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Via Inama 5, 38100 Trento, Italy

{mario.fedrizzi,michele.fedrizzi,ricalb.marper,matteo.brunelli}@unitn.it

Abstract

In this paper we study the modelling of consensus reach-
ing in a ‘soft’ environment, i.e. when the individual testi-
monies are expressed as fuzzy preference relations. Here
consensus is meant as the degree to which most of the
experts agree on the preferences associated to the most
relevant alternatives. First of all we derive a degree of
dissensus based on linguistic quantifiers and then we in-
troduce a form of network dynamics in which the quanti-
fiers are represented by scaling functions. Next, assuming
that the decision makers can express their preferences in a
more flexible way, i.e. by means of triangular fuzzy num-
bers, we describe the iterative process of opinion chang-
ing towards consensus via the gradient dynamics of a
cost function expressed as a linear combination of a dis-
sensus cost function and an inertial cost function. Finally,
some computer simulations are carried out together with
a short description of a case study in progress.

keywords group decision making; consensus; fuzzy pref-
erence relations; linguistic quantifiers; fuzzy numbers;
gradient dynamics.

1 Introduction

The traditional models of consensual dynamics, from De-
Groot’s classical consensus model [1] to various extended
or alternative proposals, have been mostly formulated in
the probabilistic framework [2] [3] [4] [5] [6] [7].
In the traditional approaches consensus is meant as a strict
and unanimous agreement. However, since decision mak-
ers typically have different and more or less conflicting
opinions, the traditional strict meaning of consensus is
unrealistic. The human perception of consensus is much
‘softer’, and people are willing to accept that consensus
has been reached when most actors agree on the prefer-
ences associated to the most relevant alternatives.
The problem of consensus modelling in a fuzzy environ-
ment was originally addressed in [8] [9] [10] [11] [12]
[13] [14]. Then it was developed in [15] [16] [17] [18]

[19] [20] [21] [22].
Further innovative approaches to the modelling of con-
sensus in soft environments were developed under lin-
guistic assessments. Among others, the interested reader
is referred to [23] [24] [25] [26].
The soft consensus paradigm proposed by Kacprzyk and
Fedrizzi [16] [17] [18] in the standard framework of nu-
merical fuzzy preferences was extended to an explicit dy-
namical context in [27] [28] [29] [30] [31]. The consensus
dynamics model combines a soft measure of collective
dissensus with an inertial mechanism of opinion changing
aversion. It acts on the network of single preference struc-
tures by a combination of a collective process of (nonlin-
ear) diffusion and an individual mechanism of (nonlinear)
inertia.
In relation with the crisp model of consensus dynamics
described in [29], the fuzzy model introduced in [30] sub-
stitutes the standard crisp preferences with fuzzy ones,
represented by triangular fuzzy numbers. Technically,
the extension is based on the use of a distance measure
between triangular fuzzy numbers. In analogy with the
standard crisp model, the iterative process of collective
opinion changing towards consensus in the fuzzy model
can also be modelled via the gradient dynamics of a cost
function. In this paper, finally, we present and comment
on a number of computer simulations of the fuzzy model,
all of which show interesting dynamical patterns of the
fuzzy preferences.
The paper is organized as follows. In section 2, starting
from the model developed in [16] for measuring the de-
gree of consensus based on individual fuzzy preference
relations, we derive a new degree of dissensus depend-
ing on linguistic quantifiers, and then we propose a way
to transform the quantifiers into scaling functions. Start-
ing from the soft consensus model proposed in [29], we
show how to develop the dynamical process of modifying
individual opinions on the basis of a cost function W, de-
fined as a convex linear combination of the two different
dynamical components we mentioned above. In section
3, assuming that the preferences of the decision makers
are expressed by means of triangular fuzzy numbers, we
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describe how to measure the distance between individual
preferences and then we introduce the new cost function
W. Section 4 contains the main contribution of the paper.
After having described the extended consensual dynam-
ics based on the gradient method, some interesting cases
are studied by means of numerical simulations. The aim
is to test the extended dynamics by simulating group de-
cision problems where the decision maker’s initial pref-
erences are differently structured, as well as their opinion
changing aversion. At the end of the section we briefly re-
view a case study involving the application of the model
to supplier selection in a supply chain management sys-
tem under development in the healthcare department of
a local government agency. In section 5 we present the
conclusions and some future research.

