ant is capable of finding a complete solution,

high quality solutions emerge only from the global cooperation
among the members of the colony who concurrently build
different solutions. Moreover, to find a high quality solution,
it is imperative to avoid stagnation, which is a premature
convergence to a suboptimal solution or a situation where
all ants end up finding the same solution without sufficient
exploration of the search space [19]. In ACO metaheuristic,
stagnation is avoided mainly by using pheromone evaporation
and stochastic state transitions.

There are a number of ant algorithms, such as Ant Sys-
tem (AS), Max-Min AS (MMAS), and Ant Colony System
(ACS) [19], [20]. ACS [20] was introduced to improve the
performance of AS and it is currently one of the best perform-
ing ant algorithms. Therefore, in this paper, we apply ACS to
the VM consolidation problem.

One of the earlier works on applying ACO to the general
resource allocation problem include [21]. The authors in [21]
applied ACO to the nonlinear resource allocation problem,
which seeks to find an optimal allocation of a limited amount
of resources to a number of tasks to optimize their nonlinear
objective function. Feller et al. [8] applied MMAS to the
VM consolidation problem in the context of cloud computing.
A more recent work by Ashraf and Porres [22] used ACS
to consolidate multiple web applications in a cloud-based
shared hosting environment. However, to the best of our
knowledge, currently there are no existing works on using
ACS to consolidate VMs in cloud data centers. Our main
contributions are as follows:
• We propose a distributed controller for performing the

VM consolidation task. The key advantage of the pro-
posed distributed controller is that it splits the complex
and large consolidation problem into two smaller sub-
problems: PM status detection and VM placement opti-
mization. The first sub-problem concerning PM status is
addressed by a local controller that resides in a PM, while
the second sub-problem of VM placement optimization
is solved by a global controller.

• The first sub-problem concerns PM status detection: nor-
mal, overloaded, predicted overloaded, or under-loaded.
We use the LiRCUP method [13] to predict an overloaded
PM for avoiding SLA violations, as described in Sec-
tion III.

• The second sub-problem of VM placement optimization
is a NP-hard problem. In our proposed approach, the
global controller efficiently solves this problem by using
the ACS-based Placement Optimization (ACS-PO) algo-
rithm, which is presented in Section IV.

• We use the K-nearest neighbor (KNN) heuristic [23] to
estimate the optimal migration plan size for calculating
the amount of initial pheromone in ACS.

III. SYSTEM ARCHITECTURE

We consider a large-scale data center as a resource provider
that consists of m heterogeneous PMs. Each PM has a
processor, which can be multi-core, with performance defined
in Millions of Instructions Per Second (MIPS). Besides that,
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Fig. 1. An example of the system architecture

a PM is characterized by the amount of RAM, network
bandwidth, and storage capacity. Several users submit requests
for provisioning of n VMs, which are allocated to the PMs.
The length of each request is specified in millions of in-
structions (MI). Initially, the VMs are allocated according to
the requested characteristics assuming 100% CPU utilization.
Afterwards, the proposed dynamic consolidation algorithm
optimizes VM placement to reduce the power consumption
and SLA violations of the data center.

Figure 1 depicts an example system model with three PMs
and seven VMs. Our proposed distributed architecture divides
the large VM consolidation problem into two smaller sub-
problems. These sub-problems are addressed by two con-
trollers: the global controller and the local controller. A local
controller is assumed for each PM to solve the PM status
detection sub-problem by observing the current utilization.
Moreover, the architecture has a global controller as a su-
pervisor to optimize the VM placement sub-problem by using
our proposed ACS-PO algorithm. The task sequence of the
controllers is described as follows:

1) A local controller resides on a PM. It monitors the CPU
utilization and classifies the PM into one of the four sets
Pnormal, Pover, P̂over, and Punder. Respectively, these
sets represent the normal, overloaded, predicted over-
loaded, and under-loaded PMs based on the following
conditions:
• If the current CPU utilization exceeds PM capacity,

the PM is considered as a member of Pover.
• If the predicted utilization value is larger than the

available CPU capacity, the PM is considered as a
member of P̂over. We use LiRCUP [13] to forecast
the short-term CPU utilization of a PM based on
the linear regression technique. In LiRCUP, the lin-
ear regression approximates the utilization function
according to the past utilization values in a PM.

