
On interactive possibility distributions∗

Robert Fulĺer
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Abstract

In 2001 Carlsson and Fullér [1] introduced the possibilistic mean value, variance and co-
variance of fuzzy numbers. In 2003 Fullér and Majlender [4] introduced the notations of
crisp weighted possibilistic mean value, variance and covariance of fuzzy numbers, which
are consistent with the extension principle. In 2003 Carlsson, Fullér and Majlender [2]
proved the possibilistic Cauchy-Schwartz inequality. Drawing heavily on [1, 2, 3, 4, 5] we
will summarize some normative properties of possibility distributions.

1 Probability

In probability theory, the dependency between two random variables can be characterized
through their joint probability density function. Namely, ifX andY are two random variables
with probability density functionsfX(x) andfY (y), respectively, then the density function,
fX,Y (x, y), of their joint random variable(X, Y ), should satisfy the following properties

∫
R

fX,Y (x, t)dt = fX(x),

∫
R

fX,Y (t, y)dt = fY (y),

for all x, y ∈ R. Furthermore,fX(x) andfY (y) are called the marginal probability density
functions of random variable(X, Y ). X andY are said to be independent if

fX,Y (x, y) = fX(x)fY (y),

holds for allx, y. The expected value of random variableX is defined as

E(X) =

∫
R

xfX(x)dx,
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and if g is a function of X then the expected value of g(X) can be computed as

E(g(X)) =

∫
R

g(x)fX(x)dx.

Furthermore, if h is a function ofX and Y then the expected value of h(X, Y ) can be computed
as

E(h(X, Y )) =

∫
R2

h(x, y)fX,Y (x, y)dxdy.

Especially,
E(X + Y ) = E(X) + E(Y ),

that is, the expected value of X and Y can be determined according to their individual density
functions (that are the marginal probability functions of random variable (X, Y )).

Remark 1.1. The key issue here is that the joint probability distribution vanishes (even if X
and Y are not independent), because of the principle of ’falling integrals’.

Let a, b ∈ R ∪ {−∞,∞} with a ≤ b, then the probability that X takes its value from [a, b]
is computed by

P(X ∈ [a, b]) =

∫ b

a

fX(x)dx.

The covariance between two random variables X and Y is defined as

Cov(X, Y ) = E
(
(X − E(X))(Y − E(Y ))

)
= E(XY )− E(X)E(Y ),

and if X and Y are independent then Cov(X, Y ) = 0, since E(XY ) = E(X)E(Y ).
The variance of random variable X is defined as the covariance between X and itself, that

is

Var(X) = E(X2)− (E(X))2 =

∫
R

x2fX(x)dx−
(∫

R

xfX(x)dx

)2

.

For any random variables X and Y and real numbers λ, µ ∈ R the following relationship holds

Var(λX + µY ) = λ2Var(X) + µ2Var(Y ) + 2λµCov(X, Y ).

The correlation coefficient between X and Y is defined by

ρ(X, Y ) =
Cov(X, Y )√

Var(X)Var(Y )
,

and it is clear that −1 ≤ ρ(X, Y ) ≤ 1.

2 Interactive possibility distributions

A fuzzy set A in R is said to be a fuzzy number if it is normal, fuzzy convex and has an upper
semi-continuous membership function of bounded support. The family of all fuzzy numbers
will be denoted by F . A γ-level set of a fuzzy set A in Rm is defined by [A]γ = {x ∈ Rm :
A(x) ≥ γ} if γ > 0 and [A]γ = cl{x ∈ Rm : A(x) > γ} (the closure of the support of A)



if γ = 0. If A ∈ F is a fuzzy number then [A]γ is a convex and compact subset of R for all
γ ∈ [0, 1].

Fuzzy numbers can be considered as possibility distributions [6, 7]. Let a, b ∈ R ∪
{−∞,∞} with a ≤ b, then the possibility that A ∈ F takes its value from [a, b] is defined
by [7]

Pos(A ∈ [a, b]) = max
x∈[a,b]

A(x).

A fuzzy set B in Rm is said to be a joint possibility distribution of fuzzy numbers Ai ∈ F ,
i = 1, . . . ,m, if it satisfies the relationship

max
xj∈R, j �=i

B(x1, . . . , xm) = Ai(xi),

for all xi ∈ R, i = 1, . . . ,m. Furthermore, Ai is called the i-th marginal possibility distribution
of B, and the projection of B on the i-th axis is Ai for i = 1, . . . ,m.

Let B denote a joint possibility distribution of A1, A2 ∈ F . Then B should satisfy the
relationships

max
y
B(x1, y) = A1(x1),

max
y
B(y, x2) = A2(x2),

for all x1, x2 ∈ R.

Figure 1: Non-interactive possibility distributions.