2 The soft dissensus measure and the con-
sensus dynamics

The modelling framework used for introducing the degree
of dissensus is the one described in [16]. Our point of de-
parture is a set of individual fuzzy preference relations.
If A = {a1, . . . ,am} is a set of decisional alternatives and
I = {1, . . . ,n} is a set of individuals, then the fuzzy prefer-
ence relation Ri of individual i is given by its membership
function Ri : A×A → [0,1] such that

Ri(ak,al) = 1 if ak is definitely preferred over al

Ri(ak,al) ∈ (0.5,1) if ak is preferred over al

Ri(ak,al) = 0.5 if there is indifference

between ak and al

Ri(ak,al) ∈ (0,0.5) if al is preferred over ak

Ri(ak,al) = 0 if al is definitely preferred over ak,

where i = 1, . . . ,n and k, l = 1, . . . ,m. Each individual
fuzzy preference relation Ri can be represented by a ma-
trix [ri

kl ], ri
kl = Ri(ak,al) which is commonly assumed to

be reciprocal, that is ri
kl + ri

lk = 1. Clearly, this implies
ri

kk = 0.5 for all i = 1, . . . ,n and k = 1, . . . ,m.
The general case A = {a1, . . . ,am} for the set of decisional
alternatives is discussed in [29] and [30]. Here, for the
sake of simplicity, we assume that the alternatives avail-
able are only two (m = 2), which means that each indi-
vidual preference relation Ri has only one degree of free-
dom, denoted by xi = ri

12. In such case, the degree of dis-
sensus between individuals i and j as to their preferences
between the two alternatives is

V (i, j) = (xi − x j)2 ∈ [0,1], (1)

and the degree of dissensus between Q pairs of individ-
uals as to their preferences between the two alternatives
becomes

VQ(i, j) = Q(V (i, j)) = Q((xi − x j)2) ∈ [0,1], (2)

where the quantifier Q is defined as follows,

Q(x) = ( f (x)− f (0))/( f (1)− f (0)). (3)

Here f is a scaling function defined as

f (x) = − 1
β

ln(1+ e−β (x−α)), (4)

where α ∈ (0,1) is a threshold parameter and β ∈ (0,∞)
is a free parameter. The parameter β controls the polar-
ization of the sigmoid function f ′ : [0,1] → (0,1) given
by

f ′(x) = 1/(1+ eβ (x−α)) . (5)

Now, following the soft consensus model proposed in
[29], we show how to develop the dynamical process of
modifying individual opinions using the dissensus based
framework. For more details refer to the original paper.
In the soft consensus model each decision maker i =
1, . . . ,n is represented by a pair of connected nodes, a
primary node (dynamic) and a secondary node (static).
The n primary nodes form a fully connected subnetwork
and each of them encodes the individual opinion of a sin-
gle decision maker. The n secondary nodes, on the other
hand, encode the individual opinions originally declared
by the decision makers, denoted si ∈ [0,1], and each of
them is connected only with the associated primary node.
The iterative process of opinion transformation corre-
sponds to the gradient dynamics of a cost function W ,
depending on both the present and the original network
configurations. The value of W combines a measure V of
the overall dissensus in the present network configuration
and a measure U of the overall change from the original
network configuration.
The various interactions involving node i are mediated
by interaction coefficients whose role is to quantify the
strength of the interaction. The consensual interaction be-
tween primary nodes i and j is mediated by the interaction
coefficient vi j ∈ (0,1), whereas the inertial interaction be-
tween primary node i and the associated secondary node
is mediated by the interaction coefficient ui ∈ (0,1). It
turns out that the values of these interaction coefficients
are given by the derivative f ′ of the scaling function ac-
cording to

vi j = f ′((xi − x j)2) (6)

vi =
n

∑
j(�=i)=1

vi j/(n−1) (7)
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ui = f ′((xi − si)2) . (8)

The average preference x̄i is given by

x̄i =
n

∑
j(�=i)=1

vi jx j/
n

∑
j(�=i)=1

vi j (9)

and represents the average preferences of the remaining
decision makers as seen by the ith decision maker.
The individual dissensus cost V (i) is given by