• If the current CPU utilization is less than a threshold
of the total CPU utilization, the PM is assumed
as a member of Punder. We performed a series of
preliminary experiments to estimate the threshold.
Based on our analysis, in general, the best results
were obtained when the threshold was set to 50%.

• All remaining PMs belong to Pnormal.
2) The global controller collects the status of individual

PMs from the local controllers and builds a global
best migration plan by using the proposed ACS-PO
algorithm, which is described in the next section.

3) The global controller sends commands to VMMs for
VM placement optimization. The commands determine
which VMs on a source PM should be migrated to which
destination PMs.

4) The VMMs perform actual migration of VMs after
receiving the commands from the global controller.

IV. ACS-BASED VM PLACEMENT OPTIMIZATION

The pseudocode of the proposed ACS-based Placement
Optimization (ACS-PO) algorithm is given as Algorithm 1.
For the sake of clarity, the concepts used in the ACS-PO
algorithm and their notations are tabulated in Table I. Each
PM p ∈ P hosts one or more VMs from the set of VMs
V . Moreover, in the context of VM migration, each PM is a
potential source PM for the VMs already residing on that PM.
Both the source PM and the VM are characterized by their
resource utilizations, such as CPU and memory utilization.
Likewise, a VM can be migrated to any other PM. Therefore,
every other PM is a potential destination PM, which is also
characterized by its resource utilizations. Thus, the proposed
ACS-PO algorithm creates a set of tuples T , where each tuple
t ∈ T consists of three elements: the source PM pso, the VM
to be migrated v, and the destination PM pde as given in (1)

t = (pso, v, pde) (1)

The PMs in the VM consolidation problem are analogous to
the cities in the TSP, while the tuples are analogous to the
edges that connect the cities. Due to obvious reasons, it is
imperative to reduce the computation time of the consolidation
algorithm, which is primarily based on the number of tuples
|T |. Thus, when making the set of tuples T , the algorithm
applies two constraints, which result in a reduced set of tuples
by removing some least important and unwanted tuples. The
first constraint is given as

pso ∈ P̂over ∨ pso ∈ Pover ∨ pso ∈ Punder (2)

It ensures that only a predicted overloaded, an overloaded, or
an under-loaded PM is used as a source PM pso. The rationale
of including a predicted overloaded PM as a source PM is
to prevent the PM from becoming overloaded. Similarly, the
amount of SLA violations are reduced by migrating some VMs
from an overloaded PM. In addition, migrations from an under-
loaded PM are more likely to result in switching of the PM to
the sleep mode, which would reduce the energy consumption
by minimizing the number of active PMs.

The second constraint further restricts the size of the set of
tuples |T | by ensuring that none of the overloaded Pover and
predicted overloaded P̂over PMs become a destination PM pde

pde /∈ Pover ∧ pde /∈ P̂over (3)

The rationale is that migrations to an overloaded or a predicted
overloaded PM are more likely to put additional load on the
destination PM and to cause SLA violations. By applying these



TABLE I
SUMMARY OF CONCEPTS AND THEIR NOTATIONS

P set of physical machines (PMs)
Pnormal set of PMs on a normal load level
Pover set of overloaded PMs
P̂over set of predicted overloaded PMs
Psleep set of sleep PMs
Punder set of under-loaded PMs
Vp set of VMs running on a PM p
MS set of migration plans
T set of tuples
Tk set of tuples not yet traversed by ant k
V set of VMs
v VM in a tuple
Cpde total capacity vector of the destination PM pde
M a migration plan
M+ the global best migration plan
Mk ant-specific migration plan of ant k
Mm
k ant-specific temporary migration plan of ant k

q a uniformly distributed random variable
S a random variable selected according to (7)
Scrk thus far best score of ant k
Uv used capacity vector of the VM v
Upde used capacity vector of the destination PM pde
Upso used capacity vector of the source PM pso
pde destination PM in a tuple
pso source PM in a tuple
η heuristic value
τ amount of pheromone
τ0 initial pheromone level
∆+
τs additional pheromone amount given to the tuples in M+

q0 parameter to determine relative importance of exploitation
α pheromone decay parameter in the global updating rule
β parameter to determine the relative importance of η
γ parameter to determine the relative importance of |Psleep|
ρ pheromone decay parameter in the local updating rule
nA number of ants that concurrently build their migration plans
nI number of iterations of the main, outer loop in the algorithm

two simple constraints in a series of preliminary experiments,
we observed that the computation time of the algorithm was
significantly reduced without compromising the quality of the
solutions.