If Ai ∈ F , i = 1, . . . ,m, and B is their joint possibility distribution then the relationships

B(x1, . . . , xm) ≤ min{A1(x1), . . . , Am(xm)},

and
[B]γ ⊆ [A1]

γ × · · · × [Am]γ,

hold for all x1, . . . , xm ∈ R and γ ∈ [0, 1].
In the following the biggest (in the sense of subsethood of fuzzy sets) joint possibility

distribution will play a special role among joint possibility distributions: it defines the concept
of non-interactivity of fuzzy numbers (see Fig. 1).



Definition 2.1. Fuzzy numbers Ai ∈ F , i = 1, . . . ,m, are said to be non-interactive if their
joint possibility distribution, B, is given by

B(x1, . . . , xm) = min{A1(x1), . . . , Am(xm)},

or, equivalently,
[B]γ = [A1]

γ × · · · × [Am]γ,

for all x1, . . . , xm ∈ R and γ ∈ [0, 1].

Remark 2.1. Marginal probability distributions are determined from the joint one by the prin-
ciple of ’falling integrals’ and marginal possibility distributions are determined from the joint
possibility distribution by the principle of ’falling shadows’.

Let A ∈ F be fuzzy number with [A]γ = [a1(γ), a2(γ)], γ ∈ [0, 1]. A function f : [0, 1]→
R is said to be a weighting function [4] if f is non-negative, monotone increasing and satisfies
the following normalization condition

∫ 1

0

f(γ)dγ = 1.

3 Possibilistic expected value, variance, covariance

Let B be a joint possibility distribution in Rn, let γ ∈ [0, 1] and let g : Rn → R be an integrable
function. It is well-known from analysis that the average value of function g on [B]γ can be
computed by

C[B]γ (g) =
1∫

[B]γ
dx

∫
[B]γ

g(x)dx

=
1∫

[B]γ
dx1 . . . dxn

∫
[B]γ

g(x1, . . . , xn)dx1 . . . dxn.

We will call C as the central value operator.
If g : R → R is an integrable function and A ∈ F then the average value of function g on

[A]γ is defined by

C[A]γ (g) =
1∫

[A]γ
dx

∫
[A]γ

g(x)dx.

Especially, if g(x) = x, for all x ∈ R is the identity function (g = id) and A ∈ F is a fuzzy
number with [A]γ = [a1(γ), a2(γ)] then the average value of the identity function on [A]γ is
computed by

C[A]γ (id) =
1∫

[A]γ
dx

∫
[A]γ

xdx =
1

a2(γ)− a1(γ)

∫ a2(γ)

a1(γ)

xdx =
a1(γ) + a2(γ)

2
,

which remains valid in the limit case a2(γ) − a1(γ) = 0 for some γ. Because C[A]γ (id) is
nothing else, but the center of [A]γ we will use the shorter notation C([A]γ) for C[A]γ (id).



It is clear that C[B]γ is linear for any fixed joint possibility distribution B and for any γ ∈
[0, 1].

We can also use the principle of central values to introduce the notion of expected value
of functions on fuzzy sets. Let g : R → R be an integrable function and let A ∈ F . Let us
consider again the average value of function g on [A]γ

C[A]γ (g) =
1∫

[A]γ
dx

∫
[A]γ

g(x)dx.

Definition 3.1. [5] The expected value of function g on A with respect to a weighting function
f is defined by

Ef (g;A) =

∫ 1

0

C[A]γ (g)f(γ)dγ =

∫ 1

0

1∫
[A]γ

dx

∫
[A]γ

g(x)dxf(γ)dγ.

Especially, if g is the identity function then we get

Ef (id;A) = Ef (A) =

∫ 1

0

a1(γ) + a2(γ)

2
f(γ)dγ,

which is the f -weighted possibilistic expected value of A introduced in [4].
Let us denote the projection functions on R2 by πx and πy, that is,

πx(u, v) = u,

and
πy(u, v) = v,

for u, v ∈ R.
The following theorems show two important properties of the central value operator [5].

Theorem 3.1. If A,B ∈ F are non-interactive and g = πx +πy is the addition operator on R2

then
C[A×B]γ (πx + πy) = C[A]γ (id) + C[B]γ (id) = C([A]γ) + C([B]γ),

for all γ ∈ [0, 1].

Theorem 3.2. If A,B ∈ F are non-interactive and p = πxπy is the multiplication operator on
R

2 then
C[A×B]γ (πxπy) = C[A]γ (id) · C[B]γ (id) = C([A]γ) · C([B]γ),

for all γ ∈ [0, 1].

Definition 3.2. [5] Let C be a joint possibility distribution with marginal possibility distribu-
tions A,B ∈ F , and let γ ∈ [0, 1]. The measure of interactivity between the γ-level sets of A
and B is defined by

R[C]γ (πx, πy) = C[C]γ
(
(πx − C[C]γ (πx))(πy − C[C]γ (πy))

)
.



Using the definition of central value we have

R[C]γ (πx, πy) = C[C]γ (πxπy)− C[C]γ (πx) · C[C]γ (πy)

for all γ ∈ [0, 1].