V (i, j) = f ((xi − x j)2) (10)

V (i) =
n

∑
j(�=i)=1

V (i, j)/(n−1) (11)

and the individual opinion changing cost U(i) is

U(i) = f ((xi − si)2) . (12)

Summing over the various decision makers we obtain the
collective dissensus cost V and inertial cost U ,

V =
1
4

n

∑
i=1

V (i) (13)

U =
1
2

n

∑
i=1

U(i) (14)

with conventional multiplicative factors of 1/4 and 1/2.
The full cost function W is then W = (1−λ )V +λU with
0 ≤ λ ≤ 1.
The consensual network dynamics, which can be re-
garded as an unsupervised learning algorithm, acts on the
individual opinion variables xi through the iterative pro-
cess

xi � x′i = xi − γ
∂W
∂xi

. (15)

Analyzing the effect of the two dynamical components V
and U separately we obtain

∂V
∂xi

= vi(xi − x̄i) (16)

where the coefficients vi were defined in (7) and the aver-
age preference x̄i was defined in (9), and therefore

x′i = (1− γ vi)xi + γ vix̄i . (17)

On the other hand, we obtain

∂U
∂xi

= ui(xi − si) , (18)

where the coefficients ui were defined in (8), and therefore

x′i = (1− γ ui)xi + γ uisi . (19)

The full dynamics associated with the cost function W =
(V +U)/2 acts iteratively according to

x′i = (1− γ (vi +ui))xi ++γ vix̄i + γ uisi . (20)

and the decision maker i is in dynamical equilibrium, in
the sense that x′i = xi, if the following stability equation
holds,

xi = (vix̄i +uisi)/(vi +ui) (21)

that is, if the present opinion xi coincides with an appro-
priate weighted average of the original opinion si and the
average opinion value x̄i.

3 The consensual dynamics with triangular
fuzzy numbers

Let us now assume that the preferences of the decision
makers are expressed by means of fuzzy numbers, see for
instance [32] [33], in particular by means of triangular
fuzzy numbers. Then, in order to measure the differences
between the preferences of the decision makers, we need
to calculate the distances between the fuzzy numbers rep-
resenting those preferences. Let

x = {εL,x,εR} y = {θL,y,θR} (22)

be two triangular fuzzy numbers, where x is the central
value of the fuzzy number x and εL, εR are its left and
right spread respectively. Analogously for the triangular
fuzzy number y.
Various definitions of distance between fuzzy numbers
are considered in the literature [34] [35] [36] [37]. More-
over, the question has been often indirectly addressed in
papers regarding the ranking of fuzzy numbers, see [38]
[39] for a detailed review. In our model we refer to a dis-
tance, indicated by D∗(x,y), which belongs to a family of
distances introduced in [34]. This distance is defined as
follows.
For each α ∈ [0,1], the α–level sets of the two fuzzy num-
bers x and y are respectively

[xL(α),xR(α)] = [x− εL + εLα , x+ εR − εRα] (23)

[yL(α),yR(α)] = [y−θL +θLα , y+θR −θRα] . (24)

The distance D∗(x,y) between x and y is defined by
means of the differences between the left boundaries of
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(23), (24) and the differences between the right bound-
aries of (23), (24). More precisely, the left integral IL is
defined as the integral, with respect to α , of the squared
difference between the left boundaries of (23) and (24),

IL =
∫ 1

0
(xL(α) − yL(α))2dα (25)

and the right integral IR is defined as the integral, with
respect to α , of the squared difference between the right
boundaries of (23), (24),

IR =
∫ 1

0
(xR(α) − yR(α))2dα . (26)

Finally, the distance D∗(x,y) is defined as

D∗(x,y) =
(

1
2
(IL + IR)

)1/2

. (27)

The distance (27) is obtained by choosing p = 2 and
q = 1/2 in the family of distances introduced in [34]. In
order to avoid unnecessarily complex computations, we
skip the square root and we use, in our model, the simpler
expression

D(x,y) = (D∗(x,y))2 =
1
2
(IL + IR) . (28)