The output of the VM consolidation algorithm is a migration
plan, which, when enforced, would result in a minimal set
of active PMs needed to host all VMs without compromising
their performance. Thus, the objective function of the proposed
algorithm is

f(M) = |Psleep|γ +
1

|M |
(4)

where M is the migration plan and Psleep is the set of PMs
that will be switched to sleep mode when M is enforced. The
parameter γ determines the relative importance of |Psleep| with
respect to |M |. Since the ultimate objective in the dynamic VM
consolidation algorithm is to minimize the number of active
PMs, the objective function is defined in terms of number
of sleep PMs |Psleep|. Moreover, it prefers smaller migration
plans because live migration is a resource-intensive operation.
Thus, the objective function in (4) prefers a migration plan
that results in the minimum number of active PMs and that
requires fewer VM migrations.

At the end of the ACS-PO algorithm, when the selected
migration plan is enforced, our approach further restricts the

number of active PMs by preferring VM migrations to the
already active PMs. Thus, a PM in the sleep mode is switched
on only when it is not possible to migrate a VM to an already
active PM. Moreover, a PM can only be switched to the sleep
mode when all of its VMs migrate from it, that is, when the
PM no longer hosts any VMs. Thus, the set of sleep PMs
Psleep is defined as

Psleep = {∀p ∈ P | Vp = ∅} (5)

where Vp is the set of VMs running on a PM p.
Unlike the TSP, there is no notion of a path in the VM con-

solidation problem. Therefore, in our approach, the pheromone
is deposited on the tuples defined in (1). Each of the nA ants
uses a stochastic state transition rule to choose the next tuple
to traverse. The state transition rule in ACS is called pseudo-
random-proportional-rule [20]. According to this rule, an ant
k chooses a tuple s to traverse next by applying

s =

{
arg maxu ∈ Tk{[τu] · [ηu]β}, if q ≤ q0
S, otherwise

(6)

where τ denotes the amount of pheromone and η represents
the heuristic value associated with a particular tuple. β is a
parameter to determine the relative importance of the heuristic
value with respect to the pheromone value. The expression arg
max returns the tuple for which [τ ] · [η]β attains its maximum
value. Tk ⊂ T is the set of tuples that remain to be traversed
by ant k. q ∈ [0, 1] is a uniformly distributed random variable
and q0 ∈ [0, 1] is a parameter. S is a random variable selected
according to the probability distribution given in (7), where
the probability ps of an ant k to choose tuple s to traverse
next is defined as

ps =


[τs]·[ηs]β∑

u ∈ Tk

[τu]·[ηu]β , if s ∈ Tk

0, otherwise
(7)

The heuristic value ηs of a tuple s is defined in a similar
fashion as in [8] and [22] as

ηs =

{
(|Cpde − (Upde + Uv)|1)−1, if Upde + Uv ≤ Cpde
0, otherwise

(8)
where Cpde is the total capacity vector of the destination PM
pde, Upde is the used capacity vector of pde, and likewise Uv is
the used capacity vector of the VM v in tuple s. The heuristic
value η is based on the multiplicative inverse of the scalar-
valued difference between Cpde and Upde +Uv . It favors VM
migrations that result in a reduced under-utilization of PMs.
Moreover, the constraint Upde+Uv ≤ Cpde prevents migrations
that would result in the overloading of the destination PM
pde. In the proposed algorithm, we assumed two resource
dimensions, which represent CPU and memory utilization.
However, if necessary, it is possible to add more dimensions
in the total and used capacity vectors.

The stochastic state transition rule in (6) and (7) prefers
tuples with a higher pheromone concentration and which result
in a higher number of released PMs. The first case in (6) where



q ≤ q0 is called exploitation [20], which chooses the best tuple
that attains the maximum value of [τ ] · [η]β . The second case,
called biased exploration, selects a tuple according to (7). The
exploitation helps the ants to quickly converge to a high quality
solution, while at the same time, the biased exploration helps
them to avoid stagnation by allowing a wider exploration of the
search space. In addition to the stochastic state transition rule,
ACS also uses a global and a local pheromone trail evaporation
rule. The global pheromone trail evaporation rule is applied
towards the end of an iteration after all ants complete their
migration plans. It is defined as

τs = (1− α) · τs + α ·∆+
τs (9)

where ∆+
τs is the additional pheromone amount that is given

only to those tuples that belong to the global best migration
plan in order to reward them. It is defined as

∆+
τs =

{
f(M+), if s ∈ M+

0, otherwise
(10)

α ∈ (0, 1] is the pheromone decay parameter, and M+ is the
global best migration plan from the beginning of the trial.