Definition 3.3. [5] Let C be a joint possibility distribution in R2, and let A,B ∈ F be its
marginal possibility distributions. The covariance of A and B with respect to a weighting
function f (and with respect to their joint possibility distributioin C) is defined by

Covf (A,B) =

∫ 1

0

R[C]γ (πx, πy)f(γ)dγ

=

∫ 1

0

[
C[C]γ (πxπy)− C[C]γ (πx) · C[C]γ (πy)

]
f(γ)dγ.

In [5] we proved that if A,B ∈ F are non-interactive then Covf (A,B) = 0. Zero correla-
tion does not always imply non-interactivity. Let A,B ∈ F be fuzzy numbers, let C be their
joint possibility distribution, and let γ ∈ [0, 1]. Suppose that [C]γ is symmetrical, i.e. there
exists a ∈ R such that

C(x, y) = C(2a− x, y),
for all x, y ∈ [C]γ (hence, line defined by {(a, t)|t ∈ R} is the axis of symmetry of [C]γ). It
can be shown [3] that in this case the interactivity relation of [A]γ and [B]γ vanishes, i.e.

R[C]γ (πx, πy) = 0,

(see Fig 2).

Figure 2: The case of ρf (A,B) = 0 for interactive fuzzy numbers.

In many papers authors consider joint possibility distributions that are derived from given
marginal distributions by aggregating their membership values. Namely, letA,B ∈ F . We will
say that their joint possibility distribution C is directly defined from its marginal distributions
if

C(x, y) = T (A(x), B(y)), x, y ∈ R,
where T : [0, 1]× [0, 1]→ [0, 1] is a function satisfying the properties

max
y
T (A(x), B(y)) = A(x),∀x ∈ R,



and
max
x

T (A(x), B(y)) = B(y),∀y ∈ R,

for example a triangular norm.

Remark 3.1. In this case the joint distribution depends barely on the membership values of its
marginal distributions.

Figure 3: The case of ρf (A,B) = 1.

In [3] we have shown that in this case the covariance (and, consequently, the correlation) be-
tween its marginal distributions will be zero whenever at least one of its marginal distributions
is symmetrical.

Theorem 3.3. [3] LetA,B ∈ F and let their joint possibility distribution C be directly defined
from its marginal distributions. If A is a symmetrical fuzzy number then

Covf (A,B) = 0,

for any fuzzy number B and weighting function f .

Let us denoteR[A]γ (id, id) the average value of function

g(x) = (x− C([A]γ))2,

on the γ-level set of an individual fuzzy number A. That is,

R[A]γ (id, id) =
1∫

[A]γ
dx

∫
[A]γ

x2dx−
(

1∫
[A]γ

dx

∫
[A]γ

xdx

)2

.

Definition 3.4. The variance of A is defined as the expected value of function

g(x) = (x− C([A]γ))2,

on A. That is,

Varf (A) = Ef (g;A) =

∫ 1

0

R[A]γ (id, id)f(γ)dγ.



Figure 4: The case of ρf (A,B) = −1.

From the equality,

R[A]γ (id, id) =
(a2(γ)− a1(γ))

2

12
,

we get,

Varf (A) =

∫ 1

0

(a2(γ)− a1(γ))
2

12
f(γ)dγ.

In [5] we proved that the that the ’principle of central values’ leads us to the same rela-
tionships in possibilistic environment as in probabilitic one. It is why we can claim that the
principle of ’central values’ should play an important role in defining possibilistic dependen-
cies.

Theorem 3.4. [5] Let C be a joint possibility distribution in R2, and let λ, µ ∈ R. Then

R[C]γ (λπx + µπy, λπx + µπy) =

λ2R[C]γ (πx, πx) + µ2R[C]γ (πy, πy) + 2λµR[C]γ (πx, πy).

Furthermore, in [2] we have shown the following theorem.

Theorem 3.5. Let A,B ∈ F be fuzzy numbers (with Varf (A) �= 0 and Varf (B) �= 0) with
joint possibility distribution C. Then, the correlation coefficient between A and B, defined by

ρf (A,B) =
Covf (A,B)√

Varf (A)Varf (B)
.

satisfies the property
−1 ≤ ρf (A,B) ≤ 1.

for any weighting function f .

Let us consider three interesting cases. In [4] we proved that if A and B are independent,
that is, their joint possibility distribution is A × B then ρf (A,B) = 0. Consider now the case
depicted in Fig. 3. It can be shown [2] that in this case ρf (A,B) = 1. Consider now the case
depicted in Fig. 4. It can be shown [2] that in this case ρf (A,B) = −1. Consider now the case
depicted in Fig. 5. It can be shown that in this case ρf (A,B) = 1/3.



Figure 5: The case of ρf (A,B) = 1/3.

4 Summary

We have illustrated some important feautures of possibilistic mean value, covariance, variance
and correlation by several examples. We have shown that zero correlation does not always
imply non-interactivity. We have also shown the limitations of direct definitions of joint pos-
sibility distributions from individual fuzzy numbers, for example, when one simply aggregates
the membership values of two fuzzy numbers by a triangular norm
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