Note that expression (28), except for the numerical factor
1/2, has been introduced, independently from [34], also
in [40]. It has been then pointed out in [42] that (28) is
not a distance, as it does not always satisfy the triangular
inequality. Nevertheless, as long as optimization is in-
volved, expression (28) can be equivalently used in place
of the distance (27) [41]. In any case, for simplicity, in the
following we shall use the term distance when referring to
(28). Solving (25) and (26), we obtain

D(x,y) = d2 +
1
6

δ 2
L +

1
6

δ 2
R +

d
2
(δR −δL), (29)

where d = x− y, δL = εL −θL and δR = εR −θR.
As we assumed in section 2, the preferences of the n de-
cision makers are expressed by pairwise comparing the
alternatives a1,a2, ...,am. Given a pair of alternatives, we
assume that the preference of the first over the second al-
ternative is represented, for decision maker i, by a trian-
gular fuzzy number indicated by

ri = {ε i
L,ri,ε i

R}, (30)

where, as in (22), ri is the central value of the fuzzy num-
ber ri, whereas ε i

L and ε i
R are its left and right spreads

respectively. Analogously, let r j be the triangular fuzzy
number of type (30) representing the preference of the

first alternative over the second given by decision maker
j.
Following definition (28), the distance between the fuzzy
preference of decision maker i and the one of decision
maker j becomes

D(ri,r j) = d 2 +
1
6

δ 2
L +

1
6

δ 2
R +

d
2
(δR −δL), (31)

where d = ri − r j, δL = ε i
L − ε j

L and δR = ε i
R − ε j

R.
As in section 3, we consider, for the sake of simplicity,

a problem with m = 2 alternatives and we define the dis-
sensus measure between two decision makers by applying
the scaling function f to D(ri,r j),

V (i, j) = f (D(ri,r j)) . (32)

The dissensus measure of decision maker i with respect
to the rest of the group is given by the arithmetic mean of
the various dissensus measures V (i, j),

V (i) =
n

∑
j(�=i)=1

V (i, j)/(n−1) . (33)

Finally, the global dissensus measure of the group is de-
fined by

V =
1
4

n

∑
i=1

V (i) , (34)

thus obtaining

V =
1
4

n

∑
i=1

n

∑
j(�=i)=1

f (D(ri,r j))/(n−1) . (35)

Denoting by si = {θ i
L,si,θ i

R} the triangular fuzzy number
describing the initial preference of decision maker i, the
cost for changing the initial preference si into the actual
preference ri is given by

U(i) = f (D(ri,si)) . (36)

The global opinion changing aversion component U of
the group is given by

U =
1
2

n

∑
i=1

U(i) . (37)

The numerical factors 1
4 and 1

2 have been introduced in
(34) and in (37) respectively in order to simplify the re-
sults in the following and are not relevant in defining the
components V and U . As mentioned before, the global
cost function W is defined as a convex linear combination
of the components V and U ,

W = (1−λ )V +λU, (38)
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and the exogenous parameter λ ∈ [0,1] represents the rel-
ative importance of the inertial component U with respect
to the dissensus component V .

4 The extended algorithm and some nu-
merical simulations

In [30] the consensual dynamics described in section 3
was extended to the case where the preferences are ex-
pressed by means of triangular fuzzy numbers. In the con-
sensual dynamics, the global cost function W = W (ri) =
W (ε i

L,ri,ε i
R) is minimized through the gradient method.

This implies that in every iteration the new preference r ′
is obtained from the previous preference r in the follow-
ing way (we skip the index i for simplicity)

r → r ′ = r− γ ∇W . (39)

The consensual dynamics (39) will gradually update the
three parameters (εL,r,εR) characterizing the preferences
according to

r → r ′ = r− γ
∂W
∂ r

εL → εL
′ = εL − γ

∂W
∂εL

(40)

εR → εR
′ = εR − γ

∂W
∂εR

.