The local pheromone trail update rule is applied on a tuple
when an ant traverses the tuple while making its migration
plan. It is defined as

τs = (1− ρ) · τs + ρ · τ0 (11)

where ρ ∈ (0, 1] is similar to α and τ0 is the initial pheromone
level, which is computed as the multiplicative inverse of the
product of the approximate optimal |M | and |P |

τ0 = (|M | · |P |)−1 (12)

One way to estimate optimal |M | is to use the nearest
neighborhood heuristic [20]. We use the K-nearest neighbor
(KNN) heuristic [23] to estimate the optimal |M | by using
a training data set. The data set has m samples, where each
sample xi is described by three input variables (xi1, xi2, xi3)
and an output variable yi, that is, xi = {xi1, xi2, xi3, yi}. The
goal is to find the relationship between the input variables
and the output variable. Therefore, we choose the number of
under-loaded PMs, the number of overloaded PMs, and the
number of VMs as the three input variables (xi1, xi2, xi3) and
the migration plan size as the output variable (yi). The KNN
heuristic estimates the output by taking a local average of the
training data set. Moreover, the locality is defined in terms
of the K samples nearest to the estimation sample. We use
Euclidean distance to measure the distance metric between
quarry sample and other samples.

The pseudo-random-proportional-rule in ACS and the global
pheromone trail update rule are intended to make the search
more directed. The pseudo-random-proportional-rule prefers
tuples with a higher pheromone level and a higher heuristic
value. Therefore, the ants try to search other high quality
solutions in a close proximity of the thus far global best
solution. On the other hand, the local pheromone trail update
rule complements exploration of other high quality solutions

Algorithm 1 ACS-based VM placement optimization
1: M+ = ∅, MS = ∅
2: ∀t ∈ T |τt = τ0
3: for i ∈ [1, nI] do
4: for k ∈ [1, nA] do
5: Mm

k = ∅,Mk = ∅, Scrk = 0
6: for t ∈ T do
7: if q > q0 then
8: compute ps ∀s ∈ T by using (7)
9: end if

10: choose a tuple t ∈ Tk to traverse by using (6)
11: Mm

k = Mm
k ∪ {t}

12: apply local update rule in (11) on t
13: update used capacity vectors Upso and Upde in t
14: if f(Mm

k ) > Scrk then
15: Scrk = f(Mm

k )
16: Mk = Mk ∪ {t}
17: else
18: Mm

k = Mm
k \ {t}

19: end if
20: end for
21: MS = MS ∪ {Mk}
22: end for
23: M+ = arg maxMk ∈MS{f(Mk)}
24: apply global update rule in (9) on all s ∈ T
25: end for

that may exist far from the thus far global best solution. This
is because whenever an ant traverses a tuple and applies the
local pheromone trail update rule, the tuple looses some of
its pheromone and thus becomes less attractive for other ants.
Therefore, it helps in avoiding stagnation where all ants end up
finding the same solution or where they prematurely converge
to a suboptimal solution.

The pseudocode in Algorithm 1 creates a set of tuples
T using (1) and sets the pheromone value of each tuple to
the initial pheromone level τ0 by using (12) (line 2). The
algorithm iterates over nI iterations (line 3). In each iteration,
nA ants concurrently build their migration plans (lines 4–22).
Each ant iterates over |T | tuples (lines 6–20). It computes the
probability of choosing the next tuple to traverse by using (7)
(line 8). Afterwards, based on the computed probabilities and
the stochastic state transition rule in (6), each ant chooses a
tuple t ∈ Tk to traverse (line 10) and adds t to its temporary
migration plan Mm

k (line 11). The local pheromone trail
update rule in (11) and (12) is applied on t (line 12) and
the used capacity vectors at the source PM Upso and the
destination PM Upde in t are updated to reflect the impact
of the migration (line 13). The objective function in (4) is
applied on Mm

k , and if it yields a score higher than the ant’s
thus far best score Scrk (line 14), t is added to the ant-
specific migration plan Mk (line 16). Otherwise, the tuple t
is removed from the temporary migration plan Mm

k (line 18).
Then, towards the end of an iteration when all ants complete



their migration plans, all ant-specific migration plans are added
to the set of migration plans MS (line 21). Each migration
plan Mk ∈MS is evaluated by applying the objective function
in (4), the thus far global best application migration plan M+

is selected (line 23), and the global pheromone trail update rule
in (9) and (10) is applied on all tuples (line 24). Finally, when
all iterations of the main, outer loop complete, the algorithm
outputs the global best migration plan M+.