We can consider separately the effect of the two compo-
nents V and U of W , since ∇W is a linear combination of
∇V and ∇U ,

∇W = (1−λ )∇V +λ∇U . (41)

Let us first consider the component V . Taking again into
account the index i, we have

∂V
∂ ri = vi

((
ri − r̄ i)+

1
4

(
ε i

R − ε̄ i
R − ε i

L + ε̄ i
L

))
(42)

where

vi =
n

∑
j(�=i)=1

vi j/(n−1) ; vi j = f ′(D(ri,r j))

r̄ i =
∑n

j(�=i)=1 vi j r j

∑n
j(�=i)=1 vi j

ε̄ i
L =

∑n
j(�=i)=1 vi j ε j

L

∑n
j(�=i)=1 vi j

ε̄ i
R =

∑n
j(�=i)=1 vi j ε j

R

∑n
j(�=i)=1 vi j

. (43)

Analogously, we calculate

∂V

∂ε i
L

= vi (
1
6
(ε i

L − ε̄ i
L)− 1

4
(ri − r̄ i)) (44)

and

∂V

∂ε i
R

= vi (
1
6
(ε i

R − ε̄ i
R)+

1
4
(ri − r̄ i)) . (45)

Let us now consider the inertial component U . We obtain

∂U
∂ ri = ui ((ri − si)+

1
4
(ε i

R −θ i
R − ε i

L +θ i
L)) (46)

where

ui = f ′(D(ri,si)) , (47)

∂U

∂ε i
L

= ui (
1
6
(ε i

L −θ i
L)− 1

4
(ri − si)) (48)

and

∂U

∂ε i
R

= ui (
1
6
(ε i

R −θ i
R)+

1
4
(ri − s i)) . (49)

At this point we can summarize the effects of the two
components obtaining

∂W
∂ ri = ((1−λ )vi +λui)∆ri − (1−λ )vi∆r̄ i −λui∆si

(50)
where

∆ri = ri +
1
4
(ε i

R − ε i
L) (51)

∆r̄ i = r̄ i +
1
4
(ε̄ i

R − ε̄ i
L) (52)

∆si = si +
1
4
(θ i

R −θ i
L) . (53)

The derivative of W with respect to the left spread be-
comes

∂W

∂ε i
L

= ((1−λ )vi +λui)∆ε i
L − (1−λ )vi∆ε̄ i

L −λui∆θ i
L

(54)
where

∆ε i
L =

1
6

ε i
L −

1
4

ri (55)

∆ε̄ i
L =

1
6

ε̄ i
L −

1
4

r̄ i (56)

∆θ i
L =

1
6

θ i
L −

1
4

si . (57)
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The derivative of W with respect to the right spread be-
comes

∂W

∂ε i
R

= ((1−λ )vi +λui)∆ε i
R−(1−λ )vi∆ε̄ i

R−λui∆θ i
R

(58)
where

∆ε i
R =

1
6

ε i
R +

1
4

ri (59)

∆ε̄ i
R =

1
6

ε̄ i
R +

1
4

r̄ i (60)

∆θ i
R =

1
6

θ i
R +

1
4

si . (61)

Let us now present some numerical simulations in or-
der to illustrate the behavior of the dynamics in some in-
teresting cases. All computations are performed with the
following values of the parameters: γ = 0.005, α = 0.3
and β = 10. In the general case reported in Figure 1 the
two initial preferences are fuzzy and different in shape,
although the centers are symmetrical with respect to the
mid point 0.5. When λ = 0 the two preferences converge
asymptotically to a single fuzzy preference whose overall
spread clearly corresponds to a trade-off between the two
initial ones. When λ = 0.5, on the other hand, the two
preferences are asymptotically distinct but the previous
trade-off effect is also present. Moreover, we note that
the consensual dynamics tends to induce an area overlap-
ping effect between the two fuzzy preferences.

In the special case reported in Figure 2 the two ini-
tial preferences are crisp and symmetrical with respect
to the mid point 0.5. In time, the two crisp preferences
become fuzzy, creating not only internal spreads (as ex-
pected) but also external spreads (which is more interest-
ing). When λ = 0 the two preferences converge asymptot-
ically to a single fuzzy preference with non zero spread,
which means that the consensual dynamics does not pre-
serve the crispness of the preferences, not even asymptot-
ically. When λ = 0.5, on the other hand, the two pref-
erences are asymptotically distinct but crisp, which is a
very interesting effect due to the inertial component of
the consensual dynamics.