V. EXPERIMENTAL DESIGN AND SETUP

To evaluate the efficiency of our proposed approach, we
have developed software simulations by using the CloudSim
toolkit [6]. CloudSim is becoming increasingly popular in the
cloud computing community due to its support for flexible,
scalable, efficient, and repeatable evaluations of provisioning
policies for different applications. We simulated a data center
comprising 800 heterogeneous PMs and selected two server
configurations in CloudSim: HP ProLiant ML110 G4 (Intel
Xeon 3040, 2 cores, 1860 MHz, 4 GB), and HP ProLiant
ML110 G5 (Intel Xeon 3075, 2 cores, 2660 MHz, 4 GB).
The reason why we have not chosen servers with more cores
is that it is important to simulate a large number of servers
to evaluate the effect of consolidation. Nevertheless, dual-
core CPUs are sufficient to evaluate resource management
algorithms designed for multi-core CPU architectures. The
frequency of the servers CPUs are mapped onto MIPS ratings:
1860 MIPS each core of the HP ProLiant ML110 G4 server,
and 2660 MIPS each core of the HP ProLiant ML110 G5
server. Each server is modeled to have 1 GB/s network
bandwidth.

In our experiments, we considered a random workload and
a real workload. In the random workload, users submit their
requests for provisioning of 800 heterogeneous VMs that fill
the full capacity of the simulated data center. Each VM runs an
application with a variable workload, which was designed to
generate CPU utilization according to a uniformly distributed
random variable. The application runs for 150000 MI that is
equal to 10 minutes of execution on a 250 MIPS CPU core
with 100% utilization.

In the real workload, the number of VMs on each day is
specified in Table II. Real workload data is provided as a part
of the CoMon project, a monitoring infrastructure for Planet-
Lab [24]. In this project, the CPU utilization data is obtained
from more than a thousand VMs from servers located at more
than 500 places around the world. Data is collected every five
minutes and is stored in a variety of files. The workload is
representative of an IaaS cloud environment, such as Amazon
Elastic Compute Cloud (EC2)1, where VMs are created and
managed by several independent users and the infrastructure
provider is not aware of the particular applications that run in
the VMs. We used 10 days from the workload traces collected
during 2011. During the simulation, each VM was randomly
assigned a workload trace from one of the VMs from the
corresponding day. The ACS parameters that were used in the

1http://aws.amazon.com/ec2/

TABLE II
NUMBER OF VMS IN THE REAL WORKLOAD

Date Number of VMs
3 March 1052
6 March 898
9 March 1061
22 March 1516
25 March 1078
3 April 1463
9 April 1358

11 April 1233
12 April 1054
20 April 1033

TABLE III
ACS PARAMETERS IN THE PROPOSED APPROACH

α β γ ρ q0 nA nI
0.1 0.9 5 0.1 0.9 10 2

proposed approach are tabulated in Table III. These parameter
values were obtained in a series of preliminary experiments.

VI. EXPERIMENTAL RESULTS

In this section, we compare the proposed ACS-PO approach
with the three heuristic algorithms for dynamic reallocation
of VMs in [12]. The main idea of these algorithms is to set
upper and lower utilization thresholds and keep the total CPU
utilization of a node between them. When the upper threshold
is exceeded, VMs are reallocated for load balancing and when
the utilization of a PM drops below the lower threshold,
VMs are reallocated for consolidation. The algorithms adapt
the utilization threshold dynamically based on the Median
Absolute Deviation (MAD), the Interquartile Range (IQR),
and Local Regression (LR) approach to estimate the CPU
utilization. In addition, we consider the static threshold method
(THR) in [12] that monitors the CPU utilization and migrates
a VM when the current utilization exceeds 80% of the total
amount of available CPU capacity on the PM. The comparison
is based on two performance metrics: average SLA violation
percentage and energy consumption.