In Figure 3 it is also reported a particular case, where
the two initial preferences are fuzzy with (only) external
spreads and symmetrical centers with respect to the mid
point 0.5. In time, the two fuzzy preferences move to-
wards one another, driven by the area overlapping effect
of the consensual dynamics. The interesting feature ob-
served in this case is the fact that the center trajectories
intersect, once with λ = 0 and twice with λ = 0.5. This
intersection effect is present only in the extended ver-
sion of the consensual dynamics model, not in the clas-
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Figure 1: Case with λ = 0 (left) and λ = 0.5 (right)

sical (crisp) one. When λ = 0 the two preferences con-
verge asymptotically to a single fuzzy preference, with
equal spreads. When λ = 0.5, on the other hand, the two
preferences are asymptotically distinct and with unequal
spreads, even though they show both internal and external
spreads.

In the case reported in Figure 4 we have six initial fuzzy
preferences divided in two coalitions, in each of which
the end points of the triangles are common. The col-
lective preference configuration corresponds essentially
to the two extreme groups of a set of linguistic terms.
When λ = 0 the six preferences converge asymptotically
to a single fuzzy preference, with equal spreads. When
λ = 0.5, on the other hand, the six preferences are asymp-
totically distinct but still, within each coalition, the end
points of the triangles are common. Interestingly, the
asymptotic configuration of the two preference coalitions
can be characterized by the end points but no longer by
the centers, whose discriminatory value has been lost.

At the end of the section we would like to summarize
how we started to approach the implementation of our
model in a supply chain management system to be de-
veloped by our research unit under a two years project in-
volving the heath care department of a local government
agency. It is well known that management of suppliers,
which represent an integral part of the supply chain of an
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Figure 2: Case with λ = 0 (left) and λ = 0.5 (right)
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Figure 3: Case with λ = 0 (left) and λ = 0.5 (right)
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Figure 4: Case with λ = 0 (left) and λ = 0.5 (right)

organization, requires an adequate selection framework
based on multiple criteria and effective negotiation skills
involving more then one expert. To find the best supplier
it is necessary to make a trade-off between conflicting
quantitative and qualitative factors whose evaluation de-
pends on the opinions shared by the individuals belonging
to a group of experts (decision makers). The methods pro-
posed in the literature for solving the supplier selection
problem, mostly based on operations research techniques,
usually involve linear weighting methods, analytic hierar-
chy process, mathematical programming techniques (for
a selected list of references see [43]) but the problem of
pooling the opinions/judgements of the experts, even if
mentioned, is not formally and satisfactory addressed in
the literature. Moreover, since supplier selection involves
ratings and weights of the criteria that are assessed by
means of linguistic labels and the expert judgements are
often vague, the fuzzy approach seems to be quite suit-
able (see [44] [45] [46] [47] for reasons for supporting
the fuzzy approach). In essential, the supplier selection
problem in supply chain systems could be addressed us-
ing a group decision model in which the evaluation (con-
sensual) of the suppliers is based on fuzzy relations es-
timated using fuzzy numbers (linguistic labels). There-
fore, the model described in our paper seems to be suit-
able in supporting this kind of decision process, as some
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evidence from our experimental approaches to healthcare
supply chain management have been so far demonstrated.
We carried out several experimentations with a team of
experts belonging to the healthcare department of a lo-
cal autonomous government agency and involved in the
joint selection of the suppliers of the regional hospital
system. This is a problem that deeply affects the system,
since about 30 percent of hospital management costs are
supply-related and the top management of the department
estimated using the time series of data in the last 10 years,
that the impact of suppliers selection is crucial.

5 Conclusions and future research

We have studied by means of numerical simulations the
behavior of the fuzzy model of consensual dynamics, in
which the individual preferences are represented by tri-
angular fuzzy numbers. A selection of these simulations
is presented in section 4. The computer simulations pro-
vide clear evidence that the fuzzy consensual dynamics
model exhibits interesting non standard opinion changing
behavior in relation to the crisp version of the model. Fu-
ture research should at first explore more general cases,
in order to clarify the role of the various parameters in-
volved in the consensual dynamics, and to demonstrate
the potential of the methodology as an effective support
for the modelling of consensus in multicriteria and multi-
expert decision making. Secondly, the case study will be
further improved through the development of a group de-
cision support module to be embedded in the distributed
healthcare supply chain system.
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