A. Average SLA Violation Percentage

This metric represents the percentage of average CPU
performance that has not been allocated to an application when
requested, resulting in a performance degradation [11]. It is
calculated by (13) as a fraction of the difference between the
MIPS requested by all VMs Urj(t) and the actually allocated
MIPS Uaj(t) relative to the total requested MIPS over the
lifetime of the VMs, where M is the number of VMs.

SLA =

M∑
j=1

∫
Urj(t)− Uaj(t)dt

M∑
j=1

∫
Urj(t)dt

(13)

Table IV presents the SLA violation levels caused by the
ACS-PO, THR, MAD, IQR, and LR methods in the random
workload. The results indicate that ACS-PO reduced the



TABLE IV
AVERAGE SLA VIOLATION PERCENTAGE IN THE RANDOM WORKLOAD

ACS-PO (%) THR (%) MAD (%) IQR (%) LR (%)
7.98 12.75 10.75 10.35 14.89

TABLE V
AVERAGE SLA VIOLATION PERCENTAGE IN THE REAL WORKLOAD

Date ACS-PO
(%)

THR
(%)

MAD
(%)

IQR
(%)

LR
(%)

3 March 4.78 10.14 10.18 9.98 6.90
6 March 8.36 10.13 10.05 10.17 9.63
9 March 8.84 10.25 10.35 10.14 10.11
22 March 8.13 10.25 10.16 10.19 9.58
25 March 8.21 10.11 9.96 10.09 9.64

3 April 7.23 10.07 10.11 10.05 10.05
9 April 8.46 10.25 10.05 10.01 10.16
11 April 8.78 10.08 10.10 10.01 10.41
12 April 8.81 10.27 10.04 10.17 10.45
20 April 9.10 10.75 10.49 10.35 11.28

average SLA violation percentage more efficiently than the
other approaches. This is due to the fact that ACS-PO prevents
SLA violations by using a prediction of the overloaded PMs
and that the heuristic value in (8) ensures that the destination
PM does not become overloaded when a VM migrates on it.

The percentages of average SLA violation for the real
workload are shown in Table V. The results show that ACS-
PO led to significantly less SLA violations than the other
four benchmark algorithms. The main reason is that ACS-
PO employs measures to prevent VM migrations that would
result in the overloading of the destination PM. Moreover,
it preemptively reallocates VMs from a predicted overloaded
PM.

B. Energy Consumption

Since one of the essential objectives of dynamic VM consol-
idation is to minimize the energy consumption of the PMs, it
is an important performance metric for the comparison of the
algorithms. This metric indicates the total energy consumption
by the physical resources of a data center caused by the appli-
cation workloads. Table VI illustrates the power consumption
characteristics of the selected servers in the simulator.

Since the CPU utilization usually changes over time due
to workload variability, it is defined as a function of time,
represented as u(t). The total energy consumption E of a
PM can be defined as an integral of the power consumption
function over a period of time as

E =

t1∫
t0

P (u(t))dt (14)

Figure 2 shows that the proposed dynamic VM consoli-
dation approach ACS-PO brought higher energy savings in
comparison to the other approaches in the random workload.
In ACS-PO, a signicant reduction of the energy consumption
of 10.1%, 37.4%, 27.2%, and 39.8% was achieved when
compared to LR, MAD, THR, and IQR, respectively.
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Fig. 2. Energy consumption by ACS-PO and benchmark methods in the
random workload

Figure 3 and 4 show that ACS-PO consumed less power
than the other benchmark algorithms in the real workload
traces. Figure 3 depicts that it reduced energy consumption
by up to 21.9% with desirable system performance in March
2011 load traces. Moreover, it achieved a signicant reduction
of 6.1%, 15.7%, 12.9%, and 21.3% in the energy consumption
when compared to LR, THR, MAD, and IQR methods in April
2011 traces, respectively (Figure 4).

VII. CONCLUSION

In this paper, we presented a novel dynamic Virtual Ma-
chine (VM) consolidation approach to reduce the energy
consumption of data centers by packing VMs into a minimum
number of active Physical Machines (PMs) according to
the current resource requirements. It employs a distributed
controller to decompose the VM consolidation problem into
two sub-problems: PM status detection and VM placement
optimization. Since the VM placement optimization problem
is NP-hard, we used the ant colony system to find a near-
optimal solution. When compared to the existing dynamic
VM consolidation approaches in the CloudSim toolkit, the
proposed approach provided a more energy-efficient solution
with fewer SLA violations.
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